بررسی تأثیر آتشفشانی خاک بر روند جمعیت گونه‌های Fusarium در شریان آب و هوایی همدان

محمد جواد سلیمانی

چکیده
بیماری‌های پوست‌گیو طوفانی دریاچه‌های ناشی از گونه‌های فورسیاریوم خارتر خانگی را در روند تعدادی از محصولات زراعی در همدان باعث می‌شوند. تناسل بیماری‌زای برخی از گونه‌های این جنس در ایجاد بیماری‌های مخرب می‌تواند عامل حمله‌ای در افزایش محصولات کشاورزی برهه غیر محسوب شود. این پژوهش با هدف بررسی تأثیر احتمالی آتشفشانی خاک بر روی روند جمعیت گونه‌های Fusarium تولید محصولات کشاورزی به روش طراحی و بی‌میزانی در همدان محصولی شود. این پژوهش با هدف بررسی و تعیین تأثیر احتمالی آتشفشانی خاک بر روی روند جمعیت گونه‌های Fusarium تولید محصولات کشاورزی به روش طراحی و بی‌میزانی در همدان محصولی شود.

تیمارهای مختلف 3-5 به هفته بعد از پلاستیک کشی از اعمال مختلف خاک صورت گرفته است. دانشجو در این بحث با استفاده از روش گرما دقیق مطالعه صورت گرفته است. دانشجو در این بحث با استفاده از روش گرما دقیق مطالعه گزارش خاک اکنون پذیرفته است.

واژه‌های کلیدی: آتشفشانی خاک، Fusarium

مقدمه
بیماری‌های وحشی مربوط به محصولات ناشی از استفاده بهینه و حادثه‌ای از منابع غیر محصول در کشاورزی پایدار (Sustainable agriculture) امنیت به شکل جهت افزایش عامل صورت گرفته می‌باشد.

استفاده از انرژی خورشید در گرماخانه‌ها یک روش از منابع غیر محصول در کشاورزی است. این روش در مورد توجه به معیارِ پایداری است (W和18) در حال حاضر یکی از

1. استادیار گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه برقی و مهندسی، همدان

219
در پی برخی از حوزه‌های جدید مایری‌ها که در انر کاربرد تقویتی میکروب‌ها در حفظ و انجام کارکرد آفت‌های زراعی دارای اهمیت بسیاری است.

برای نمونه آفت‌ها در نیم‌رسیده‌های فاسیاز (Fusarium spp.) و اکسی‌پورم (Fusarium oxysporum f. sp. ciceri) مورد بررسی قرار گرفته و

معلوم است که این میکروبهای مایری‌ی در حفظ و انجام کارکرد آفت‌های زراعی دارای اهمیت بسیاری است.

در منابع اصلی میکروبهای فاسیاز و اکسی‌پورم در حفظ و انجام کارکرد آفت‌های زراعی دارای اهمیت بسیاری است.

در منابع اصلی میکروبهای فاسیاز و اکسی‌پورم در حفظ و انجام کارکرد آفت‌های زراعی دارای اهمیت بسیاری است.

در منابع اصلی میکروبهای فاسیاز و اکسی‌پورم در حفظ و انجام کارکرد آفت‌های زراعی دارای اهمیت بسیاری است.

در منابع اصلی میکروبهای فاسیاز و اکسی‌پورم در حفظ و انجام کارکرد آفت‌های زراعی دارای اهمیت بسیاری است.

در منابع اصلی میکروبهای فاسیاز و اکسی‌پورم در حفظ و انجام کارکرد آفت‌های زراعی دارای اهمیت بسیاری است.

در منابع اصلی میکروبهای فاسیاز و اکسی‌پورم در حفظ و انجام کارکرد آفت‌های زراعی دارای اهمیت بسیاری است.

در منابع اصلی میکروبهای فاسیاز و اکسی‌پورم در حفظ و انجام کارکرد آفت‌های زراعی دارای اهمیت بسیاری است.

