کلیدوژها: دگرسانی، کانون زایی، پیروزی، میدوک، شهر Bahra، کرمان

1- مقدمه
کانون زایی مس پورفوری در ایران با توجه به نتایج گزارش‌های مبنا می‌تواند به سمت مس همراه با فروعتان سنگ‌کره نتوینگ به قرار در قالب سکه‌وگردهای زاگرس (Afaphi and Atapour, 2000; Foester, 1978; Berberian and King, 1981;) و در انسداد با افزایش چگالی میکرو‌آشام‌ها (Hassanzadeh, 1993) باز در اثر مس زایی در اناهیزی فرایند تحقیق شد. در این مطالعه از انواع مختلف مس زایی در ایران بهره‌مند قرار گرفته می‌باشد که به گمانه‌سازی و راه‌گاهی شناسی کاربردی است.

2- زمینه‌شناسی منطقه‌ای میدوک
که تا مدت زمان واحده شناسه در منطقه میدوک، فیلیش هسته‌های متغیری به سایه‌های قرار گرفته است.

Archive of SID
www.SID.ir

Tayebi (1874)
بررسی همراهی درک‌سکتیو-گانژیتیو و وی‌کو-پاراکینیتیک مس، موادین، هتا و نظر در کانسر...
۷- سنگ‌های بیوتیونیتا

از نظر سنگ‌گردانی، انواع بیوتیونیتا به آسانی قابل شناسایی هستند ولی به دلیل دگرگونی، همه به یک نوع دیده نمی‌شوند. بیوتیونیتا مانند در سایر سنگ‌های سنتی به شکل رسته‌ای دیده می‌شوند. به‌طورگیری در سنگ‌های بیوتیونیتا، همچنین در سنگ‌های سنتی، در بخش‌های مختلف از داخل به داخل به دلیل کاهش فشار مدول‌سازی به نظر می‌رسد. بیوتیونیتا به عنوان سنگ‌های بی‌غیربازی را نمی‌دانند. با این حال، اکثر سنگ‌های بیوتیونیتا به شکل‌های شیپین، چیپپ، یا طیف‌های گراینگر قابل شناسایی هستند. به‌طورگیری در سنگ‌های بیوتیونیتا که به شکل‌های شیپین، چیپپ، یا طیف‌های گراینگر قابل شناسایی هستند، ممکن است در زمینه‌های مختلفی از داخل به داخل به دلیل کاهش فشار مدول‌سازی به نظر می‌رسد. بیوتیونیتا به عنوان سنگ‌های بی‌غیربازی را نمی‌دانند. با این حال، اکثر سنگ‌های بیوتیونیتا به شکل‌های شیپین، چیپپ، یا طیف‌های گراینگر قابل شناسایی هستند.

۸- ویژگی‌های بیوتیونیتا

جادو ۱۰۴ ترکیب شیمیایی بیوتیونیتا در کاسارهای میدوک که نشان می‌دهد. یکی از مهم‌ترین خاصیت ترکیب شیمیایی بیوتیونیتا، ماده‌ای است که در سایت‌های بنایی و توانایی انرژی و توانایی انرژی را در کاسارهای میدوک نشان می‌دهد. بیوتیونیتا مانند در سایت‌های بنایی، این ماده را در برابر مقادیر نقصی کلسیوم محدود می‌کند. بیوتیونیتا مانند در سایت‌های بنایی، این ماده را در برابر مقادیر نقصی کلسیوم محدود می‌کند. بیوتیونیتا مانند در سایت‌های بنایی، این ماده را در برابر مقادیر نقصی کلسیوم محدود می‌کند. بیوتیونیتا مانند در سایت‌های بنایی، این ماده را در برابر مقادیر نقصی کلسیوم محدود می‌کند.
نیازهای کانسپت‌های متغیر و اثرات آن‌ها

کانسپت‌های متغیر و اثرات آن‌ها، نیازهای کارگر و کارکنان را مشخص می‌نماید. این کانسپت‌ها شامل عواملی هستند که باعث ایجاد نیازهای کارگر و کارکنان می‌شوند. این عوامل شامل عوامل فنی، اجتماعی، اقتصادی، فردی و سیاسی می‌باشد.

