اثرات آلودگی خاک به کادمیوم بر توان گردهای و تثبیت نیتروژن سوسیال در

Sinorhizobium meliloti (سیترووزیوم ملیلوتی)

مژگان سپهری، ناهید صالح راستی، هادی اسدی رحمانی و حسینعلی علیخانی

چکیده

فازات مختلف به دلیل آثار پژوهش‌هایی که بر رشد و عملکرد باکتری‌های نیتروژین و گیاهان نقش مهمی آنها دارند. کریپتیک و تثبیت نیتروژن سوسیال به‌طور معمول به تأثیر کادمیوم در کاهش اثر سویا می‌تواند به‌طور عمده از این گونه باشد. در این مقاله، آزمایش گلخانه‌ای در قالب طرح پلی‌کره کامل تصادفی برنامه‌ریزی شد. نتایج نشان داد که آلودگی با کادمیوم باید با توجه به جایگاه گیاه و تعداد کادمیوم، واکنش گیاه را تغییر داده و در سطح مختلف کادمیوم، تأثیر قابل توجهی بر گلخانه‌ای برخی از بهترین سیترووزیوم میلیلی‌ها داشت و نتایج این آزمایش موجب شد که آلودگی کادمیوم با کاهش رضایت گیاهان متفاوت باشد. نتایج نشان داد که آلودگی کادمیوم با کاهش رضایت گیاهان متفاوت باشد. کاهش بیماری در باکتری‌های سیترووزیوم میلیلی‌ها از این نظر نیتروژن گردهایی و جذب نیتروژن در سطح مختلف کادمیوم به عنوان برترین سوسیال شناخته شد.

واژه‌های کلیدی: تثبیت نیتروژن، سیترووزیوم میلیلی، کادمیوم، گردهایی

مقدمه

آلودگی محیط زیست و افزایش روند تخریب اکوسیستم‌ها طبیعی از جمله خاک که جهان کلنی یا آن روند رسیدن ناشی از برخورد غیرسالمان انسان با محیط زیست و استفاده نامناسب

1. به ترتیب دانشجوی دکتری، دانشیار و استادار خاکشناسی، دانشگاه کشاورزی، دانشگاه تهران
2. استادار مؤسسه تحقیقات خاک و آب، تهران

153
نهاده‌ها، مشکلات و پیامدهای زیست محیطی انسان در رای بشر به اعضا کوادوم اثر می‌گذاشت. این امر زیست محیطی آلووده شدن خاک‌های زیر کشت به فلزات سنجاب مانند کادوم، نیکل، تربیت و آلیاژ‌های دیگر و رود انتقال می‌بیند. به‌طور کلی غلظت فلزات در خاک را به‌طور افزایشی است. اطلاعات از غلظت بحوران این فلزات و آثار ناشی از آلیاژگی آنها در خاک، در اهمیت بسیاری است. ولی به دلیل ماهیت متغیر این عناصر در خاک و پیچیدگی‌های خاصیت خاک، در انوای مواردی و اجراکننده‌های غیر عادی بسیار است. در این حوزه درک‌گردهای حادثه‌گونه‌ای قسمت از خاک، افزایش‌های کشاورزی و یا در نظر گرفتن آثار سیاسی یا زیست‌گاهی که طبیعی جنگ‌های میان‌ال‌اقسیمهای سنجاب و غیره انتقال فلزات سنجاب که توانایی نشان دهنده یا بهبود در افزایش مجوز‌های بومی این زیستگاه‌ها این مورد به‌طور کلی این فلزات در خاک، به‌طور خاص خاک‌های زیر کشت، انتقال و جدایی تبدیل کننده و حضور لیگن‌ها به کلیپک‌کننده سنجاب در روابط‌های زیستی یا کالری‌ها، که در سطح حیاتی حدود 100 میلی‌گرم در هکتار در سال) از اهمیت بیشتر برخوردار است. نتایج بررسی‌ها نشان داده‌اند که فلزات سنجاب از جمله کادوم، نیکل، تربیت و آلیاژ‌های بزرگ‌ترین و مهم‌ترین بخش‌ها تولید نیتروزون در زیست‌های زراعی‌ها می‌باشد. مقدار نیتروزون تثبیت شده توسط انواع زراعت، در سطح میان‌ال‌اقسیم‌‌های مختلف، به‌طور قابل‌توجه تغییر دارد. در 25 کیلوگرم در هکتار در سال (1) ورود فلزات سنجاب به خاک عادی بر جز سبب غلظت، توس‌گیاه و ورود به زنجیره‌های غذایی که سبب به‌طور مختصر افزایش سلول‌سازی، خالق و پایداری زیست‌های زراعی و محیط زیستی کشاورزی را نیز مورد تحقیق و عدم قرار داده شده‌اند. این کادوم از ترکیب این تولید فلزات سنجاب آزادی‌های خاک به شامل‌اند می‌آید که از میان مجموعه‌هایی از خاک‌های مورد تحقیق، همچنین در طبیعت و سنجاب‌های زراعی که هم‌اکنون مورد تحقیق و عدم قرار داده شده‌اند می‌باشد. زیرا سنجاب سنجابی که برای ساخت کود استفاده می‌شود، دارای کادوم زیادی (10 تا 90 میلی‌گرم در کیلوگرم) است (1).

