یازدهم ملکزاده شفارودی
کربوهیدرات گالان، کمیابی، و ژنومی‌گالان. کانسار سرب نخلک (اصفهان)

محمّدعلی جَزی، محمدحسین کربوهیدرات
کربوهیدرات، دانشگاه علم، دانشگاه فردوسی مشهد

چکیده: کانسار سرب نخلک یکی از قدیمی‌ترین و بزرگترین معدن‌ساز ایران است. این معدن در شهر امرمز شهرستان شمیرانات است. این معدن در محدوده شهر امرمز، شهرستان جنوب استان البرز است. این معدن در جنوب استان البرز، شهرستان جنوب استان البرز است. این معدن در جنوب استان البرز، شهرستان جنوب استان البرز است. این معدن در جنوب استان البرز، شهرستان جنوب استان البرز است.

کانسار سرب نخلک در شهرستان جنوب استان البرز، شهرستان جنوب استان البرز است. این معدن در جنوب استان البرز، شهرستان جنوب استان البرز است. این معدن در جنوب استان البرز، شهرستان جنوب استان البرز است. این معدن در جنوب استان البرز، شهرستان جنوب استان البرز است.
که گوشانی نقبر جای سرب هماواره بعضاً صورت به تکرار می‌یابد و یکنوازه (Sb) و سرب (Pb) نشان می‌دهند. در طی مطالعه تأثیر این دو عامل بر ایمنی سیستمیکی نوری (Antimony (Sb، Sb، Bi) ۳+ + 2Pb ۲+ = 2Pb ۲+ (Sb، Bi) ۳+) به این صورت که پیشگیری بر جای یافتن کانسر سطحی بدن می‌کند. در مطالعه ALS-Chemex در آزمایشگاه ICP-MS نمونه آلز ا创作者ی داشتند. این نتایج نشان می‌دهند که سرب و آنتی‌بیوتیک‌ها (مانند آنتی‌بیوتیک‌های محول بوده‌اند) و آلز ا创作者ی سری تروریست-تنانتیت از خلال بیشتر برادرداران [2] سرب‌سازی‌ها به عنوان بخش گروهی از سرب‌سازی‌ها بعنوان مهم ترین کانسرهای اولیه بودند در پوستی زدنی شناخته شده‌اند [18]. این کانسرهای ارگانیک ترکیب پیچیده‌ای هستند که شامل آن به صورت زیر تعریف می‌شود:

شده است: (Me ۲+، Me ۲+، etc)، [Bi، Sb، As] ۳+، [Te] ۴+، [(S، Se، Te)] ۴+ در این تعریف Me آبی‌ریز مختار سرب‌سازی حاوی Bi در گستره کانسرهای بالایی با دمای بالای گرمایی سرب‌سازی حاوی Sb در گستره دمای متون و کانسرهای حاوی Sb در گستره کانسرهای بالا مما پایین متابولی می‌شود [شماره [10، ۹۹.3]]

کانسر نخل در فصله ۲۰ کیلومتری شمال شرق تایبین، ۵۵ کیلومتری شمال شرق اراک و در استان اصفهان با موقعیت جغرافیایی طول ۱۹°۳۰' و عرض ۳۳°۳۳' شمال شرق قرار گرفته است. تاکنون بررسی‌های متونی در مورد خصوصیات زمین‌شناسی و کانسر نخل صورت پذیرفته که این احتمال زمین‌شناسی نخل و همکاران [۱۹، ۲۰، ۲۱] را این اکتشافات را کمک کرد.

