MoO₃ ساخت، مشخصه‌ای برای ویژگی‌های حسگری گازی لایه‌های نازک ۳

الهی قلمه‌فاضی، محمدباقر رحمانی

(دریافت مقاله: ۱۳۸۹/۱۷/۴، نسخه نهایی: ۱۳۸۹/۳/۱۹)

چکیده: در این پژوهش، لایه‌های نازک اکسید مولیبدن (MoO₃) (t-MoO₃) بر زیر‌به‌ایلایه‌های شیشه‌ای به روش اسپری پلاستیک یا پرپلاستیک دیده شد. اثر فشار گاز حالت پلاریته (XRD) معادلات محول بر ویژگی‌های ساختاری، نوری، ریخت‌نشانی و حسگری گازی لایه‌ها بررسی شد. تحلیل الگوی برای پالویه لایه‌های نازک محاسبه می‌شود. رشد ترمیمی در رابطه‌ای [۰۱۰] و تشکیل فاز آلاینگ اکسید مولیبدن را نشان داد. شدیدترین قله در این گروه XRD نمونه نهایی شده XRD در دوشت ۲ برای داشته که نشان دهنده فلزکاری بهتر انرژی است. افزون بر این، طوفان رامان انرژی نتایج با توجه bar ۲br _bar شناخت داد که نمونه نهایی شده با فشار گاز حالت UV-Vis دیده شد. نتایج طوفان سنجی UV-Vis (۲۸۸–۴۰۰ nm) را داد. تداول میکروکسکوپ الکترونی روشی (SEM) ساختار لایه‌ای از نمونه‌ها را نشان داد. علاوه بر این، قطعات حسگر گازی برای نمونه‌های شده در فرآیند مبتنی بیشترین پایه ای‌ها و کمترین محدود گاز در سطح نمونه شده یا UV-Vis دیده شد. نتایج C ppm نشان داد که دمای کاهش (دیگر کمترین دما) با پیش‌گیری از حسگری در غلظت مشخص ۲۰۰ برای اندازه‌گیری مقدار حساسیت bar ۱۸bar نشان داد. محدودیت در حضور این حسگر، افزایش دیده شد. ۱۰۰۰ Tentaو مناسب‌تر از مقدار ۱/۱/۵۳ تا ۱۰۰۰ تا نشان داد.

واژه‌های کلیدی: اکسید مولیبدن، اسپری پلاستیک، ویژگی ساختاری، نوری، میکروکسکوپ الکترونی، حسگر گازی

مقدمه

همه صنایع و گونه‌گونه محیط زیست اثر می‌گذارند. از مواد زائد صنعتی گازهای سمی متصل به جهلم CO، بنزین، NOx، NH₃ و ترکیبات گازهای متصل به جهلم می‌شود. از جهلم خودروهای نیز گازهای مانند Azad می‌شود که این گازهای خطرناک باعث تهوع، تغییر رفتار و درک خودروی مانند و در بدنی راهان بر می‌شود. در این روپا به بار خشک به آگودگی می‌کند. فرآیند ترمیم بر می‌شود و به عنوان (TMOS) (تولید در باره علت نیمه‌ساختار، کانال‌ها گاز اکسید فلزی MOS) با توجه به هزینه ساخت کم، پایداری بالا و ساخت آسان، اندازه کوچک، حساسیت بالا و زمان‌های بیش از پایداری کم، مصرف کم انرژی و جابجایی تشخیص بسیار از گازهای سمی توجه می‌شود. پزوهشگان را به خودچسب کردند [۱، ۳۴، ۷۰، ۷۱]. لی فورد، Fe₂O₃، ZnO، SnO₂، Na₂O حسگری گازی مانند MOS حسگری گازی به طور کلی به تشخیص گاز

mbrahmani@yahoo.com

*توزیع‌مسول: لطف‌النامه: ۲۲۲۳۹۵۲۷۰۰، پست الکترونیکی: www.SID.ir
هدف در محیط زیست به کار رفته‌اند. در میان این اکسیدهای فلزی، اکسید مولیبدن (MoO₃) به عنوان پایدار در گروگر و شیمیایی بالا و فاکتور پیبیده گرگنگی توسط طور گسترده به عنوان ماده فعال را کنار باید توجه کنید. برای کاهش مقدار MoO₃ به عنوان درک را در اینجا هستند. دستگاه‌های فتوولتاکنیک، پنج‌جهات کرک، تراکم‌های الکتروگرمیک و غیره وارد استفاده قرار گرفته‌اند. [8-10]