dm

عدمٔ دقت یکسان کود‌ها به هنگام خردی و نیز معنی نیتروژون در خاک‌های زیر کشت، تحصیل کادوم در خاک‌های زیر کشت، تولید کادوم در سال 1995 در سطح جهان، ۱۲۱ میلی‌گرم نیتروژون بوده است. بنابراین، روش‌های مختلف، ۲۰ میلی‌گرم کادوم در کیلوگرم کود به‌طور از طریق غلظت به‌طور کلی به‌طور قابل‌توجه شناخته‌شده است (1). شایان ذکر است که

۱۵۲
اکتاس آلودگی خاک به کادیوم بر توان گزورنگی و...
جدول 1. نتایج تجزیه فیزیکی و شیمیایی نمونه خاک مورد استفاده در آزمون گلگانهای

<table>
<thead>
<tr>
<th>کربن آلی (%)</th>
<th>pH</th>
<th>ظرفیت تبادل الکتریکی</th>
<th>مصعه اشناع</th>
<th>بافت</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.3</td>
<td>10/8</td>
<td>1/32</td>
<td>Sandy Loam</td>
</tr>
<tr>
<td>کادمیوم mg.kg⁻¹</td>
<td>ازت كل</td>
<td>Ca²⁺ mg.kg⁻¹</td>
<td>Mg²⁺ mg.kg⁻¹</td>
<td>K⁺ mg.kg⁻¹</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1/8</td>
<td>1/8</td>
<td>1/4</td>
</tr>
</tbody>
</table>

سانتی‌گراد زمانی 10000 لوبس به مدت 200 روز قرار داده شدند. در پایان گزارش درصد نسبت گیاه‌های (نقطه‌ای در نمودار گل‌دهی) گیاهان، خصوصاً هوايی گیاه از محل طول، قطع و سبک ناپیداریت خاص قرار گرفت و در آن‌ها حرارت 70 درجه سانتی‌گراد خشک شد. سیستم روش‌های گیاه نبود در خارج تعداد گیاه موجود در سیستم روش‌های تغییر شدند. به علاوه درصد مراتب گیاه به روش گل‌دهی آزمایش و بر اساس آن مقدار کل اکسید کالری پدیده در ادامه هوايی گیاه مخابه شد. نتایج تجزیه و تحلیل آماری نتایج آزمایش با استفاده از SAS انجام گرفت و نمودارها با استفاده از Excel تهیه شد.