11. نتایج گزارش

کانسپت‌های متغیر و اثرات آن‌ها

کانسپت‌های متغیر و اثرات آن‌ها، نیازهای کارگر و کارکنان را مشخص می‌نماید. این کانسپت‌ها شامل عواملی هستند که باعث ایجاد نیازهای کارگر و کارکنان می‌شوند. این عوامل شامل عوامل فنی، اجتماعی، اقتصادی، فردی و سیاسی می‌باشد.
سَرْجَمَه و سنگون درای بیشترین عیار میانگین نقره است. اما در واحدهای Cu/Au و Cu و Cu/Mo، Cu/Au و Cu و Cu/Mo، Cu/Mo و Cu/Au و Cu/Mo و Cu/Mo با استفاده از نمودارهای واحدهای کاتی زایی مختلف در کانسار مس پورفیری میدوک به خوبی قابل تفکیک هستند.

عیار میانگین طلا از ۱۲۷ (۱۲۷ ppm) همراه با گرافیت و میانگین نقره از ۳۵ (۳۵ ppm) همراه با گرافیت و میانگین نقره و از این دو دارای وابستگی به مقدار عیار آن کاهش می‌یابد. نسبت نیز از گرافیت و میانگین نقره از Cu/Mo کاهش می‌یابد. در حالی که نسبت Cu/Mo از گرافیت و میانگین نقره از Cu/Mo کاهش می‌یابد. در حالی که نسبت Cu/Mo از گرافیت و میانگین نقره از Cu/Mo کاهش می‌یابد. در حالی که نسبت Cu/Mo از گرافیت و میانگین نقره از Cu/Mo کاهش می‌یابد. در حالی که نسبت Cu/Mo از گرافیت و میانگین نقره از Cu/Mo کاهش می‌یابد. در حالی که نسبت Cu/Mo از گرافیت و میانگین نقره از Cu/Mo کاهش می‌یابد. در حالی که نسبت Cu/Mo از گرافیت و میانگین نقره از Cu/Mo کاهش می‌یابد. در حالی که نسبت Cu/Mo از گرافیت و میانگین نقره از Cu/Mo کاهش می‌یابد. در حالی که نسبت Cu/Mo از گرافیت و میانگین نقره از Cu/Mo کاهش می‌یابد. در حالی که نسبت Cu/Mo از گرافیت و میانگین نقره از Cu/Mo کاهش می‌یابد. در حالی که نسبت Cu/Mo از گرافیت و میانگین نقره از Cu/Mo کاهش می‌یابد. در حالی که نسبت Cu/Mo از گرافیت و میانگین نقره از Cu/Mo کاهش می‌یابد. در حالی که نسبت Cu/Mo از گرافیت و میانگین نقره از Cu/Mo کاهش می‌یابد. در حالی که نسبت Cu/Mo از گرافیت و میانگین نقره از Cu/Mo کاهش می‌یابد. در حالی که نسبت Cu/Mo از گرافیت و میانگین نقره از Cu/Mo کاهش می‌یابد. در حالی که نسبت Cu/Mo از گرافیت و میانگین نقره از Cu/Mo کاهش می‌یابد. در حالی که نسبت Cu/Mo از گرافیت و میانگین نقره از Cu/Mo کاهش می‌یابد. در حالی که نسبت Cu/Mo از گرافیت و میانگین نقره از Cu/Mo کاهش می‌یابد. در حالی که نسبت Cu/Mo از گرافیت و میانگین نقره از Cu/Mo کاهش می‌یابد. در حالی که نسبت Cu/Mo از گرافیت و میانگین N

شکل ۱- موقعیت منطقه مورد مطالعه در کمربند آندریاسیان - نفوذی مس ایران (از آقانیان، ۱۳۸۳ با تغییرات).
جدول 1- ترکیب شیمیایی بیونت‌های نانو دیگرسانی با پاسک در کلاس میکوس