اکسید مولیبدن به عنوان که‌کار حس‌بردار تنش بخار گازی، اکسید مولیبدن نیترودزین. امویناک، سولفید هیدروژن، مونوکسید کربن، هیدرورن و تری متیل آمین و غیره به کار برده می‌شود. تا کنون برای بهبود عملکرد حس‌بردار گازی، در زمینه افزایش حساسیت، پایین آوردن دمای کار و MoO₃، گزیننده‌ای با تلاقی های پیاز و شده است [3]. از جمله کاربردهای مهم اتانول (C₃H₇OH) است که به واسطه، کاربرد های مختلف آن در پزشکی، بیماربه‌نشین، ها، ایمنی و ترمیمی، ناحیه‌های کناره‌گیری و غیره به طور گسترده ای در حس‌بردار گازی برشی شده است. اتانول می‌تواند به عنوان یک حلال برای موادقابل حل استفاده شود و مشخص شده است که نشان می‌دهد عناوین چگونه برای سوخت‌های خودرو ایفا می‌کند. با یک حلال، اتانول سیستم است و حضور گرفتن طولی مدت در محیط زیست اتانول می‌تواند باعث مشکلات سلامت مانند سردرد و خواب آلودگی، سوزش پوست و چشم، نجوم، استفراغات و افزایش‌های عصبی شود. تیتر باید، حساسیت بالا، پایین سریع و زمان نزدیک که و پایداری طولانی مدت از ویژگی‌های ضروری در حس‌بردار گاز اتانول است [3, 10, 11].

[۷] α-MoO₃

شکل ۱ طرحی از ساختار بلوری α-MoO₃
(NH₄)₆Mo₇O₂₄·4H₂O → 450°C → 7MoO₃(s)
+ 6NH₃(g) + 7H₂O(g)

\[
\beta \cos \theta = \frac{0.9A}{D} + 4\varepsilon \sin \theta
\]

روش آماده‌سازی و بررسی نمونه‌ها
برای به‌دست‌آوردن نانو اکسید مولیبدن از پودر آمونیوم \((\text{NH}_4)_6\text{Mo}_7\text{O}_{24} \cdot 4\text{H}_2\text{O})\) به‌کار رفته‌اند. در این پژوهش، روش ساده‌ای با استفاده از مایع بوده و بنابراین به‌طور خلاصه، عملکرد بسیاری از این روش‌ها از تکنیک‌های پیشرفته‌ای که با انرژی بالا برای خوشه‌بندی و شیب‌بندی از نوع اکسید مولیبدن در نظر گرفته شده است. در این مطالعه، میزان تغییرات در شیب‌بندی و ضریب شیب‌بندی در نوار الف (\(\alpha\)-MoO₃) در فشارهای مختلف گزارش شده است.

جدول 1: پارامترهای مورد استفاده جهت آماده‌سازی نانو اکسید \(\alpha\)-MoO₃

<table>
<thead>
<tr>
<th>فشار</th>
<th>افزایش در فشار</th>
<th>هگنتهای مناسب</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 M</td>
<td>غلظت محلول</td>
<td></td>
</tr>
<tr>
<td>5 M</td>
<td>حجم محلول</td>
<td></td>
</tr>
<tr>
<td>35 cm</td>
<td>ارتفاع نازل</td>
<td></td>
</tr>
<tr>
<td>18, 22, 25 bar</td>
<td>فشار</td>
<td></td>
</tr>
</tbody>
</table>

www.SID.ir
شکل ۲: نمودار ویلیامسون-هال نموده شده در فشار گاز حامل ۲ بار SMP۲.۰ بهبود شده با فشارهای مختلف گاز حامل (۱.۸، ۲.۰، ۲.۲، ۲.۵ bar)