در منابع اصلی میکروبهای فاسیاز و اکسی‌پورم در حفظ و انجام کارکرد آفت‌های زراعی دارای اهمیت بسیاری است.

در منابع اصلی میکروبهای فاسیاز و اکسی‌پورم در حفظ و انجام کارکرد آفت‌های زراعی دارای اهمیت بسیاری است.

در منابع اصلی میکروبهای فاسیاز و اکسی‌پورم در حفظ و انجام کارکرد آفت‌های زراعی دارای اهمیت بسیاری است.

در منابع اصلی میکروبهای فاسیاز و اکسی‌پورم در حفظ و انجام کارکرد آفت‌های زراعی دارای اهمیت بسیاری است.

در منابع اصلی میکروبهای فاسیاز و اکسی‌پورم در حفظ و انجام کارکرد آفت‌های زراعی دارای اهمیت بسیاری است.

در منابع اصلی میکروبهای فاسیاز و اکسی‌پورم در حفظ و انجام کارکرد آفت‌های زراعی دارای اهمیت بسیاری است.

در منابع اصلی میکروبهای فاسیاز و اکسی‌پورم در حفظ و انجام کارکرد آفت‌های زراعی دارای اهمیت بسیاری است.

در منابع اصلی میکروبهای فاسیاز و اکسی‌پورم در حفظ و انجام کارکرد آفت‌های زراعی دارای اهمیت بسیاری است.

در منابع اصلی میکروبهای فاسیاز و اکسی‌پورم در حفظ و انجام کارکرد آفت‌های زراعی دارای اهمیت بسیاری است.

در منابع اصلی میکروبهای فاسیاز و اکسی‌پورم در حفظ و انجام کارکرد آفت‌های زراعی دارای اهمیت بسیاری است.

در منابع اصلی میکروبهای فاسیاز و اکسی‌پورم در حفظ و انجام کارکرد آفت‌های زراعی دارای اهمیت بسیاری است.

در منابع اصلی میکروبهای فاسیاز و اکسی‌پورم در حفظ و انجام کارکرد آفت‌های زراعی دارای اهمیت بسیاری است.

در منابع اصلی میکروبهای فاسیاز و اکسی‌پورم در حفظ و انجام کارکرد آفت‌های زراعی دارای اهمیت بسیاری است.

در منابع اصلی میکروبهای فاسیاز و اکسی‌پورم در حفظ و انجام کارکرد آفت‌های زراعی دارای اهمیت بسیاری است.

در منابع اصلی میکروبهای فاسیاز و اکسی‌پورم در حفظ و انجام کارکرد آفت‌های زراعی دارای اهمیت بسیاری است.

در منابع اصلی میکروبهای فاسیاز و اکسی‌پورم در حفظ و انجام کارکرد آفت‌های زراعی دارای اهمیت بسیاری است.

در منابع اصلی میکروبهای فاسیاز و اکسی‌پورم در حفظ و انجام کارکرد آفت‌های زراعی دارای اهمیت بسیاری است.

در منابع اصلی میکروبهای فاسیاز و اکسی‌پورم در حفظ و انجام کارکرد آفت‌های زراعی دارای اهمیت بسیاری است.

در منابع اصلی میکروبهای فاسیاز و اکسی‌پورم در حفظ و انجام کارکرد آفت‌های زراعی دارای اهمیت بسیاری است.

در منابع اصلی میکروبهای فاسیاز و اکسی‌پورم در حفظ و انجام کارکرد آفت‌های زراعی دارای اهمیت بسیاری است.

در منابع اصلی میکروبهای فاسیاز و اکسی‌پورم در حفظ و انجام کارکرد آفت‌های زراعی دارای اهمیت بسیاری است.

در منابع اصلی میکروبهای فاسیاز و اکسی‌پورم در حفظ و انجام کارکرد آفت‌های زراعی دارای اهمیت بسیاری است.