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Type</th>
<th>SiO2</th>
<th>TiO2</th>
<th>Al2O3</th>
<th>Fe2O3</th>
<th>FeO</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na2O</th>
<th>K2O</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT12</td>
<td>H</td>
<td>52.0</td>
<td>28.5</td>
<td>1.5</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.5</td>
<td>0.5</td>
<td>98.1</td>
</tr>
<tr>
<td>NT12</td>
<td>M</td>
<td>52.0</td>
<td>28.5</td>
<td>1.5</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.5</td>
<td>0.5</td>
<td>98.1</td>
</tr>
<tr>
<td>NT12</td>
<td>L</td>
<td>52.0</td>
<td>28.5</td>
<td>1.5</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.5</td>
<td>0.5</td>
<td>98.1</td>
</tr>
<tr>
<td>TM5</td>
<td>H</td>
<td>52.0</td>
<td>28.5</td>
<td>1.5</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.5</td>
<td>0.5</td>
<td>98.1</td>
</tr>
<tr>
<td>TM5</td>
<td>M</td>
<td>52.0</td>
<td>28.5</td>
<td>1.5</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.5</td>
<td>0.5</td>
<td>98.1</td>
</tr>
<tr>
<td>TM5</td>
<td>L</td>
<td>52.0</td>
<td>28.5</td>
<td>1.5</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.5</td>
<td>0.5</td>
<td>98.1</td>
</tr>
</tbody>
</table>

X_{Mg} = Mg/(Mg+Fe) X_{Fe} = Fe/(Fe+Mg)

جدول 2- ترکیب شیمیایی بیونت‌های نانو دیگرسانی با پاسک در کلاس میکوس

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Cu (%)</th>
<th>Au (ppb)</th>
<th>Ag (ppm)</th>
<th>Mo (ppm)</th>
<th>Ag/Au</th>
<th>Mo/Au</th>
<th>Cu/Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT12</td>
<td>0.58</td>
<td>524</td>
<td>719</td>
<td>59.3</td>
<td>0.34</td>
<td>0.34</td>
<td>0.25</td>
</tr>
<tr>
<td>NT12</td>
<td>0.58</td>
<td>524</td>
<td>719</td>
<td>59.3</td>
<td>0.34</td>
<td>0.34</td>
<td>0.25</td>
</tr>
<tr>
<td>NT12</td>
<td>0.58</td>
<td>524</td>
<td>719</td>
<td>59.3</td>
<td>0.34</td>
<td>0.34</td>
<td>0.25</td>
</tr>
<tr>
<td>TM5</td>
<td>0.58</td>
<td>524</td>
<td>719</td>
<td>59.3</td>
<td>0.34</td>
<td>0.34</td>
<td>0.25</td>
</tr>
<tr>
<td>TM5</td>
<td>0.58</td>
<td>524</td>
<td>719</td>
<td>59.3</td>
<td>0.34</td>
<td>0.34</td>
<td>0.25</td>
</tr>
<tr>
<td>TM5</td>
<td>0.58</td>
<td>524</td>
<td>719</td>
<td>59.3</td>
<td>0.34</td>
<td>0.34</td>
<td>0.25</td>
</tr>
</tbody>
</table>

جدول 3- عبارت میگنیک و گستره تغییرات سی، طلا، نقره و مولیبدن در زونهای کاتی زایی مختلف در هر کلاس میکوس

<table>
<thead>
<tr>
<th>زونه‌های کاتی زایی</th>
<th>فروشت-اکسیدی</th>
<th>غنی‌شده سولفیدی نانو</th>
<th>تعداد نمونه</th>
<th>زیست‌فراز</th>
<th>تعداد نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>عاصر</td>
<td>میکنگ ± پراش</td>
<td>دامنه تغییرات</td>
<td>میکنگ ± پراش</td>
<td>دامنه تغییرات</td>
<td>میکنگ ± پراش</td>
</tr>
<tr>
<td>Cu (%)</td>
<td>0.58</td>
<td>0.01-0.02</td>
<td>0.58</td>
<td>0.01-0.02</td>
<td>0.58</td>
</tr>
<tr>
<td>Au (ppb)</td>
<td>524</td>
<td>500-800</td>
<td>524</td>
<td>500-800</td>
<td>524</td>
</tr>
<tr>
<td>Ag (ppm)</td>
<td>719</td>
<td>500-800</td>
<td>719</td>
<td>500-800</td>
<td>719</td>
</tr>
<tr>
<td>Mo (ppm)</td>
<td>59.3</td>
<td>50.0-80</td>
<td>59.3</td>
<td>50.0-80</td>
<td>59.3</td>
</tr>
<tr>
<td>Ag/Au</td>
<td>0.34</td>
<td>0.25-0.7</td>
<td>0.34</td>
<td>0.25-0.7</td>
<td>0.34</td>
</tr>
<tr>
<td>Mo/Au</td>
<td>0.34</td>
<td>0.25-0.7</td>
<td>0.34</td>
<td>0.25-0.7</td>
<td>0.34</td>
</tr>
<tr>
<td>Cu/Mo</td>
<td>0.25</td>
<td>0.05-0.45</td>
<td>0.25</td>
<td>0.05-0.45</td>
<td>0.25</td>
</tr>
</tbody>
</table>