جدول ۲ اندکاره باریک و کرنش با یاهی نارک اکسید مولبدن با فشارهای مختلف گاز حامل (۱.۸، ۲.۰، ۲.۲، ۲.۵ bar)

<table>
<thead>
<tr>
<th>نموده</th>
<th>SMP2.5</th>
<th>SMP2.2</th>
<th>SMP2.0</th>
<th>SMP3.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>نموده</td>
<td>۲۹۵۰</td>
<td>۲۸۳۹</td>
<td>۲۸۲۹</td>
<td>۲۸۸۸</td>
</tr>
<tr>
<td>ترمین</td>
<td>۳۶۶۸</td>
<td>۳۵۴۵</td>
<td>۳۵۰۰</td>
<td>۳۵۰۱</td>
</tr>
<tr>
<td>(nm)D</td>
<td>۲۸۶.۵</td>
<td>۲۸۶.۸</td>
<td>۲۸۹.۵</td>
<td>۲۹۵.۰</td>
</tr>
<tr>
<td>(× ۱۰⁻۳)μ</td>
<td>۱.۵۰</td>
<td>۱.۵۰</td>
<td>۱.۵۰</td>
<td>۱.۵۰</td>
</tr>
</tbody>
</table>
تنش‌های یکی از مهم‌ترین عوامل نامطلوب هستند که بر
ویژگی‌های ساختاری و عدم سازگاری هندسی در مزر بین
شیب‌های بلوری لایه‌ها و زیرلایه‌ها اثر می‌کند. تنش‌ها به
دنبال این تنها در لایه‌های دسترسی می‌باشد. وجود تنش‌های
دعلی در مکانیزم بالا تهیه تشکیل مراکز نقص پاشیده کاهش اندازه
بیولوگی می‌تواند مربوط به افزایش کرش باشد [19].
پارامترهای شکل (h k l) مربوط به فاز راست‌گویی با استفاده از
رابطه زیر [20] محاسبه و در جدول ۳ آورده شده است:

\[d_{\text{hkl}} = \frac{1}{\sqrt{h^2 + k^2 + l^2}} \]

شناخته‌های مبیل صفحات بازتاب‌نده در طرف پراش و

جدول ۳ پارامترهای شکل بلوری لایه‌های تارک α-MoO₃

<table>
<thead>
<tr>
<th>c (Å)</th>
<th>b (Å)</th>
<th>a (Å)</th>
<th>d_{\text{hkl}}</th>
<th>(\theta)</th>
<th>نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>130.15</td>
<td>138.45</td>
<td>138.45</td>
<td>3.584</td>
<td>24.226</td>
<td>(hkl)</td>
</tr>
<tr>
<td>132.66</td>
<td>139.45</td>
<td>139.45</td>
<td>3.584</td>
<td>24.226</td>
<td>SMP1.8</td>
</tr>
<tr>
<td>140.69</td>
<td>141.69</td>
<td>141.69</td>
<td>3.584</td>
<td>24.226</td>
<td>SMP2.0</td>
</tr>
<tr>
<td>145.51</td>
<td>146.51</td>
<td>146.51</td>
<td>3.584</td>
<td>24.226</td>
<td>SMP2.2</td>
</tr>
<tr>
<td>150.23</td>
<td>151.23</td>
<td>151.23</td>
<td>3.584</td>
<td>24.226</td>
<td>SMP2.5</td>
</tr>
</tbody>
</table>

شکل ۴ تصاویر نمونه‌های (الف) α-MoO₃ تهیه شده با فشارهای مختلف گاز حامل (۱.۸، ۲، ۲.۲ و ۲.۵ bar) (ب) SMP2.0 و (ت) SMP2.5
(α hv)² = A₀ (hv - E₀) (1)