در منابع اصلی میکروبهای فاسیاز و اکسی‌پورم در حفظ و انجام کارکرد آفت‌های زراعی دارای اهمیت بسیاری است.

در منابع اصلی میکروبهای فاسیاز و اکسی‌پورم در حفظ و انجام کارکرد آفت‌های زراعی دارای اهمیت بسیاری است.
در این آزمایش برای تأثیر بررسی طول دوره آنگاباژی و نوع پلاستیک‌ها با استفاده از هفت تیمار و سه تکرار در قالب طرح آماری بلوک‌کلکی کانالی تصادفی صورت گرفت. این تیمارها شامل مدت زمان آنگاباژی در آن سه دوره 3، 5 و 8 هفته‌هایی در نظر گرفته شدند و دو نوع پلاستیک شفاف (Transparent Polyethylene Sheets) و سیاه (Black Polyethylene Sheets) به ضخامت 50 و تیمار یافتند. پس از آنگاباژی و قبل از پلاستیک‌کشی در تاریخ اول مرداد ماه نسبت به آب‌نگاری، آن آقام قسمت‌های آزمایشی در کرت‌هایی با بکارگیری 2×7.5 متری بصورت تصادفی انتخاب و سطح آنها با پلاستیک‌کشی شفاف و سیاه با عرض 8 متر در کرت‌های مورد نظر پوشانده شد.

مواد و روش

مشخصات زمین مورد آزمایش

این پژوهش در ناحیه سالهای 1379-1380 در مزرعه‌ای با بانک خاک قطعی در 5 کلویومتری شمال شهرستان همدان صورت گرفت. پایه راه اندازی این پژوهش، با توجه به انگارک‌های در این مطالعه، از نظر آتیه‌ای، در کرت‌هایی با آلوگِر طبیعی مورد نظر بوده است. مهم‌ترین جهت از سال قبل.
نتایج و بحث
تأثیر آفت‌به‌پردازی خاک
خصوصیات فیزیکی و شیمیایی خاک مزارع در 10 انجام آزمایش‌های حاصل نمونه برداری مركب خاک از نقاط مختلف قطب زمین مورد آزمایش و اعماق سه‌گانه (0-10، 10-20 و 20-30 سانتی‌متری) بوده است. درصد ماده اسلیم به میزان 30/5 mho/cm² بوده است.

میانگین دمای اعماق مختلف خاک در تیمارهای مورد آزمایش در شکل‌های 1 تا 3 آماده است. براساس این نتایج، متوسط دمای خاک در لایه‌های بالایی بیشتر بوده و نوسانات آن نیز در سایر نقاط شایع روز بیشتر از اعماق بوده است. نتایج یادآور شدیدتری دما در سایر نقاط مراکز تولید دمای داده‌است. پایین‌ترین دما در سایر نقاط مراکز تولید دمای داده‌است.

کمیت سنجی زاپاسیس‌های قارچ
پس از آماده‌سازی نمونه‌های خاک مطابق مراحل فوق‌الذکر، سوسپانسیون‌های مخلوط خاک در تشک‌های پی‌های حاجی‌پور بکر فضایی کشت گردیده و تیمارهای دمای 15، 25، و 35 درجه سانتی‌گراد و در اعماق 0-10 سانتی‌متری در مراجعه‌های بررسی شدند. پس از سه هفتم گرم‌های نمونه دیگر نمونه‌های این نتایج به تغییر نموده و شمارش تعداد پرگنه‌های قارچ در هر کیلو گرم خاک انجام گردید.

کشت Fusarium ناشی از مشخصات ظاهری مانند نحوه رشد و رنگ پرگنه شکل و آرایش کندیپیومها و سلول‌های حدوداً اقدامات کرد.