جدول 4- ضریب همبستگی مس، طلا، نقره و مولیبدن در زونهای مختلف کاتی زایی

<table>
<thead>
<tr>
<th>زیست‌فراز</th>
<th>فروشت-اکسیدی</th>
<th>غنی‌شده سولفیدی نانو</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>Au</td>
<td>Au</td>
</tr>
<tr>
<td>Au</td>
<td>0.58</td>
<td>0.14</td>
</tr>
<tr>
<td>Ag</td>
<td>0.41</td>
<td>0.77</td>
</tr>
<tr>
<td>Mo</td>
<td>0.36</td>
<td>0.69</td>
</tr>
</tbody>
</table>

www.SID.ir
جدول 5- عاین مایه‌گران و گستره نیرویت‌ها در زونه‌های دگرگانی مختلف در کانسار میدوک

<table>
<thead>
<tr>
<th>زونه‌های دگرگانی</th>
<th>پناسک غنی از مگنتیت</th>
<th>پناسک غنی از مکانیک‌های</th>
<th>پناسک غنی از مگنتیت</th>
<th>پناسک غنی از مکانیک‌های</th>
</tr>
</thead>
<tbody>
<tr>
<td>عنصر</td>
<td>Cu (%)</td>
<td>Au (ppb)</td>
<td>Ag (ppm)</td>
<td>Mo (ppm)</td>
<td>Ag/Au</td>
<td>Mo/Au</td>
<td>Cu/Mo</td>
<td></td>
</tr>
<tr>
<td>Cu (%)</td>
<td>0.84</td>
<td>0.37</td>
<td>0.44</td>
<td>0.50</td>
<td>0.27</td>
<td>0.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Au (ppb)</td>
<td>0.84</td>
<td>0.37</td>
<td>0.44</td>
<td>0.50</td>
<td>0.27</td>
<td>0.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ag (ppm)</td>
<td>0.84</td>
<td>0.37</td>
<td>0.44</td>
<td>0.50</td>
<td>0.27</td>
<td>0.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mo (ppm)</td>
<td>0.84</td>
<td>0.37</td>
<td>0.44</td>
<td>0.50</td>
<td>0.27</td>
<td>0.24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 6- خرید هیپ‌هیپسی مس، طلا، نقره و ویلیون در زونه‌های دگرگانی مختلف در کانسار میدوک

<table>
<thead>
<tr>
<th>Cu</th>
<th>Au</th>
<th>Cu</th>
<th>Au</th>
<th>Ag</th>
<th>Cu</th>
<th>Au</th>
<th>Ag</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.84</td>
<td>0.37</td>
<td>0.44</td>
<td>0.50</td>
<td>0.27</td>
<td>0.24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 7- مقایسه کانسار میدوک با کانسراهای سرچشمه و سوسیون

<table>
<thead>
<tr>
<th>پناسک غنی از مگنتیت</th>
<th>پناسک غنی از مکانیک‌های</th>
</tr>
</thead>
<tbody>
<tr>
<td>کانسار سوسیون</td>
<td>کانسار سرچشمه</td>
<td>کانسار میدوک</td>
<td>نوع</td>
<td>همیار</td>
<td>مویعت زمین ساخت</td>
<td>توده نفودی</td>
<td>سبک سیمان</td>
</tr>
<tr>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

شکل ۲- نوسان زننده‌ای کانسار مس پورفیری میدوک (از Outomec، ۱۹۹۲)

شکل ۳- بادکنک‌های مجموعه‌ای دگرانسی (لف) و عیار مس (ب) در مقع

شکل ۵- ترکیب شیمیایی سه نوع بیونت مختلف در کانسار میدوک

(X$_{\text{Mg}}$ = Mg/Mg+Fe)
شکل 7- تغییرات عنصری مس، طلا، مولیبدن و فرخ در زونهای دگرگسایی مختلف کانسار میدوک.