نتایج

تجزیه و تحلیل داده‌های نشان داد که سیستم و کادمیوم در سطح 1/201 با تأثیر بسیار مثبت بر تعداد گیاه‌های سیستم ریشه‌ای گیاه بوده‌اند (جدول 3). بین اکیاف‌های مختلف این آزمایش اختلاف معنی‌داری دیده نشد. همچنین الگوی تغییر در سیستم و کادمیوم بر تعداد گیاه‌ها معنی‌دار نشد. مقایسه میانگین بین سطوح مختلف کادمیوم مختلط کرده که حتی تیمار 2 میلی گرم کادمیوم بر کیلوگرم، تعداد گیاه‌ها را نسبت به شاهد حدود 16 درصد کاهش داده است (شكل 1). باین آزمایش غلظت کادمیوم این روند کاهش‌نشدی شده و این آساس و نتایج آزمون‌ها مراجعه قبل (آزمون تقلیح گیاه و آزمایش ارزیابی تاثیر کادمیوم بر نشانه‌های ضد صورت که از بین 75 سویه حاصل شده سیستم‌های مختلف، شک سپری با مقدار جدایی کارا بحمدی (کارا) و کارا بحمدی بر اساس وزن ماده خشکها از مقدار نیتروژن گیاهان تقلیح شده با سویه‌های نظر نسبت به گیاهان شاهد بدون باکتری و بدون نیتروژن همچنین شاهد بدون باکتری و دارای منبع نیتروژن کافی محاسبه می‌شود و درجات مختلف تجربه‌بندی با کادمیوم (بر اساس کشت باکتری) بر روی محیط‌های مختلف مناسب برای بریوزیوم (Y.M.A.) و دارای سطح مختلف کادمیوم (2، 5 و 10 میلی‌گرم در هر کیلوگرم خاک) و مقایسه حداکثر مقداری از کادمیوم که اثر بارداری‌گذار مشاهده بر رشد باکتری آماده می‌کند اتخاذ شدند. جدول 2 اعداد مشخصات سویه‌های اختیاری برای تهیه مایع تقلیح در این مدل‌گیری از آزمایش‌ها بررسی شد.
جدول 2. مشخصات سوبهای سیتروپریپوئوم میلیوئی بی کار رفته در آزمایش گلخانه‌ای

<table>
<thead>
<tr>
<th>درجه تحمل به کادیوم</th>
<th>شماره سوبه</th>
<th>میانگین کاراکتر همبستگی (S.E.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>نبنا متحمل</td>
<td>S₁₈</td>
<td>125/88</td>
</tr>
<tr>
<td>نبنا متحمل</td>
<td>S₁₅</td>
<td>126/76</td>
</tr>
<tr>
<td>متحمل</td>
<td>S₁₃</td>
<td>83/82</td>
</tr>
<tr>
<td>متحمل</td>
<td>Rₑ₃₅</td>
<td>125</td>
</tr>
<tr>
<td>حساس</td>
<td>S₂₁</td>
<td>61/76</td>
</tr>
<tr>
<td>حساس</td>
<td>R₈₃</td>
<td>132/35</td>
</tr>
</tbody>
</table>

جدول 3. تجزیه واریانس اثرات سوبه‌های سیتروپریپوئوم میلیوئی و کادیوم بر تعداد گره و مقدار کل نیتروژن اندام هواپی

<table>
<thead>
<tr>
<th>میانگین مریعات</th>
<th>تعداد گره</th>
<th>درجه آزادی</th>
<th>منابع تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>کاکدهم</td>
<td>770/35</td>
<td>0/1***</td>
<td>نکرار</td>
</tr>
<tr>
<td>سوبه</td>
<td>203/78</td>
<td>0/1***</td>
<td>سوبه</td>
</tr>
<tr>
<td>کادیوم</td>
<td>4/1</td>
<td>0/1***</td>
<td>کادیوم</td>
</tr>
<tr>
<td>سوبه × کادیوم</td>
<td>55/31</td>
<td>0/1***</td>
<td>24</td>
</tr>
<tr>
<td>خطای آزمایش</td>
<td>81/65</td>
<td>0/102</td>
<td>4</td>
</tr>
<tr>
<td>انحراف معیار</td>
<td>21/38</td>
<td>0/2034</td>
<td>C.V</td>
</tr>
</tbody>
</table>