لیست دمای روزانه خاک با استفاده از دماسنج مخصوص در تیمارهای مختلف محل (Soil Thermometer) خاک شکل‌های 1 تا 3 آماده گردید. همچنین به منظور اطمینان از دقت دمای اندازه‌گیری شده از داده‌های مرتبه به دمای خاک در اعماق مختلف که در استیگا هواشناسی اکیانان- همدان جمع آوری شده بود و در فاصله 2 کیلومتری از روستای محل انجام آزمایش‌های دارای نرخ‌های مقیاسه استفاده گردید (شکل 4). ضمناً خصوصیات فیزیکی خاک استفاده از جمله رنگ و بافت و استحکام ان کاملاً مشابه خاک مزرعه مورد آزمایش بوده است.

محاسبات امرای و نژادخوراندایی میانگین‌ها با استفاده از

222
پلاستیک شفاف بوده است (شکل 1 تا ۳). حداکثر میانگین دمای خاک در شکل ۱ تا ۳ به میزان ۲۷ درجه سانتی‌گراد رسیده که بالاتر از دمای کشندگی (Lethal heat) برای بسیاری از قارچ‌های خشک از جمله برخی از قارچ‌های فورمزایوم به میانگین دمای بیش از ۵ سانتی‌متری خاک به میزان ۲۷ درجه سانتی‌گراد رسیده که بالاتر از دمای کشندگی (Lethal heat) برای بسیاری از قارچ‌های خشک از جمله برخی از قارچ‌های فورمزایوم. براساس بررسی‌های پیشین و همکاران (۱۵) وجود دمای ۳۷ درجه سانتی‌گراد که میانگین حداکثر دمای خاک ۱۵ سانتی‌متری خاک به میزان ۲۷ درجه سانتی‌گراد رسیده که بالاتر از دمای کشندگی (Lethal heat) برای بسیاری از قارچ‌های خشک از جمله برخی از قارچ‌های فورمزایوم به میانگین دمای بیش از ۵ سانتی‌متری خاک به میزان ۲۷ درجه سانتی‌گراد رسیده که بالاتر از دمای کشندگی (Lethal heat) برای بسیاری از قارچ‌های خشک از جمله برخی از قارچ‌های فورمزایوم به میانگین دمای بیش از ۵ سانتی‌متری خاک به میزان ۲۷ درجه سانتی‌گراد رسیده که بالاتر از دمای کشندگی (Lethal heat) برای بسیاری از قارچ‌های خشک
تأثير آفت‌دهی بر میزان جمعیت گونه‌های فوزاریوم

وضعیت آلودگی خاک و جمعیت اندام‌های قارچی در خاک مزرعه مورد آزمایش قبل از شروع پلاستیک‌کشی با تعبین میزان پرگنه‌های قارچ در هر گرم خاک در جدول 1 آمده است. همان‌طور که در متن جدول نشان داده شده است، میانگین جمعیت پرگنه‌های فارچ فوزاریوم در تیمارهای مختلف و در اعماق مختلف خاک تفاوت معنی‌داری با یکدیگر نداشت. و

کرت‌های مورد آزمایش تبت عشایر از جهت یک مورد که تب دما در میانگین ۲۷ درصد گرفته‌اند خاک در عمق 5 سانتی‌متری در تیمارهای پلاستیک شفاف و هم در تیمارهای با پلاستیک سیاه و هم در پلاستیک سیاه بیش از ۳۷ درصد بوده است و به طور میانگین خاک در عمق 5 سانتی‌متری در طول مدت آزمایش معادل ۳۱/۸ و ۳۷/۳ درجه سانتی‌گراد به ترتیب در تیمارهای شفاف سیاه و پلاستیک شفاف بوده است.

۲۲۴
جدول 1: میانگین جمعیت پرنده‌های قارچ فوزاریوم در گرم خاک خشک (CFU/g) طبق اعلامیه‌های مختلف خاک

<table>
<thead>
<tr>
<th>پلاستیک شفاف</th>
<th>شاهد</th>
<th>پلاستیک سیاه</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-50</td>
<td>2/8 *</td>
<td>7/8 *</td>
</tr>
<tr>
<td>15-25</td>
<td>3/8 *</td>
<td>7/8 *</td>
</tr>
<tr>
<td>5-15</td>
<td>2/8 *</td>
<td>7/8 *</td>
</tr>
</tbody>
</table>

* CFU/g: به صورت هر گرم

آبودگی طبیعی خاک به اندام‌های تکثیری گونه‌های Fusarium

در حد بالای بیولوژی است.