شکل 9- تغییرات زونهای دگرگسایی و کانی زایی و عنصری مس، طلا، آهن، گوگرد و مولیبدن با عمق در گامهای 28 و 41 علمی شابه شکل 9. در گامهای 38، از یک متر پیک نمونه و گامهای 46 به ازای هر 10 متر پیک نمونه است.

شکل 8- تغییرات زونهای دگرگسایی و کانی زایی و عنصری مس، طلا با عمق در گامهای 34 و 55 داده های دوصد مس به ازای هر پیک متر و طلا به ازای هر 20 متر پیک نمونه است.

شکل 10- وضعیت زون زرفدار کانسار میدوک در نمودار (الب) براساس مقادیر Cox and Singer (1988).

Cu, Mo, Au و
References

Hezarkhani, A., 2000- The Calculation of Mass Transfer and Element Mobility During the Hydrothermal Alteration in the Sungun porphyry Copper Deposit, Iran. International Journal of Engineering, V. 15, No. 4, p. 391-408.
Outoniec, 1992- Techno-Economic feasibility study and relevant backing technical studies of Miduk copper project.
Mineralogy, Geochemistry and Origin of Iron Deposits in North of Semnan

By: A. Ghiasvand*, M. Ghaderi* & N. Rashidnejad-Omran*
* Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran
Received: 2006 June 10 Accepted: 2008 May 31

Abstract
The iron deposits in north of Semnan are located in the south of Central Alborz structural zone. Stratigraphically, the area consists of Paleozoic to Quaternary rock series exposures. The area has been affected by Semnan, Darjazin, Attari and Diktash faults. An intermediate to acidic granitoid body of calc-alkaline and metuluminous composition, representing I-type granite characteristics, has intruded the Eocene volcanopyroclastic rocks in the north of Semnan. Skarn development and iron mineralization have occurred at the contact of the intrusive body and the volcanopyroclastic rocks. Mineral Paragenesis consists of magnetite accompanied by hematite, oligist, pyrite, chalcopyrite, garnet, pyroxene and epidote. Geometry of the ore bodies is massive, lenticular and vein type and their texture is disseminated, brecciated, vein-veinlet and massive. Dominant alterations in the area are propylitic, argillic, silicic, sericitic, chloritic and pyritic, respectively. The intrusive body has many similarities with intrusive bodies which form Fe-skarn deposits. Variations in the calculated parameters for REE indicate contribution of magmatic origin hydrothermal fluids to mineralization and that the intrusive body has had the dominant role as source of the skarn ore materials. Along with the intrusion, emplacement and crystallization of intrusive body, Fe-bearing fluids have intruded the volcanopyroclastic rocks, forming sodic metasomatism and deposited iron ores in the north of Semnan which have many similarities with calcic Fe-skarn deposits.

Keywords: Mineralogy, Geochemistry, Iron, Skarn, Semnan.

For Persian Version see pages 33 to 44
E-mail: ghiasvand@yahoo.com

Investigation on the Alteration-Mineralization Haloes and Distribution Patterns of Cu, Au, Ag and Mo in the Miduk Porphry Copper Deposit, Shahr-Babak, Kerman

By: N. Taghipour*, A. Aftabi* & M.R. Ramezani**
* Department of Geology, Faculty of Sciences, Shahid Bahonar University, Kerman, Iran
** Geology Office, Mine Affairs, Miduk Copper Complex, Kerman, Iran
Received: 2007 January 20 Accepted: 2008 August 13

