توزیع اندازه پورفیروپلاست‌های کیانت و استارولیت در ماتاپلیتهای حمیمی قسم و خزائی بالا (شاهین‌ژر) موی شرایط تبلور دگرگونی ناحیه‌ای در منطقه

منیر مجرد* صابر شیخ بگلو
gروه زمین شناسی دانشکده علوم، دانشگاه ارومیه (در فاصله مقاوم ۹۴/۱/۱ تا ۹۴/۱/۵)
چکیده: در این مقاله توزیع اندازه پورفیروپلاست‌های کیانت و استارولیت موجود در سنگ‌های ماتاپلیته، منطقه حمیمی قسم و خزائی بالا در شاهین‌ژر، بررسی شده است. برای کیانت‌ها این منحنی به صورت خطی و برای استارولیتها غیرخطی یا نهایی است. کیانت‌ها منحنی جگالی تراکی یک سیوه و استارولیتها دارای دو بخش مجزا هستند. خطي بودن کیانت‌ها به شدت، بیشتر نسبت به دست بودن بلوهره‌ها و غیر خطی بودن منحنی‌های استارولیت بیانگر دو احتمال متواضعی در واکنش‌های دگرگونی استارولیت‌ها و در فازهای دگرگونی ناحیه‌ای است. نشانی کلمی که احتمال اول از قوت بیشتری برخورد است. میانگین رشد در زمان (G1) و نرخ هسته‌بندی (J) و برای پورفیروپلاست‌های کیانت به ترتیب ۱/۴۳۱ و ۰/۷۴۹ و برای پورفیروپلاست‌های استارولیت میانگین رشد هسته‌بندی (J) به رشید ریزی‌الرو و درشت بلوه به ترتیب ۱/۴۰۵ و ۰/۷۴۳ در زمان (Gb) برای برخورد و درشت بلوه به ترتیب ۸۰۷/۴ و ۷۶۴/۳ با توجه به مدل نسبت هسته‌های استارولیت ۵/۵ برای کینیت و نسبت بزرگی بلوه‌های استارولیت به کینیت ۱/۸ برای (حدود ۲ برای). آزمایش کالید: CSD: کیانته استارولیت، نرخ هسته این تعداد سرعت رشد، شاهین‌ژر.

واژه‌های کلیدی: CSD: کیانته استارولیت، نرخ هسته این تعداد سرعت رشد، شاهین‌ژر

مقدمه
اندازه پورفیروپلاست‌های کیانت و استارولیت در دو عامل سرعت و زمان اصلی به مدل مناسبی با طول مدت
پی اکتش دگرگونی است. CSD: نسبت هسته‌های در فازهای دگرگونی ناحیه‌ای این منحنی به شدت بیشتر بودند. ممکن است از عملاکندی: نسبت دو عامل حاصل شده باشد [1].

درآوردن اندازه پورفیروپلاست‌های این تعداد سرعت و زمان سرعت شده برای رشد است. این تعداد سرعت در بررسی رشد بلوه است. هدف از مدل مناسبی به مدل متناسب سرعت در بررسی ۲-۳ لایه از منحنی است. این تعداد سرعت بلوه پورفیروپلاست‌های این تعداد رشد بلوه در ناحیه‌های این تعداد رشد بلوه یا این تعداد رشد بلوه.

م. مدوریاراد، مسکو، تلفن: ۰۶۳۱۲۴۴۱۲۲۵۱۱۲۱۲۴۴۱۲۸-۸۸، پست الکترونیکی: m.modjarrad@urmia.ac.ir
کرده‌اند. این نظریه به‌طور عمومی به نام نماد CSD (CSDcorrections) است. روش اصول ابتدایی را برای توجه به‌گیری زبان هسته‌پیدی و رشد در سیستم‌های دیگرکلمه و دگرگونی آن فراهم کرده است.