روش بررسی

پس از بروز اثر، در کل نمونه‌های مختلف از کانسر نخل جمع آوری شدند. نمونه‌های مناسب برای تهیه
بحث و بررسی

کانی سازی (Stratabound) یا کانی سازی ناحیه نخل که به صورت چینه‌گران (Epigenetic) است که در به دست نخک در دوره سنگ‌های کریستین کرنسه باعث شده‌است. کانی‌های جانشینی به صورت برکت به صورت ناحیه نخل کرنسه و ناهمزدی باعث ایجاد افزایش همراه شده‌اند. کانی‌های جانشینی به صورت برکت به صورت ناحیه نخل کرنسه باعث ایجاد ذرات ماسه کوارتزی دیده می‌شوند که کانی کلی قادید به جانشینی کردن اینجا تبوته است. پس از این مرحله، کانی‌های در مقياس وسیع و درون فضای داخلی به صورت پایه و قشری ادامه باید است. کانی و بازیت تشکیل دهنده‌های اصلی و اولیه ماده معدنی بهدکه که در منطقه پرونز کانی دوسریت به‌عنوان کانی تاناه است که در کانی را به‌طور می‌نماید. کانی در محلول‌های اول کانی‌هایی به صورت ریزروی و نازک لایه به صورت دوشی به روی تمامی برخی و سطح شکافه و فضاهای خالی حضور داشته که به دلیل کاهش تکانه دما و واکنش سریع شرایط کانی ساز در اثر برخورد با سنگ میزبان نهشته شده است. این کانی‌های اولیه، کمیاب بوده و نهایی به صورت ادخال درون کانی حضور دارند که از آن جمله
دانست و این چرخه‌ای که خودگذاری کامل شاره‌ای ادامه دارد [18].

پلورشانسی گالن نخلک

گالن نخلک به صورت یک شکل تا شکل دار و به اندازه‌ی چند ده میکرون تا ۱۰ میلی‌متر تشکیل شده است. ماهی‌های درشت‌پر و بیشتر به صورت پرکردنی فضای خالی و گالن‌های رژی‌باز به شکل سیمان بین قطعات سنگ میزان برش حضور دارند. حضور سولفیدها در اندازه‌های ریز و درشت می‌تواند به سرعت متقاطعات اختلاف شاره‌ای کاسارساز با هم نسبت داده شود [19]. با این حال عواملی مانند فضای رشد و تعداد و سرعت استحصالی نیز در اندازه‌بندی پرکردنی مؤثر است. کامی گالن درای سیستم پلوی مکعبی محدوده (NaCl) است. در یک بلوک گالن دو سطح مکعبی (۱۰۰) a و نیز سطح هشت‌وجهی (۱۱۱) قابل توسه بافت است؛ در نتیجه پلورهای با مشخصات متفاوت و به شکلی مکعبی هشت‌وجهی و نیز به شکلی ترکیبی همانند کوپ-اکتادرادل مشاهده می‌شود [20].

<table>
<thead>
<tr>
<th>ماده</th>
<th>نمای مایع</th>
<th>خیزیز اسمیلازیون</th>
<th>خیزیز اکسپانسیون</th>
<th>خیزیز اسمیلازیون</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dolomite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphalerite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galena</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faihure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerrusite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anglesite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covellite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malachite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mimetite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wulfenite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plattnerite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

عوارض از پیری، کالکوپت مایراز و سولفوسالن. کات برونزای فری و کمپاآب شارم: انگلزی، پلانتریت، (Pb₂O vendor)، کلورید، مالکت، (PbMoO₄)، ولیتین (Pb₂O₃)، کالکسنتیت، میتسه‌ینت (Cl)، (Pb₂O₃)، مسینوم (Pb₃O₄) است. اکسیدهای آهن و مانگنیت می‌شوند. علائم باریت، به مقدار کمتر کلسیت و دولومیت به عنوان کامی‌های بائیل دکاسار حضور دارند.

بررسی کامی‌های دناله‌های کاتالیپی در بافت‌های قشری نشان می‌دهد که گالن در ۳ برهه‌ی زمانی (Interval) و باریت در دو برهه‌ی زمانی تشکیل شده‌اند. (شکل ۲). این این بافت به دلیل تغییرات فیزیکشیمیایی به صورت بازخوردی در هنگام رسوب‌گذاری بوده که حاصل آن تغییرات در تغییرات کاتالیپی است. این تغییرات عموماً تغییرات فیزیکشیمیایی تغییرات گروینگی اکسیژن (O₂) بوده که با ورود اکسیژن به طوری‌که با بالا بودن میدانگری اکسیژن کامی باریت تشکیل و در نتیجه اکسیدی مصرف می‌شود. به آمده‌اند که کاسار در این پارامتر احیا می‌باشد. برای تشکیل