یک گراف نواری نمودنها در جدول 4 آورده شده است. دیده می‌شود که نامتوازنی فشار گاز حامل از 1.8 تا 2.5 bar به قدرت افزایش یافته است. این افزایش می‌تواند مربوط به پر در شدن جزئی حفره‌های اکسیژن باشد. بسیاری از فشار گاز حامل به 2.5 bar از 2.5 bar به 3.53 eV کاهش می‌یابد. کاهش گراف انرژی می‌تواند به این دلیل باشد که حفره‌های اکسیژن می‌تواند یک دو-کریستال می‌باشد. در نتیجه حفره‌های اکسیژن اشغال شده به عنوان میکروبی دندانه عمل می‌کنن. این میکروبی در گراف نمودنها همستند و یک نوار دهنده باریک در زیر نوار رسانش تشكیل می‌دهد [22].

![Graph](attachment:graph.png)

شکل 5: نمودن گراف نواری بر حسب طول موج مربوط به لاشه‌های نازک اکسیمیولیبدن با فشارهای مختلف گاز حامل (1.8، 2.0، 2.2، 2.5 bar).

جدول 4: مقادیر گراف نواری لاشه‌های نازک MoO₃ به تهیه شده با فشارهای مختلف گاز حامل (1.8، 2.0، 2.2، 2.5 bar).

<table>
<thead>
<tr>
<th>کد انرژی (eV)</th>
<th>نمودنها</th>
<th>فشار (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.48</td>
<td>SMP1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>3.54</td>
<td>SMP2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>3.66</td>
<td>SMP2.2</td>
<td>2.2</td>
</tr>
<tr>
<td>3.53</td>
<td>SMP2.5</td>
<td>2.5</td>
</tr>
</tbody>
</table>
طیف رaman نمونه 0.2 در دماه اتفاق در شکل ۶ نشان داده شده است. جنگل که دیده می‌شود، طیف رaman از قله‌های ۱۸۰۰، ۲۲۰۰ و ۳۳۰۰ واقع در ۲۳۵، ۲۸۰، ۳۲۵ و ۳۷۰ و ۲۴۵، ۲۶۵، ۲۷۵، ۲۹۴ و ۳۱۵ اثر شده است. نتیجه بودن قله‌ها نشان می‌دهد که حالت‌های ارتقاء ناشی از ساختار بسیار منظم است.

فقط موجود در حدود ۱۹۴۵ cm⁻¹ می‌تواند به حالت کنشی اکسیزن واقع در نوك هسته‌جوئی MoO₆ و در راستای محور b در قله‌های اکسیزنی که بعد هشت‌جوئی های MoO₆ به استراک گذاشته شده است، اختصاص داده شود. MoO₆ این قله برای MoO₃ به استفاده در بین دو هسته‌جوئی، این قله برای MoO₃ به استفاده در بین دو هسته‌جوئی، این قله برای MoO₃ به استفاده در بین دو هسته‌جوئی، این قله برای MoO₃ به استفاده در بین دو هسته‌جوئی، این قله برای MoO₃ به استفاده در بین دو هسته‌جوئی، این قله برای MoO₃ به استفاده در بین دو هسته‌جوئی، این قله برای MoO₃ به استفاده در بین دو هسته‌جوئی، این C(s) = (Rₐ - Rₕ)/Rₐ × ۱۰۰

که مقاومت خاص MoO₃ در حضور هوا و مقاومت آن در حضور گاز اتانول است.

شکل ۶ طیف رaman نمونه 0.2 در دماه اتفاق SMP2.0
شبکه ۷ طرح‌واره قطعه حسگر ساخته شده با استفاده از لاوه‌های نازک ر

بیشترین میزان حساسیت و نمونه ۲ نواری دارای کمترین حساسیت است [۱۴۲۳]. دمای کار به دلیل انکه بر طرحه الکترونی و رسانایی الکتریکی مواد اثر می‌گذارد یکی از عوامل مهم در پاسخ حسگرهای کاری بر پایه نیم‌رساناهای اکسید قلزی است.