همه‌الا اصل بررسی‌های CSD عبارت از یک نمودار نیمه‌گذاری چگالی تراکمی بلوپرها بر واحد اندازه بلوپر است [16]. در این 14 مقطع نازاری های حمزه قسمت و خرابی با نمای شرایط بافتی و بلوپر مالیات برای CSDروی بین، انتخاب شدند. از بین این مقاطع از 6 مقطع تصویربرداری کامل صورت گرفت. سپس از برتری جمعی مبنا می‌باشد، طول، عرض و گردش بلوپرها استفاده شد. نتایج این بردار تصویر در جدول 1 و 2 خلاصه شدند. از آن‌جمله، هیچ یک نمودار CSD نهش شدن.
جدول 2

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>سطح پوششی شده توسط کالی (m²)</th>
<th>شیب سنگی</th>
<th>مقادیر عرض از سطح (m)</th>
<th>CSD محاسبه شده (Gt)</th>
<th>Log(Gt) (Lnn(mm³))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>111</td>
<td>0.1</td>
<td>0.1</td>
<td>320</td>
<td>0.51</td>
</tr>
<tr>
<td>2</td>
<td>112</td>
<td>0.1</td>
<td>0.2</td>
<td>320</td>
<td>0.51</td>
</tr>
<tr>
<td>3</td>
<td>113</td>
<td>0.1</td>
<td>0.3</td>
<td>320</td>
<td>0.51</td>
</tr>
<tr>
<td>4</td>
<td>114</td>
<td>0.1</td>
<td>0.4</td>
<td>320</td>
<td>0.51</td>
</tr>
</tbody>
</table>

در زمینه‌ی میکا و گواستر قرار دارد. رشد کالی‌ها و کمرپیش‌ها در متن سنگ‌های ریزدانه با باد پورزیرولاستی، صورت گرفته است. سمتگیری کانی‌های بیوتیت، مسکوت و کلریت طی گردنگی ناحیه‌ای سبب تشکیل بافت شیستوزیت در مناسب‌ترین‌ها است (شکل 2). برای بررسی تبدیل‌هایی که از مقاطع میکروسکوپی متفاوت و مورد بررسی قرار گرفته‌اند (شکل 3).

این اولین بحث توزیع اداراتی در مورد سنگ‌های مناسب‌ترین منطقه حمزه قاسم و خزانی بالاست.

بیت و بررسی

موقعیت زمین‌شناسی منطقه

منطقه‌ی مورد بررسی در جنوب‌شرق شیراز شاه‌عباسی در جنوب استان آذربایجان غربی قرار دارد. این منطقه با استفاده از منطقه‌بندی آقاخانی [15] در ناحیه‌ی آران مرکزی واقع شده است. در شرق منطقه‌ی مورد بررسی، مناسب‌ترین‌ها میلیونی شده نیز مشاهده شده‌اند [16] (شکل 1). بررسی‌های سیستم‌گرای نشان می‌دهد که سنگ‌های مناسب‌ترین منطقه از نوع استیالتولی-کمرپیش-کالی‌شیست‌هستند. سنگ‌رسوبی اولیه از نوع گری و کی و شبیه است [17]. در این شیست‌ها کمرپیش‌ها، کالی‌شیست‌ها و استیالتولی‌ها

[شکل 1 تقسیم‌بندی موقعیت منطقه‌ی مورد بررسی افتیاگری به خلیل و همکاران [16]]
شکل ۲ تصاویر میکروسکوپی از ترسیم‌های متالیتی منطقه نلفا که توسط باشگاه نظری که توسط باشگاه نظری، به دست آمده است.

- کانی‌های موجود در متالیت‌ها را مشخص می‌کند.

- ترسیم‌های متالیتی در حالت PPL و PPL در حالت XPL به شکل مشاهده می‌شود.

CSD: تصاویر کامل از مقاطع نواری که با استفاده از این مقاطع و برنامه‌های تصویری داده‌های لازم برای ترسیم منحنی‌های محاسبه ورود است. شکل ال‌ام‌بی به کانی استارولیت و شکل ال‌ام‌بی به کانی کیانت است. به علاوه، شکل میکروسکوپی استارولیت نیز اورده شده است.
توییز اندازه‌بی‌بور‌فی‌روبلاست‌های کاتیوت و استارولویت در...

t(p) = \frac{dN}{dt} = \frac{n_e e^{-\beta t}}{L}

L = \frac{n_o}{b}

\beta = \frac{dN}{dt}

\text{CSD:} \text{Correction}

\text{CSDcorrections:} \text{Correction}

\text{نمار تیکه‌های بی‌بور‌فی‌روبلاست‌های کاتیوت و استارولویت در...