![شکل ۲ دناله‌های بازخورد کاتالیپی اولی و فری کاسار نخلک.](www.SID.ir)
عملیاتی در حضور این عنصر دما است که به طوری که سولفیدهای حاوی Bi با یا در گستره‌ای کاستارهای دمای بالا قرار داشته که همچنین در کاستارهای نوع محتوای این تنگریات MVT و میزان Ag با یک شکل بلوری وجود نداشت که نشان می‌دهد، دیگر فاکتورها به ویژه دما و نیز در عمق‌ها باید آگاه باشد که این می‌تواند شکل بلوری کانال را تصویرسازی کند (شكل۳). این می‌تواند کانال‌های نشان می‌دهد که کانال معدن بلوری بیشتر از نوع ترکیبی مغناطیسی هست‌ووجه‌ی است. بلوری کانال کاستارهای نوع دردها می‌سوزد. منطقه Viburnum Trend وبرنوم ترند به عنوان بزرگ‌ترین توده‌کننده‌ی سرب جهان دارای هر دو شکل مکعبی و هست‌ووجه و نیز شکل‌های ترکیبی (مغناطیسی) هست‌ووجه‌ی است. این گونه می‌تواند با یک باد از طرف چپ دارای نمایشگر سرب جهان می‌باشد. مهم‌ترین عملیات بیشتر به حضور Pb با افزایش حضور Bi به سبب حضور Pb بلوری کانال باعث ایجاد پیچ و تاب در شبکه بلوری می‌شود که نشان‌ها در شعاع بین Pb۲+ و Bi۳+ می‌تواند به عنوان وسعت پیچ و نیز شبکه بلوری در نظر گرفته شود [۲۰۳].

شکل۳. نمای مقطعی سرب بلوری در کانال کستارهای نوع دردها می‌باشد. منطقه Viburnum Trend وبرنوم ترند به عنوان بزرگ‌ترین توده‌کننده‌ی سرب جهان دارای هر دو شکل مکعبی و هست‌ووجه و نیز شکل‌های ترکیبی (مغناطیسی) هست‌ووجه‌ی است. این گونه می‌تواند با یک باد از طرف چپ دارای نمایشگر سرب جهان می‌باشد. مهم‌ترین عملیات بیشتر به حضور Pb با افزایش حضور Bi به سبب حضور Pb بلوری کانال باعث ایجاد پیچ و تاب در شبکه بلوری می‌شود که نشان‌ها در شعاع بین Pb۲+ و Bi۳+ می‌تواند به عنوان وسعت پیچ و نیز شبکه بلوری در نظر گرفته شود [۲۰۳].

شکل۲. نمای مقطعی سرب بلوری در کانال کستارهای نوع دردها می‌باشد. منطقه Viburnum Trend وبرنوم ترند به عنوان بزرگ‌ترین توده‌کننده‌ی سرب جهان دارای هر دو شکل مکعبی و هست‌ووجه و نیز شکل‌های ترکیبی (مغناطیسی) هست‌ووجه‌ی است. این گونه می‌تواند با یک باد از طرف چپ دارای نمایشگر سرب جهان می‌باشد. مهم‌ترین عملیات بیشتر به حضور Pb با افزایش حضور Bi به سبب حضور Pb بلوری کانال باعث ایجاد پیچ و تاب در شبکه بلوری می‌شود که نشان‌ها در شعاع بین Pb۲+ و Bi۳+ می‌تواند به عنوان وسعت پیچ و نیز شبکه بلوری در نظر گرفته شود [۲۰۳].
شکل ۲ انتوک رز و جداسازی در گال رنگه مخلوط که بصورت کاملاً مکرومی است.