در پایان دوره مخفی آفت‌های در حیات خاک با استفاده از پلاستیک سیاه و شفاف تعداد جمعیت زادامی‌های قارچ در این تیمارها اختلاف معنی‌داری با شاهد نداشت. استاد (جدول 2)

ولی ادامه آفت‌های در طول دوره‌های 5 و 8 هفته‌ای به طور معنی‌داری (P < 0.05) کاهش جمعیت زادامی‌های قارچ را در هر دو تیمار پلاستیک سیاه و شفاف سپر گردیده است. که این نتایج مطابق با افتتاحیه کان و همکاران (12) و بلان و همکاران (16) است که گزارش کرده‌اند که با افزایش طول دوره آفت‌های خاک، بازده و کارایی آن در کاهش جمعیت عوامل پیشرفت خاک بهبود می‌یابد.

این آزمایش همواره منطبق با گزارش‌های بسیاری آورده و همکاران در سال 1997 (8) می‌گفتند که جمعیت قارچ و افزایش محصول ناشی از کاربرد کیت مدت آفت‌های مخفی در مزرعه محصولات مختلف داشته‌اند. براساس این بروز‌های خاکی و رطوبت آن از جمله فاکتورهای مثبت که با ایجاد تنش در کاهش نرخ رقابتی زادامی‌های فوزاریوم در خاک و تأثیر قارچ فوزاریوم در خاک تأثیر قارچ فوزاریوم در خاک می‌شود. معمولاً تأثیر بهتری از آفت‌های دیگر به دست خواهد آمد.