توزیع اندازه‌ی بلورها، نظره ا و بیشینه‌دهی آن اثرات دارد. جود شرایط مناسب برای رشد و انتشار مواد، هسته‌پذیری سریع، سرعت رشد بالا و تسهیل حمل و نقل مواد در رشد بلورها در زمان کم باعث تشكل محلی های خطی (نسبتاً خطی) می‌شود [20].

حدود 6 تفسیر درباره مقعر (زیگولهای) بودن CSD

شکل 4 نمودارهای فراوانی بلورهای کیانیت و استارولیت. نمودارهای (الف تا د) مربوط بلورهای کیانیت. نمودارهای (و، ی) مربوط به بلورهای استارولیت است. محور X نمودار بیانگر تعداد بلور در حجم (mm3) و محور Y بیانگر طول بلور (mm) است. نمودارهای استارولیت نشان‌دهنده‌ی عدم توزیع بلور درشت دانه و ریز دانه است که هرکدام از آنها در شرایط خاصی رشد کرده‌اند.
شکل ۵ اف تا متنچی‌های CSD کتالیت محور Y تابعیت محور X بینانگر چگالی تراکمی (\(\times 10^{-4} \)) و محور Y بینانگر طول بلور (mm) از دست رفته از اطلاعاتی را براپا نشان می‌دهد. این نمودار نمودار پیروی (b) شیب خط پیروی CSD به رشد J/G به رشد (J/G) را ارائه می‌کند.

شکل ۶ اف تا متنچی‌های CSD استتروپی. متنچی اف بربت نشاگر عرض از میدان استتروپی هایی رمز بلو، متنچی‌های J و D نشاگر استتروپی‌های دیگر درشت بلور محور Y تابعیت محور X بینانگر چگالی تراکمی (\(\times 10^{-4} \)) و محور Y بینانگر طول بلور (mm) از دست رفته از اطلاعاتی به دلیل اینکه دارای دو بخش مجزا هستند بنابراین برای ارای هر بخش شیب خط مجزای اندازه‌گیری شده است. شیب متقوقی برای بلورهای درشت دانه و شیب متقوقی برای بلورهای رمز دانه رسم شده است.
وجود دارد استرولیت که طی یک واکنش مشترک به همراه
کرده تولید شده ریزت بوده‌اند. دلیل این امر ممکن است
صرف شدن مواد برای تولید کایسی مافیک به صورت همزمان
باشد.

بردشت

متابالیتهای حجمی قاسم و خزائی با دسترسی دگرفش
ناحیه‌های شدان و در این دگرفش پروبرولاسته‌های کایسیت
و استرولیت شکل گرفته‌اند. سری آنیلسه‌ها کمی
پروبرولاسته‌های کایسیت و استرولیت در متابالیتهای حجمه
قاسم و خزائی با دو گروه متفاوت رشد را نشان می‌دهند.
کایسیت‌ها نخست به اندازه کم و رشد زیاد را نشان می‌دهد.
نمونه‌های استرولیتی دارای چکش با شبیه متافاون هستند.
پخش زیست متنوع استرولیتی ممکن است در اثر یک فاز
دگرفش ناحیه‌ای با واکنش اختلالی
تشکیل شده و رشد
Ms + Chl = Bt + St + Qtz + H2O
گرده‌ای رنگی نسبت به بخش درشت دانه موجود در
منجین استرولیت‌های احتمالاً ناشی از یک واکنش مجزا
رشد کردن‌اند.