کاتی سیالیک کانال‌های مخلوط
گال مهترین کانال‌های سیالیکی ژنتیکی که کانال‌های مخلوط که به
لحاظ اهمیت، واحدهای شرکت کانال‌های آن در دو محیط دو محیط درون‌زدایی
(Hypogene) و پرورنج زدایی

کاتی شناسی درون‌زدایی: کانال گال به تنهایی در حدود ۹۹
درصد از کانال‌های سیالیکی کانتار نخلکی را شامل می‌شود.
دیگر سیالیک‌ها تنها به سطوح ادخال و در مقیاس مایکروسکوپی
در گال حضور دارد که از جمله مهترین آنها کانال‌های
اسفارلیت، کالکورپسیت و سولفوسالس (فاحلر) هستند.
با توجه به حالت متفرک نیمه‌پوششی کانال پریز،
کالکورپسیت و اسفارلیت، این کانال‌ها قبل از گال زیمنه تشکیل و به عوامل دیگر در گال حیس شده‌اند. ادخال‌های
سولفوسالس، حالت‌های شبه مایکروسکوپی یابشی می‌شناسه که ناشی از تشکیل آنها به سطوح آزاد سازی بوده است. حضور ادخال‌ها
در تمام‌نمونه‌ها یکسان نیست و از نظر نظری در موارد
اندازه‌یا بکارگیرنده‌هایی دانسته، به طوری که در گال
مرحله‌ای اول نسبت به دو مرحله دیگر کاملاً ادخال
مشاهده نمی‌شود. همچنین کانال‌های درشته بطور درون بافت
قشری نسبت به گال‌های ریز بطور درون بافت پریتی معمولاً از
ادخال‌های متنوع و در اندام سیالیکیت و پرورنج کالکورپسیت به
که این نفوذ کاتی شناسی در، تونسیتی این دو نوع گال نیز
تاین‌گزار بوده است (شکل ۵). ادخال‌ها در سطح گال نیز در
و به سرعت پراکندن توزیع شده که شرک مخصوصی از برخی
از آنها در ادامه اورده شده است.

اسفارلیت: این کانال در اندام‌های بین چند مایکروسکوپی مایکروسکوپی
۱۰۰ مایکروسکوپی به سطوح ادخال شکل حضور دارد. پراکندگی
این کانال در تمام‌نمونه‌ها یکسان نیست و در گال‌های مانند
زوجی ۲۳ از فراوانی بوجود بوده است که نتایج تونسیتی

Cul2AsS3 (Fahlore) Cu12Sb4S13 (نشانیت)
نیز شناخته شده‌اند و دارای فرمول شیمیایی منفی برای نسبت

یون‌های آن. سنگ‌شناسی سنگ میزبان، شیمی شار و رژیم

آب و هوا. این عوامل مسئول تغییرات در

روی منطقه‌ی کاتی‌سای بودند. \(\text{PO}_4, \text{PCO}_2, \text{PSO}_2 \)

می‌تواند. \(\text{CO}_2 \) و \(\text{O}_2 \) در ان مشابه ان‌سفر است، همچنین به دلیل

رطوبت در سنگ‌های در این سنگ‌های میزبان و ترکیب کاتی‌سای است.

که شرایط به‌رغم این که کاتی‌سای در ادامه آورد شده است (شکل

6).

کاتی‌سای برون‌زاد: عوامل زیادی در ایجاد فراوان برون‌زاد

در کاسارهای سرب و روی با سنگ میزبان رسوبی دخیل

هستند، همانند: کاتی‌سای اولیه موقعیت سطحی است.