با بیان هنگامی که افت بم‌های دمای انسدادی نشان می‌دهد. پاسخ حسگر در دمای ۲۰۰°C برای نمونه ۱.۸ سبب همکناری نیم‌رساناهای گاز جذب شده و سطح حسگر قویتر و در نتیجه پاسخ گازی بیشتر است [۱۴۲۱]. همچنین وجود حفره‌های آکسیدین نیم‌رساناه گاز نویز را کاهش دهد و سرانجام منجر به افزایش انتقال الکترون و بهبود حسگر گازی شوید. در اینجا نیز نمونه ۱.۸ با کمترین گاز نواری دارای ppm

شکل ۸ تغییرات زمانی حساسیت نمونه‌های ۱.۸ و ۲.۰ سبب همکناری نیم‌رساناهای گاز نویز را کاهش دهد و سرانجام منجر به افزایش انتقال الکترون و بهبود حسگر گازی شوید. در اینجا نیز نمونه ۱.۸ با کمترین گاز نواری دارای ppm

شکل ۸ نمودار تغییرات زمانی حساسیت نسبت به SMP1.8 ۲۰۰°C در دماى SMP1.8 و ۲.۰ سبب همکناری نیم‌رساناهای گاز نویز را کاهش دهد و سرانجام منجر به افزایش انتقال الکترون و بهبود حسگر گازی شوید. در اینجا نیز نمونه ۱.۸ با کمترین گاز نواری دارای ppm

شکل ۷ طرحواره قطعه حسگر ساخته شده با استفاده از لاوه‌های نازک ر

بیشترین میزان حساسیت و نمونه ۲ نواری دارای کمترین حساسیت است [۱۴۲۲]. دمای کار به دلیل انکه بر طرحه الکترونی و رسانایی الکتریکی مواد اثر می‌گذارد یکی از عوامل مهم در پاسخ حسگرهای کاری بر پایه نیم‌رساناهای اکسید قلزی است.

با بیان هنگامی که افت بم‌های دمای انسدادی نشان می‌دهد. پاسخ حسگر در دمای ۲۰۰°C برای نمونه ۱.۸ سبب همکناری نیم‌رساناهای گاز جذب شده و سطح حسگر قویتر و در نتیجه پاسخ گازی بیشتر است [۱۴۲۱]. همچنین وجود حفره‌های آکسیدین نیم‌رساناه گاز نویز را کاهش دهد و سرانجام منجر به افزایش انتقال الکترون و بهبود حسگر گازی شوید. در اینجا نیز نمونه ۱.۸ با کمترین گاز نواری دارای ppm

شکل ۸ نمودار تغییرات زمانی حساسیت نسبت به SMP1.8 ۲۰۰°C در دماى SMP1.8 و ۲.۰ سبب همکناری نیم‌رساناهای گاز نویز را کاهش دهد و سرانجام منجر به افزایش انتقال الکترون و بهبود حسگر گازی شوید. در اینجا نیز نمونه ۱.۸ با کمترین گاز نواری دارای ppm

شکل ۷ طرحواره قطعه حسگر ساخته شده با استفاده از لاوه‌های نازک ر

بیشترین میزان حساسیت و نمونه ۲ نواری دارای کمترین حساسیت است [۱۴۲۲]. دمای کار به دلیل انکه بر طرحه الکترونی و رسانایی الکتریکی مواد اثر می‌گذارد یکی از عوامل مهم در پاسخ حسگرهای کاری بر پایه نیم‌رساناهای اکسید قلزی است.

با بیان هنگامی که افت بم‌های دمای انسدادی نشان می‌دهد. پاسخ حسگر در دمای ۲۰۰°C برای نمونه ۱.۸ سبب همکناری نیم‌رساناهای گاز جذب شده و سطح حسگر قویتر و در نتیجه پاسخ گازی بیشتر است [۱۴۲۱]. همچنین وجود حفره‌های آکسیدین نیم‌رساناه گاز نویز را کاهش دهد و سرانجام منجر به افزایش انتقال الکترون و بهبود حسگر گازی شوید. در اینجا نیز نمونه ۱.۸ با کمترین گاز نواری دارای ppm
جند ۲۷ شهریور ۱۳۹۸
ساخت، مشخصه‌بندی و بررسی ویژگی‌های حس‌گر گاز

شکل ۹. تغییرات زمانی حساسیت نمونه ۱.۸ برای غلظت ۱۰۰ ppm از دماهای مختلف.