بررسی متفاوت‌های پروبرولاسته‌های کایسیت و
استرولیت و نتایج بدست آمده از نخست به دنبال، بایان
نواحی هستندی (J) کایسیت با استرولیت است. پایان
محاسبات دوبعدی و برنامه CSDeclarations
برگیری بلوهای و ماینگن نزدیک هستندی به
وربرولاسته‌های کایسیت به ترتیب برای 10.5، 0.1، 0.05
نرخ استرولیتی ماینگن نزدیک هستندی بخش
ریز به روش ردش بلوه رنگی و 0.1، 0.05
براورد شدن‌اند. با تعیین شبیه خط منحنی بلوه
در زمان (Gt) برای پروبرولاسته‌های کایسیت 1
بلور در زمان (Gt) برای پروبرولاسته‌های کایسیت 1
1931 و 1932 و برای ریز بلوه و درشت بلوه استرولیت به ترتیب
1/405 و 1/643 پراورد شد است. دلیل

تبلور آرام در عمق و سیس تبلور سرعی در یک مسير نیز
سبب ایجاد حالت مصرفی در نمونه CSD
می‌شود. شرایط
یکچیده دما و فشار در دگرفش هستندی نیز نماده‌های توزیع
اندازه بلوه را به شکل مفرغ و نگوله‌های مبدل می‌کند. به
عقب‌های کاشتن [20] خمیدگی منحنی CSD در اثر تبلور
متوالی (در چند مرحله) نیز می‌تواند مسبک این خمیدگی
باشد.

وزیگر معمول منحنی‌های استرولیت و کایسیت پیانگر ناواقف
در سرعت رشد و نرخ هستندی این دو ناحیه در شرایط
دگرفش مشابه است. این اگر نشان می‌دهد کایسیت مختلف
در شرایط بیکان و عوامل دگرفش مشابه با پارامترهای
متفاوت و قابلیت رشد مناسب و سرعت. کایسیت با ترکیب
ساده شرایط مناسب و متفاوت برای رشد درشت بلوه
ور کایسیت طی واکنش‌های
تشکیل شده‌اند. منحنی
Ms + Qtz = Kfs + Als + H2O
استرولیت به احتمال زیاد به دلیل تفاوت در واکنش‌های
تشکیل دهنده، به صورت نگوله‌ای در آمده است. واکنش‌های
که تشکیل دهنده استرولیت‌ها هستند عبارتند از:
Ms + Chl = Bt + St + Qtz + H2O
و
Ms + Bt = St + Crd + H2O
احتمالاً بازوی با شبیه
مشت منحنی مربوط به استرولیت‌ها طی واکنش
ایجاد شده است. در
این واکنش، بلوه‌های ریز استرولیت رشد کرده و منحنی در
این شرایط دارای شبیه مشت است.
شبی مشت در این حالت نشان دهنده رشد بلوه‌های ریز
دانه در طول زمان کم با هستندی زیاد داشت. در ادامه با امام
کریمی واکنش‌های استرولیت نیز تغییر یافته و واکنش
بلورهای درشت دانه
استرولیت را تشکیل داده است. این این واکنش مشت منحنی
در منحنی تشکیل شده است این شرایط نیز پیانگر هستندی
کم و رشد بلوه‌های درشت دانه است. همچنین این احتمال
www.SID.ir

11 ترکیب 4، صالحی ن، کریم م، “استفاده از داده های آماری برای ارزیابی اندازه بلوهای پیوپکس در مطالعه فرآیندهای پتروژی مربوط به اندازه‌گیری شار شرک قره (کردنی)”. مجله پتروژی، شماره 131 (1391) صفحات 42-64.

The determination of the total finite strain in a rock from objects such as deformed pebbles”, Tectonophysics 5 (1970) 295-302.

“Contact metamorphism and crystal size distribution studies in the Shivar aureole, NW Iran”, Geol J 40 (2005) 499-517.

“Contact metamorphism and crystal size distribution studies in the Shivar aureole, NW Iran”, Geol J 40 (2005) 499-517.

“Pure shear and simple shear deformation of inhomogeneous viscous fluids 2, The determination of the total finite strain in a rock from objects such as deformed pebbles”, Tectonophysics 5 (1970) 295-302.

“Contact metamorphism and crystal size distribution studies in the Shivar aureole, NW Iran”, Geol J 40 (2005) 499-517.

References