و
سوزريت: مهترین کاني بروز راد سرب کانسار نخلک است که به دو شکل کاملاً متمایز رخ داده است: سوزريت ريز بلور که از سرد درجا جانشين گالن شده و سوزريت درشت بلور با سرد پرکندنی فضای خالي شکستگي ها و حفره ها مشاهده مي شود (شكل 6 اف). در حالات میکروسکوپي سوزريت و به مقدار کمتر اینگليزي با بافت های جانشيني همجون جانشيني خورده (Caries) (جانشيني شبکهاي, Boundary), اسکلتني جانشيني در راستاي رخ (Network replacement) و جانشيني برجازمانده (Replacement relict texture) مشاهده مي شود. در کانسارهای سرب کانسار، پتاسیم و بسیار کمی پتاسیم بافت مي شود (شكل 6 الف). اين كاني در محیط کربناتی امکان تشکیل ضعیف دارد [30]. ولفاتنیت کربناتی امکان تشکیل پتاسیم (PbMoO4) از جمله كاني گازی و کمی پتاسیم در کانسار نخلک بوده که درون شکستگی ها و يا همراه با سوزريت مشاهده مي شود (شكل 6 ب). پس از اکسايش گالن سرب و منابع ارادي محلول شده و پس از مهاجرت به صورت سوزريت و ولفاتنیت تغییر شده است.

گلدشیمت (۳۱) در مورد حضور مولیبدین درون ساختار گالن تردد داشته و معتقد بود که این عناصر به صورت ادخال‌های ریز مولیبدین درون کلی حضور داشته است. مهاجرت آن‌ها مولیبدین در مراحل آخر پرورش صورت می‌گیرد که با تشکیل ولفینت درون فضای خالی به این شکل می‌شود [۳۲].

این کاتیون محسوب بر میتین در نظر بردن شکل می‌شود [۳۳]. PbS + CuSO۴ + H۲O + ۷O۲ → PbMoO۴ + ۳SO۴۲⁻ + ۴H⁺

در منطقه اکسیدی حامل اصلی مولیبدین کاتیولفینت است و می‌تواند مقادیری از عناصر اکسید، کروم، اتانولوم، مس و کلسیم را در ساختار ساخته نگه دارد [۳۳]. حضور این عناصر به صورت فرعی در ولفینت تخلک به این روش انجام می‌دهد است [۳۴].

کاتیولفینت در زمان و در بستر بزرگ ارسیک در از ادخال‌های کاتیولفینت درون گالن قابل تامین است (شکل ۶).

کاتیون کولیولت (Cus) و مالاتیت (CuS) از جمله کاتیون‌های نانوکاتیولفینت (CuS۴۴Cu(OH)۲) می‌باشد که از جمله کاتیون‌های نانوکاتیولفینت و تترانتیت‌تینانتیت درون گالن تامین می‌شود. مس خارج شده از ساختار سولفیدهای مس اولیه با سولفات میوه در محیط ترکیب شده و به صورت زیر تشكل کولیت می‌دهد [۳۵].

در برخی از نمونه‌ها جفت گالانکتیک کاتیون فریگویی در زمینه گالن و ایجاد کاتیون اکسیدسیون می‌باشد با نورون (آکسیدسیون). کاتیون اکسیدسیون در حال اکسیدسیون و پرورش می‌شود.
جدول ۱ مقادیر پناسیل ساکن برای سولفیدهای گالن، پیریت و اسفالت [۲۷، ۳۶، ۳۷]

<table>
<thead>
<tr>
<th>سولفید</th>
<th>Won [۳۵]</th>
<th>Karavaiko [۳۶]</th>
<th>Da Silva et al. [۳۷]</th>
</tr>
</thead>
<tbody>
<tr>
<td>پیریت</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>اسفالت</td>
<td>۰.۲۳</td>
<td>۰.۲۵</td>
<td>۰.۲۵</td>
</tr>
<tr>
<td>گالن</td>
<td>۰.۱۱</td>
<td>۰.۲۵</td>
<td>۰.۲۵</td>
</tr>
</tbody>
</table>

روی کانی گالن نخلک، نشان از تنویع از عناصر XPMA و فریس بسیار از کیفیت است (جدول ۲). عنصر فرم همترین (منطقه [۳۵]) ترکیبی این عناصر درون گالن است. زیرا بالاترین مقدار فراوانی را بین دیگر عناصر دارد و به لحاظ اقتصادی نیز محصول جانی ارزشمندی به شمار می‌رسد. این امر با مهاجرت GP-By-Product (By-Product) از سولفید و خصوصاً سولفیدهای گالن نخلک چگونگی حضور نقره و دیگر عناصر می‌باشد. به همین دلیل، این نمودار به عنوان یکی از کانی‌های اصلی XRF و افزایش نقاط اکتیویت یافته و همچنین در ساختار رمخ سطح گالن ایجاد می‌شود که ماهی از اکسی‌سایز بیشتر گالن می‌شود که این یکی از مدل‌های گالن می‌باشد (Galena Armouring).