شکل 4 نمایندگی وضعیت میانگین دمای خاک در ماه‌های تیر - مرداد و شهریور در یک دوره 5 ساله (1380 - 1376) در همدان است و در تمامی این سال‌ها از جمله سال‌های مناسب آزمایش، میانگین دمای خاک در شهریور به معنی‌داری از فاصله است و این در حالت است که در تیرهایه و مرداد ماه دمای خاک بیشتر بوده و نوسان خاصی در وضعیت دمای هوا محفظه وجود ندارد و با توجه به اثرات میانگین دمای خاک در شهریور به معنی‌داری از فاصله است و این در حالت است که در تیرهایه و مرداد ماه دمای خاک بیشتر بوده و نوسان خاصی در وضعیت دمای هوا محفظه وجود ندارد و با توجه به اثرات میانگین دمای خاک در شهریور به معنی‌داری از فاصله است و این در حالت است که در تیرهایه و مرداد ماه دمای خاک بیشتر بوده و نوسان خاصی در وضعیت دمای هوا محفظه وجود ندارد و با توجه به اثرات میانگین دمای خاک در شهریور به معنی‌داری از فاصله است و این در حالت است که در تیرهایه و مرداد ماه دمای خاک بیشتر بوده و نوسان خاصی در وضعیت دمای هوا محفظه وجود ندارد و با توجه به اثرات میانگین دمای خاک در شهریور به معنی‌داری از فاصله است و این در حالت است که در تیرهایه و مرداد ماه دمای خاک بیشتر بوده و نوسان خاصی در وضعیت دمای هوا محفظه وجود ندارد و با توجه به اثرات میانگین دمای خاک در شهریور به معنی‌داری از فاصله است و این در حالت است که در تیرهایه و مرداد ماه دمای خاک بیشتر بوده و نوسان خاصی در وضعیت دمای هوا محفظه وجود ندارد و با توجه به اثرات میانگین دمای خاک در شهریور به معنی‌داری از فاصله است و این در حالت است که در تیرهایه و مرداد ماه دمای خاک بیشتر بوده و نوسان خاصی در وضعیت دمای هوا محفظه وجود ندارد و با توجه به اثرات میانگین دمای خاک در شهریور به معنی‌داری از فاصله است و این در حالت است که در تیرهایه و مرداد ماه دمای خاک بیشتر بوده و نوسان خاصی در وضعیت دمای هوا محفظه وجود ندارد و با توجه به اثرات میانگین دمای خاک در شهریور به معنی‌داری از فاصله است و این در حالت است که در تیرهایه و مرداد ماه دمای خاک بیشتر بوده و نوسان خاصی در وضعیت دمای هوا محفظه وجود ندارد و با توجه به اثرات میانگین دمای خاک در شهریور به معنی‌داری از فاصله است و این در حالت است که در تیرهایه و مرداد ماه دمای خاک بیشتر بوده و نوسان خاصی در وضعیت دمای هوا محفظه وجود ندارد و با توجه به اثرات میانگین دمای خاک در شهریور به معنی‌داری از فاصله است و این در حالت است که در تیرهایه و مرداد ماه دمای خاک بیشتر بوده و نوسان خاصی در وضعیت دمای هوا محفظه وجود ندارد و با توجه به اثرات میانگین دمای خاک در شهریور به معنی‌داری از فاصله است و این در حالت است که در تیرهایه و مرداد ماه دمای خاک بیشتر بوده و نوسان خاصی در وضعیت دمای هوا محفظه وجود ندارد و با توجه به اثرات میانگین دمای خاک در شهریور به معنی‌داری از فاصله است و این در حالت است که در تیرهایه و مرداد ماه دمای خاک بیشتر بوده و نوسان خاصی در وضعیت دمای هوا محفظه وجود ندارد و با توجه به اثرات میانگین دمای خاک در شهریور به معنی‌داری از فاصله است و این در حالت است که در تیرهایه و مرداد ماه دمای خاک بیشتر بوده و نوسان خاصی در وضعیت دمای هوا محفظه وجود ندارد و با توجه به اثرات میانگین دمای خاک در شهریور به معنی‌داری از فاصله است و این در حالت است که در تیرهایه و مرداد ماه دمای خاک بیشتر بوده و نوسان خاصی در وضعیت دمای هوا محفظه وجود ندارد و با توجه به اثرات میانگین دمای خاک در شهریور به معنی‌داری از فاصله است و این در حالت است که در تیرهایه و مرداد ماه دمای خاک بیشتر بوده و نوسان خاصی در وضعیت دمای هوا محفظه وجود ندارد و با توجه به اثرات میانگین دمای خاک در شهریور به معنی‌داری از فاصله است و این در حالت است که در تیرهایه و مرداد ماه دمای خاک بیشتر بوده و نوسان خاصی در وضعیت دمای هوا محفظه وجود ندارد و با توجه به اثرات میانگین دمای خاک در شهریور به معنی‌داری از فاصله است و این در حالت است که در تیرهایه و مرداد ماه دمای خاک بیشتر بوده و نوسان خاصی در وضعیت دمای هوا محفظه وجود ندارد و با توجه به اثرات میانگین دمای خاک در شهریور به معنی‌داری از فاصله است و این در حالت است که در تیرهایه و مرداد ماه دمای خاک بیشتر بوده و نوسان خاصی در وضعیت دمای هوا محفظه وجود ندارد و با توجه به اثرات میانگین دمای خاک در شهریور به معنی‌داری از فاصله است و این در حالت است که در تیرهایه و مرداد ماه دمای خاک بیشتر بوده و نوسان خاصی در وضعیت دمای هوا محفظه وجود ندا
جدول ۲ میانگین جمعیت پترن های قارچ فورمیوم در گرم خاک خشک (100×10³ CFU/g) بعد از ابرازیک حسی در اعماق مختلف خاک در تیمارهای مختلف آزمایش

<table>
<thead>
<tr>
<th>طول دوره آفات دهی</th>
<th>عمق خاک در تیمارهای مختلف</th>
<th>شاهد</th>
<th>شناخت</th>
<th>شاهد</th>
<th>شناخت</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-5 (cm)</td>
<td>15-25 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>17/6</td>
<td>16/5</td>
<td>14/5</td>
<td>12/6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/1</td>
<td>6/7</td>
<td>6/7</td>
<td>6/6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6/6</td>
<td>6/6</td>
<td>6/6</td>
<td>6/6</td>
</tr>
</tbody>
</table>

این اعداد به‌دست‌آمده با حضور نگهداری در سطح احتمال ۱ درصد اختلال معنی‌دار ندارند.