شکل 1. اثر کادیوم بر تعداد گره‌های ریشه

ns: به ترتیب معنی‌دار در سطح 0/1، 0/01 و 0/001 درصد و غیر معنی‌دار.
کاهش از گلچین 5 میلی گرم بر کیلوگرم معنی‌دار شده است. با این حال حتی مقدار 20 میلی گرم کادمویم بر کیلوگرم خاک اثر کامل بازدارنده بر تشکیل گردش‌ها نداشته و تنها کاهش 24/5 درصدی نسبت به شاهد را موجب شده است (شکل 1).

سویه‌های باکتری سنتریوژوپرمی، کادمویم و کارابی همکاری دارای آثار متفاوتی بر گرزه‌ای بودند. به طوری که گیاهان تلفیق شده با سویه‌های حساس (S11, R83) کمترین تعداد گره را تولید نمودند (شکل 2). تأثیر کاهشی گلچین کادمویم بر تعداد گره‌های

شکل 2. اثر سویه بر تعداد گره‌های ریشه

شکل 3. اثر کادمویم بر مقدار کل نیتروژن اندام هواپیمای

رشایی در مورد سویه‌های حساس در مقایسه با سویه‌های نسبتاً متحمل (S13, S17) و سویه‌های متحمل به کادمویم (S15, R95m) به ترتیب به حدود 46/2 و 68/3 درصد رسید.

نتایج جدول تجزیه واریانس (جدول 3) بینانگر اثر معنادار سویه و کادمویم در سطح 0/010 آنار متفاوت آلیا در سطح 0/010 و اثر تکرار در سطح 0/01 بر مقدار نیتروژن جذب که با افزایش مقدار کادمویم، مقدار کل نیتروژن اندام هواپیمای کاهش می‌یابد، به طوری که اختلاف مقدار این شاخص در
تنافر من جهت دست آمده و نشانگر اختلاف تأثیر سیروسهای مختلف سیروسیبومین (بایان‌دار) با کاهش مقدار نیتروژن در گیاهان تلفیق شده با سیروسهای حساس به کادومبین نسبت به دو گروه دیگر تقریباً 29 درصد می‌باشد. در این آزمون سویهای سیروسیبومین (رشارت (ال) کاریکای حساسیتی) از نظر مقدار کل نیتروژن اندازه‌گیری که کاهش‌شناسی تلفیق نشده نشان نمی‌دهد. در حالی که تفاوت‌های گمیان‌ها با شاهد کامل معنا‌دار است روش‌هایی که گمیان نشان می‌دهد که با گمیان‌های کاریکای حساسیتی روبرو بود.

نتایج مقایسه میانگین اثر مقابله کادومبین و سیروسها مختلف سیروسیبومین بی‌طرف کننده کل نیتروژن اندازه‌گیری 2 (جدول 4) مشخص کرده که بستگی‌الاکتیو و کاریکای حساسیتی بی‌طرف (راکی) به سیروسهای مختلف سیروسیبومین (مقابل کادومبین) و بستگی‌الاکتیو دو بانک کریک‌ها در مقدار مختلف کادومبین است. به‌طور کلی افزایش کادومبین بی‌طرف کاهش مقدار نیتروژن اندازه‌گیری گیاهی شده. مقدار این کاهش در گروه سیروسهای حساسیتی کاهش و حساس به کادومبین به ترتیب 33 و 2 درصد نسبت به شاهد بودن کادومبین بود.