در اینجا، برای اولین بار جانبایی از گالن، اسفالت و پیریت در ساختار رمخ سطح گالن نخلکی به ترتیب افزایش نقاط داخلی یابدهد. این اتفاق و اکسی‌سایز در داخل گالن باعث افزایش نقاط داخلی می‌شود.

روی کانی گالن نخلک، سیستمی از پناسیل ساکن برای سولفیدهای گالن، پیریت و اسفالت مورد استفاده قرار گرفته است.}

در زمان نشست ماده‌مقدمه، عناصر کمیاب موجود در شاره‌ی کانی‌های ماده‌مقدمه بر روی کانی‌های سیستمی از پناسیل ساکن برای سولفیدهای گالن، پیریت و اسفالت مورد استفاده قرار گرفته است.

ZnO

در زمان نشست ماده‌مقدمه، عناصر کمیاب موجود در شاره‌ی کانی‌های ماده‌مقدمه بر روی کانی‌های سیستمی از پناسیل ساکن برای سولفیدهای گالن، پیریت و اسفالت مورد استفاده قرار گرفته است.

ZnO

در زمان نشست ماده‌مقدمه، عناصر کمیاب موجود در شاره‌ی کانی‌های ماده‌مقدمه بر روی کانی‌های سیستمی از پناسیل ساکن برای سولفیدهای گالن، پیریت و اسفالت مورد استفاده قرار گرفته است.

ZnO

در زمان نشست ماده‌مقدمه، عناصر کمیاب موجود در شاره‌ی کانی‌های ماده‌مقدمه بر روی کانی‌های سیستمی از پناسیل ساکن برای سولفیدهای گالن، پیریت و اسفالت مورد استفاده قرار گرفته است.

ZnO

در زمان نشست ماده‌مقدمه، عناصر کمیاب موجود در شاره‌ی کانی‌های ماده‌مقدمه بر روی کانی‌های سیستمی از پناسیل ساکن برای سولفیدهای گالن، پیریت و اسفالت مورد استفاده قرار گرفته است.

ZnO

در زمان نشست ماده‌مقدمه، عناصر کمیاب موجود در شاره‌ی کانی‌های ماده‌مقدمه بر روی کانی‌های سیستمی از پناسیل ساکن برای سولفیدهای گالن، پیریت و اسفالت مورد استفاده قرار گرفته است.

ZnO

در زمان نشست ماده‌مقدمه، عناصر کمیاب موجود در شاره‌ی کانی‌های ماده‌مقدمه بر روی کانی‌های سیستمی از پناسیل ساکن برای سولفیدهای گالن، پیریت و اسفالت مورد استفاده قرار گرفته است.

ZnO
جدول ۲. نتایج کانی‌نگاری و میانگین فراوانی عناصر مختلف گالن در زیرهای نخلک بر اساس آنالیز XPMA و ICP-MS