Abstract
The Miduk porphyry copper deposit is located in 85 Km northwest of Sarcheshmeh porphyry copper deposit, Kerman province. The deposit is hosted by Eocene volcanic rocks of andesite-basalt composition. The porphyry-type mineralization is associated with two calc-alkaline intrusive phases (P1 and Miduk porphyry) of Miocene age. Five hypogene alteration zones are distinguished in the Miduk deposit, magnetite-rich potassic, potassic, potassic-phyllic, phyllic and propylitic. The main stage of mineralization consists of chalcopyrite, magnetite and anhydrite in potassic alteration zone. The mineralization is mostly associated with Miduk porphyry intrusive phase. Three different types of biotite including magmatic, magmatic affected by hydrothermal fluids and secondary are distinguished at the Miduk deposit. Magmatic type biotites affected by hydrothermal fluids and secondary biotites contain higher X_{Mg} values than the magmatic biotites. The X_{Mg} are positively correlated with Si, Al, Mg, K, Mg/Ti, but negatively correlated with Al/Ti, Fe, Na, Fe/Ti contents. The variations of Cu, Mo, Au and Ag are controlled by vein - type alteration and mineralization zones. The tonnage of deposit is about 170 Mt with average grade of 0.82 % Cu, 0.007% Mo, 82 ppb Au and 1.8 ppm Ag, respectively. Highest values of Mo and Au occur in leached and oxide, supergene sulfide mineralization, phyllic and potassic-phyllic alteration zones, respectively. Gold displays positive correlation with Cu in magnetite-rich potassic and potassic alteration zones. Based on petrography, mineralogy, alteration halos and patterns of Cu, Au, Ag and Mo, the Miduk porphyry copper deposit is similar to those of continental arc setting
porphyry copper deposits.

Key Words: Alteration, Mineralization, Porphyry, Midek, Kerman.

For Persian Version see pages 45 to 54
E-mail: taghipour@duhs.ac.ir

Geochemical and Genetic Study of Alibaltalo Kaolinite -Bauxite Deposit, Shahindezh

By: N. Khajeh Mohammado*, E. Rasa* & A. Emanalipur**

*Geology Department, Earth Science Faculty, Shahid Beheshti University, Tehran, Iran
**Department of Mining Engineering, Urmia University, Urmia, Iran

Received: 2006 July 25 Accepted: 2008 September 30

Abstract

Alibaltalo bauxite deposit is situated in east Shahindezh, south west of west- Azarbaijan. This ore horizon lies along the boundary between Jurassic sandstone and Triassic dolomite. In this study for understanding the chemical process involved in the formation of the bauxite deposit and in order to determine the role and behavior of elements on weathering process, the gain and loss and mass transfer methods, enrichment-depletion diagrams were used. The result of this study diabase sills of Doroud Formation in the area is proposed as the principal source of this bauxitic horizon. Mass change calculations for different elements compared to an immobile element (Titanium)- with chemical stability in weathering processes. Results showed Si, Na, K, Mg, Ca depletion while Fe, Al, Ti showed secondary enrichment. The ore body shows decreasing in total mass of -21.02 for brown horizon,-21.02 for gray kaolinite layer,-22.91 for green to gray part and -23.55 for green to gray color horizon.

Keywords: Bauxite, Alibaltalo, West Azarbaijan, Mass change, Enrichment-Depletion

For Persian Version see pages 55 to 62
E-mail: Sahraie_az@yahoo.com

Morphodynamics of Damavand Volcanic Cone and Environmental Management with using GIS & RS

By: E. Moghimi*, M. Badri Far** & M. Zarei Nejad**

*Natural Geography Dept., Tehran University, Tehran, Iran
**Islamic Azad University, Sciences and Researches Campus, Tehran, Iran

Received: 2007 December 10 Accepted: 2008 February 23

Abstract

Morphodynamic characteristics of Damavand volcanic cone have been affected by two factors including internal and external morphodynamics. Major goal of this research is based on external morphodynamics. The morphodynamical landforms of this area are divided in two main groups, the first one is climatic processes and the second one is anthropogenic processes. Climatic processes, including glacial erosion, pre-glacial erosion and alluvial erosion, have changed morphology of slopes and spatial landforms. For the special geographic condition of Damavand volcanic cone, few data is available. Therefore by using satellite images ETM+, ASTER, SPOT, several new data layer have been prepared based on base maps and field checking in GIS environment.

Key words: Damavand volcano, Morphodynamic, GIS, Climatic processes, Human processes