بحث

نتایج به دست آمده از مطالعات این پژوهش حاکی از این است که سطوح مختلف کادومبین اعمال شده در خاک، هم‌ریزی گیاه
جدول 4. مقایسه میانگین اثرات متقابل کادمویم و سویه‌های رژوپیم بر مقدار کل نیتروژن اندام هوایی

<table>
<thead>
<tr>
<th>سطح مختلف کادمویم</th>
<th>NO</th>
<th>MNO</th>
<th>KLMNO</th>
<th>IJKL</th>
<th>JKLM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0/27 20</td>
<td>0/34 10</td>
<td>0/41 2</td>
<td>0/51 0</td>
<td>0/47 0</td>
</tr>
<tr>
<td>JKL</td>
<td>0/49</td>
<td>HIJKL</td>
<td>DEFGHJ</td>
<td>DEFGHJ</td>
<td>CDEF</td>
</tr>
<tr>
<td>EFGHJK</td>
<td>0/77</td>
<td>DEFGH</td>
<td>CDEFG</td>
<td>BCD</td>
<td>A</td>
</tr>
<tr>
<td>O</td>
<td>0/25</td>
<td>LMNO</td>
<td>KLMN</td>
<td>KLMN</td>
<td>GHJKL</td>
</tr>
<tr>
<td>KLMNO</td>
<td>0/20</td>
<td>KLMNO</td>
<td>KLMN</td>
<td>GHIJKL</td>
<td>AB</td>
</tr>
<tr>
<td>FGHJKL</td>
<td>0/57</td>
<td>KLMNO</td>
<td>BCDE</td>
<td>DEFGH</td>
<td>AB</td>
</tr>
<tr>
<td>IJKLM</td>
<td>0/50</td>
<td>JKLM</td>
<td>DEFGHJ</td>
<td>BCDE</td>
<td>ABC</td>
</tr>
</tbody>
</table>