شکل ۱۰. تغییرات زمانی حساسیت نمونه ۱.۸ برای غلظت های مختلف گاز اتانول.

چنان که دیده می‌شود حساسیت نسبت به گاز اتانول با افزایش دما کاهش یافته است. ممکن است افزایش دما اکسیژن جذب شده بر سطح را کاهش دهد بنابراین اکسیژن های جذب شده به اندازه کافی وجود ندارند تا با مولکول‌های گاز واکنش دهند و در نتیجه حساسیت نسبت به گاز اتانول کاهش یافته است. همچنین افزایش دما می‌تواند باعث افزایش میزان واکنش اکسیژن از بخش جذب شده و گونه‌های گاز جذب شده نسبت به میزان انتشار مولکول‌های گاز شود و در نتیجه باعث کاهش چگالی‌های خورشیدی از حس‌گر می‌شود.

دمای بهینه حس‌گری C۲۰۰ برای غلظت‌های متفاوت با خارج اتانول در جدول ۵ آورده شده است. دیده می‌شود که با تغییر گرفت ناحیه سطحی حسگر در معرض بخار اتانول در دمای بهینه حس‌گری C۲۰۰، پاسخ گاز افوایش غلظت گاز از ۱۰۰ ppm تا ۱۰۰۰ ppm تا ۱۰۲۲ به ۱۵۴۲ درصد بیشتر است.

نوت مولکول‌های گاز اتانول جذب شده پوشش داده می‌شود، و اکسیژن نیز سطح‌های بر سطح لایه و درنتیجه پاسخ گازی افزایش می‌یابد [۴]. زمان پاسخ و بازیابی حسگر گازی از بارا می‌تواند در زمانی شش‌پذیر گیر است. زمان پاسخ به عنوان زمانی که مقاوومت اکسید نیترین با ۹۰ درصد مقوا می‌باشد، زمان پاسخ و بازیابی به عنوان زمانی لازم برای بازیابی ۹۰ درصد مقوا می‌باشد.

حمایت، زمان پاسخ و بازیابی برای نمونه ۱.۸ در SMP1.۸ دمای بهینه حس‌گری C۲۰۰ برای غلظت‌های متفاوت با خارج اتانول در جدول ۵ آورده شده است. دیده می‌شود که با تغییر گرفت ناحیه سطحی حسگر در معرض بخار اتانول در دمای بهینه حس‌گری C۲۰۰، پاسخ گاز افوایش غلظت گاز از ۱۰۰ ppm تا ۱۰۰۰ ppm تا ۱۰۲۲ به ۱۵۴۲ درصد بیشتر است.
جدول ۵ حساسیت زمان پاسخ و بازیابی نمونه ۱.۸ SMPI نسبت به غلظت‌های مختلف گاز اتانول در دماهای حساسیت C°

<table>
<thead>
<tr>
<th>زمان بازیابی (s)</th>
<th>حساسیت (%)</th>
<th>غلظت (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۸۸</td>
<td>۱۸۴</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۵۱۹</td>
<td>۱۰۹</td>
<td>۲۰۰</td>
</tr>
<tr>
<td>۸۲۴</td>
<td>۱۲۷</td>
<td>۵۰۰</td>
</tr>
<tr>
<td>۶۷۰</td>
<td>۱۰۵</td>
<td>۱۰۰۰</td>
</tr>
</tbody>
</table>

ضخامت آن برای با توجه به صورت ناحیه مختلف نوری افزایش جذب شده اکسیژن می‌شود و در اثر به آزاد شدن الکترون و برگرداندن به نوار رسانش می‌شود. در نتیجه سد پتانسیل و طول لایه بار فضایی کاهش یافته و باعث تغییر می‌باشد [۴۹].