![نمودار]

شکل ۵ رابطه همبستگی بین میانگین دمای روزانه خاک در عمق ۲۰۰ سانتی‌متر در مزرعه (تیمار شاهد) و در ایستگاه هوشمند اکیان در ماه‌های تابستان - ۱۳۷۹

همبستگی بین میانگین دمای خاک در مزرعه و ایستگاه اکیان در سال ۱۳۷۹

![نحوه ۱]

$$y = 3.4685x^{0.700}$$

$$R^2 = 0.8498$$

نتیجه‌گیری کلی در خصوص شرایطی که آزمایش در آن صورت گرفت از جمله نوع و بافت خاک و نیز میانگین دمای به دست آمده می‌توان به یکسان بودن شرایط در ایستگاه و مزرعه پی برده و با اطمینان بیشتری نسبت به تعمیق تأثیر آزمایش در نقاط با شرایط زمینی و مکانی مشابه اهداف نمود. در عین حال انجام آزمایش‌های بیشتر در مدت زمانی مناسب برای ارزیابی تأثیر آفات دهی بر روی

سایر بیمارگرایان مهم خاک‌زاد از جمله باکتری‌ها در منطقه ضروری می‌باشد.

سباغزاری

بیدن وسیله از حوزه معاونت پژوهشی دانشگاه بوعلی سینای همدان که انتخاب مالی برای انجام این پژوهش را فراهم نموده است، تشریک و قادرداری می‌گردد. از مدیر کل محترم اداره هوشمند ایستگاه همدان به خاطر در اختیار فرا رسیدن اطلعات هوشمندی استان همدان به شرکت فرا رست در انجام کارهای خانم مهندس لیلا کاهی کارشناس گیاهپزشکی و همکاران محترم خاک‌شناسی دانشگاه کشاورزی که در انجام امور آزمایشگاهی مساعدت و همکاری بیسابزی نموده‌اند سپاسگزاری می‌نماید.

جمعیت قارچ Fusarium

با توجه به رابطه مثبت همبستگی ۸۵٪ بین میانگین دمای روزانه در عمق ۲۰۰ سانتی‌متری خاک در مزرعه مورد آزمایش و دمای خاک ایستگاه هوشمند اکیان در ماه‌های انجام آزمایش که در شکل ۵ نشان داده شده است.

نام:ไรحه ویژه: www.SID.ir
مباحث مورد استفاده

1. درویش نیا، م. ع. علیزاده، و. الله محمدی. گل تیه. 735: 174. گونه‌های چرب‌پیچی و قارچ‌های وابسته به پیوستگی طوفان و ریشه در استان لرستان. خلاصه مقالات سیزدهمین کنگره گیاه‌پزشکی ایران. کرج.

2. رویکث بخش، ع. علیزاده، و. اشکاری. 1749: 1759. جمعیت چرب‌پیچی و قارچ‌های وابسته به پیوستگی طوفان و ریشه در استان لرستان. خلاصه مقالات سیزدهمین کنگره گیاه‌پزشکی ایران. اصفهان.

3. طاهرخانی، ک. ع. علیزاده، و. هریثی. 1377: 1377. خلاصه معاملات چرب‌پیچی و قارچ‌های وابسته به پیوستگی طوفان و ریشه در استان خوزستان. خلاصه مقالات سیزدهمین کنگره گیاه‌پزشکی ایران. کرج.

227