شامل: www.SID.ir
شکل ۲ اثر سویه بر مقدار کل نیتروژن اندام هوایی

به این فقره، رشد کیسه بیش از هرگونه باکتری جهت تثبیت نیتروژن منجر می‌شود. برخی محققان فردان آثار سویه سلول‌های پستین سینگین در جمعیت‌های ریزومیومی خاک را به مقاومت ذاتی باکتری‌های ریزومیومی دانسته و نتایج داشته‌اند. به طور مریگ، با کاهش تثبیت نیتروژن در گذشت. در حالی که در گذشت، مثلاً نیتروژن کادمیوم به سلول‌های ریزومیومی (R. leguminosa) و (R. trifolii) غلظت (S.E. = 125) نسبت به سویه که با ترتیب ۱۲۵/۸۸/۸۸/۸۸/۸۸/۸۸ درجه تحلیل کاملاً متفاوت این فقرت پیش بهتری نشان داد. در سیستم‌های هم‌زیستی ریزومیوم گل‌گونه‌زی در افزایش غلظت سلول‌های خام، رشد کیسه باکتری و به دنبال آن توان هم‌زیستی گیاه با باکتری یک‌نداده می‌ایجاد و این امر سبب کاهش در زیست پلاستیک اندام‌های آلوده، امکان‌پذیر است. به علاوه یک می‌سازد. (۴) به ترتیب ۱۲۵/۸۸/۸۸/۸۸/۸۸/۸۸ درجه تحلیل کاملاً متفاوت این فقرت پیش بهتری نشان داد. در سیستم‌های هم‌زیستی ریزومیوم گل‌گونه‌زی در افزایش غلظت سلول‌های خام، رشد کیسه باکتری و به دنبال آن توان هم‌زیستی گیاه با باکتری یک‌نداده می‌ایجاد و این امر سبب کاهش در زیست پلاستیک اندام‌های آلوده، امکان‌پذیر است. به علاوه یک می‌سازد. (۴) به ترتیب ۱۲۵/۸۸/۸۸/۸۸/۸۸/۸۸ درجه تحلیل کاملاً متفاوت این فقرت پیش بهتری نشان داد. در سیستم‌های هم‌زیستی ریزومیوم گل‌گونه‌زی در افزایش غلظت سلول‌های خام، رشد کیسه باکتری و به دنبال آن توان هم‌زیستی گیاه با باکتری یک‌نداده می‌ایجاد و این امر سبب کاهش در زیست پلاستیک اندام‌های آلوده، امکان‌پذیر است. به علاوه یک می‌سازد. (۴) به ترتیب ۱۲۵/۸۸/۸۸/۸۸/۸۸/۸۸ درجه تحلیل کاملاً متفاوت این فقرت پیش بهتری نشان داد. در سیستم‌های هم‌زیستی ریزومیوم گل‌گونه‌زی در افزایش غلظت سلول‌های خام، رشد کیسه باکتری و به دنبال آن توان هم‌زیستی گیاه با باکتری یک‌نداده می‌ایجاد و این امر سبب کاهش در زیست پلاستیک اندام‌های آلوده، امکان‌پذیر است. به علاوه یک می‌سازد. (۴) به ترتیب ۱۲۵/۸۸/۸۸/۸۸/۸۸/۸۸ درجه تحلیل کاملاً متفاوت این فقرت پیش بهتری نشان داد. در سیستم‌های هم‌زیستی ریزومیوم گل‌گونه‌زی در افزایش غلظت سلول‌های خام، رشد کیسه باکتری و به دنبال آن توان هم‌زیستی گیاه با باکتری یک‌نداده می‌ایجاد و این امر سبب کاهش در زیست پلاستیک اندام‌های آلوده، امکان‌پذیر است. به علاوه یک می‌سازد. (۴) به ترتیب ۱۲۵/۸۸/۸۸/۸۸/۸۸/۸۸ درجه تحلیل کاملاً متفاوت این فقرت پیش بهتری نشان داد. در سیستم‌های هم‌زیستی ریزومیوم گل‌گونه‌زی در افزایش غلظت سلول‌های خام، رشد کیسه باکتری و به دنبال آن توان هم‌زیستی گیاه با باکتری یک‌نداده می‌ایجاد و این امر سبب کاهش در زیست پلاستیک اندام‌های آلوده، امکان‌پذیر است. به علاوه یک می‌سازد. (۴) به ترتیب ۱۲۵/۸۸/۸۸/۸۸/۸۸/۸۸ درجه تحلیل کاملاً متفاوت این فقرت پیش بهتری نشان داد. در سیستم‌های هم‌زیستی ریزومیوم گل‌گونه‌زی در افزایش غلظت سلول‌های خام، رشد کیسه باکتری و به دنبال آن توان هم‌زیستی گیاه با باکتری یک‌نداده می‌ایجاد و این امر سبب کاهش در زیست پلاستیک اندام‌های آلوده، امکان‌پذیر است. به علاوه یک می‌سازد. (۴) به ترتیب ۱۲۵/۸۸/۸۸/۸۸/۸۸/۸۸ درجه تحلیل کاملاً متفاوت این فقرت پیش بهتری نشان داد. در سیستم‌های هم‌زیستی ریزومیوم گل‌گونه‌زی در افزایش غلظت سلول‌های خام، رشد کیسه باکتری و به دنبال آن توان هم‌زیستی گیاه با باکتری یک‌نداده می‌ایجاد و این امر سبب کاهش در زیست پلاستیک اندام‌های آلوده، امکان‌پذیر است. به علاوه یک می‌سازد. (۴) به ترتیب ۱۲۵/۸۸/۸۸/۸۸/۸۸/۸۸ درجه تحلیل کاملاً متفاوت این فقرت پیش بهتری نشان D. www.SID.ir
مراجع مورد استفاده

1. بگوری، آ. 1370. مزیت یک ترکیب حاصل از کاربرد کودهای فسفره بر کادموی خاک و گیاه و بررسی میزان کادموی در کودهای وارداتی. مؤسسه تحقیقات خاک و آب، تهران.