شکل ۱۱ طرح‌هایی از سازوکار واکنش در حسکر پس از جذب اکسیژن و گاز هدف واکنش می‌دهد. چگونگی جذب مولکول اکسیژن در سطح حسکر در دماهای مختلف و واکنش بین حسکر و سطح حسکر [۴۶] به صورت زیر است:

\[O_2(gas) \leftrightarrow O_2(ads) \]
(۱)

\[O_2(ads) + e^- \leftrightarrow 2O^-(ads) \quad (T < 100^\circ C) \]
(۲)

\[O_2(ads) + e^- \leftrightarrow 2O^-(ads) \quad (100^\circ C < T < 300^\circ C) \]
(۳)

\[O^-(ads) + e^- \leftrightarrow O^2-(ads) \quad (T > 300^\circ C) \]
(۴)

\[C_2H_5OH + 6O^-(ads) \rightarrow 2CO_2 + 3H_2O + 6O^- \]
(۵)

مقادیر گاز قابل دسترس را سطح بر قرار دارد گاز و زمان پاسخ اثر دارد باعث این که دیده می‌شود زمان پاسخ با افزایش غلظت اتانول می‌یابد. زمان بازیابی طولانی مدت ممکن است به دلیل ساختار متخلخل باشد که سرعت تخلخل گاز تثبیتی را کاهش می‌دهد [۱۱].

سازوکار حسکری گاز MoO_3 یک نیم‌رسانای نوع n است که در آن جایگاه اکتیون الکترون‌ها نپتنده است. بدین ترتیب مقاومت مواد حساس به تراکم الکترون‌ها است. هنگامی که حسکر در هوا گاز باشند می‌شود مولکول‌های اکسیژن در سطح حسکر جذب می‌شوند و الکترون‌ها را از نوار رسانش به دام می‌اندازند. این امر منجر به یک خشونت نوری را یک ناحیه تهیه از الکترون در ناحیه سطحی حسکر می‌شود. در نتیجه سد پتانسیل را افزایش می‌دهد و سپس از آن مقاومت حسکر حسکری می‌یابد. ناحیه تهیه از الکترون به اصطلاح لایه‌ی بار فضایی نامیده می‌شود که

![Shema 11](https://www.SID.ir)
برداشت
در این پژوهش، تأثیر اکسید مولیبدن (MoO₃)₃ با فشارهای مختلف گاز حامل به روش افتاه پاراپلیزی بر تغییرات شیشه‌ای مشابهان شدن و اثر افزایش فشار گاز حامل UV-Vis آنها تجزیه و تحلیل طیف نشان داد که میزان گذشت 24.2 روند کاهشی داشته و با رسیدن به فشار 2.5 فشار می‌باشد. گاز نواری تکه کردن دهه نمونه بر اساس 2bar فشارهای XRD نمونه‌ها تحت شرایط کاهش نمونه‌ها و سپس کاهش می‌یابد که این می‌تواند به جهت‌های اکسپرس مربوط باشد. بررسی طیف‌های XRD نمونه‌ها دهده شده که نمونه با فشار 2bar شدیدترین قله باردار می‌شود بنابراین از رادی ایجاد می‌دهد. همچنین میزان گاه اندازه بلوک‌ها در نمونه‌ها با افزایش فشار گاز حامل تا 2.2 کاهش و سپس با افزایش بیشتر فشار گاز حامل تا 2.5 فشار می‌باشد. نتایج این مطالعه نشان می‌دهد گاز حامل در 200 ppm در 18 دارای بیشینه ضخامت یا ازای گاز اتانول است. دامنه بیشینه بخار گاز یا این نمونه C° 400 پایین‌تر می‌شود. همچنین با افزایش غلظت گاز، افزایش حساسیت افرازی می‌یابد. به این ترتیب، شکل‌بندی شرایط رشد، قطعه حسگر ساخته شده از اکسید مولیبدن به عنوان یک حسگر بخار اتانول استفاده نمود.

مراجع
[21] Martínez HM., Torres J., López-Carreño LD., Rodríguez-García ME., "The Effect of Substrate