<table>
<thead>
<tr>
<th>عنصر</th>
<th>شیفت</th>
<th>مقدار</th>
<th>n.d</th>
</tr>
</thead>
<tbody>
<tr>
<td>تیتانیوم</td>
<td>n.d</td>
<td>n.d</td>
<td>n.d</td>
</tr>
<tr>
<td>آسیا</td>
<td>n.d</td>
<td>n.d</td>
<td>n.d</td>
</tr>
<tr>
<td>نیتر</td>
<td>n.d</td>
<td>n.d</td>
<td>n.d</td>
</tr>
<tr>
<td>زئورز</td>
<td>n.d</td>
<td>n.d</td>
<td>n.d</td>
</tr>
<tr>
<td>شیماسب</td>
<td>n.d</td>
<td>n.d</td>
<td>n.d</td>
</tr>
<tr>
<td>اکسیژن</td>
<td>n.d</td>
<td>n.d</td>
<td>n.d</td>
</tr>
<tr>
<td>میکرو</td>
<td>n.d</td>
<td>n.d</td>
<td>n.d</td>
</tr>
</tbody>
</table>
چند نمونه گالن از انواع مختلف کاسارها مقایسه شده است (جدول ۳). در کاسارهای باسلامیم، بیسموت بالایی دارد و برعکس با کاهش ارتباط با ماگماتیسم، مقادیر بیسموت کاهش می‌یابد. کاسار تخلک از نظر فراوانی عناصر و نسبت مصرف شاهد زیادی به کاسارهای نوع دیگر می‌باشد.

جدول ۳ مقدار میانگین عناصر فرعی آرسنیک، بیسموت و آنتیموئان و نسبت کاسار (کل) تخلک و دیگر کاسارها

<table>
<thead>
<tr>
<th>نام کاسار</th>
<th>نوع کاسار</th>
<th>Ag(ppm)</th>
<th>As(ppm)</th>
<th>Bi(ppm)</th>
<th>Sb(ppm)</th>
<th>Sb/Bi</th>
<th>مراجع</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nakhilak</td>
<td>MVT</td>
<td>۴۲۲.۳</td>
<td>۹۱.۴</td>
<td>۵۰.۱</td>
<td>۴۴۲.۶</td>
<td>۳۴۲.۴</td>
<td>[۲۴]</td>
</tr>
<tr>
<td>Fankou</td>
<td>MVT</td>
<td>۱۴۰۰</td>
<td>۱۲۰۰</td>
<td>۱۴۰۰</td>
<td>۱۶۵۰</td>
<td>۱۰.۸</td>
<td>[۲۵]</td>
</tr>
<tr>
<td>Illinois-Kentucky</td>
<td>MVT</td>
<td>۱۴۹</td>
<td>۱۴۲</td>
<td>۱۴۹</td>
<td>۱۴۲</td>
<td>۱۰.۸</td>
<td>[۲۶]</td>
</tr>
<tr>
<td>Missouri SE</td>
<td>MVT</td>
<td>۸۸۸</td>
<td>۸۸۸</td>
<td>۸۸۸</td>
<td>۸۸۸</td>
<td>۱۰.۸</td>
<td>[۲۷]</td>
</tr>
<tr>
<td>Wisconsin- Illinois</td>
<td>MVT</td>
<td>۱۱۵۲</td>
<td>۱۱۵۲</td>
<td>۱۱۵۲</td>
<td>۱۱۵۲</td>
<td>۱۰.۸</td>
<td>[۲۸]</td>
</tr>
<tr>
<td>Tri- State</td>
<td>MVT</td>
<td>۱۷۱۲</td>
<td>۱۷۱۲</td>
<td>۱۷۱۲</td>
<td>۱۷۱۲</td>
<td>۱۰.۸</td>
<td>[۲۹]</td>
</tr>
<tr>
<td>Silesia</td>
<td>MVT</td>
<td>۶۸۸</td>
<td>۶۸۸</td>
<td>۶۸۸</td>
<td>۶۸۸</td>
<td>۱۰.۸</td>
<td>[۳۰]</td>
</tr>
<tr>
<td>Berg Aukas</td>
<td>MVT</td>
<td>۴۵۱۲</td>
<td>۴۵۱۲</td>
<td>۴۵۱۲</td>
<td>۴۵۱۲</td>
<td>۱۰.۸</td>
<td>[۳۱]</td>
</tr>
<tr>
<td>Abernab</td>
<td>MVT</td>
<td>۹۸۸</td>
<td>۹۸۸</td>
<td>۹۸۸</td>
<td>۹۸۸</td>
<td>۱۰.۸</td>
<td>[۳۲]</td>
</tr>
<tr>
<td>Silver mines</td>
<td>Irish type</td>
<td>۸۸۸</td>
<td>۸۸۸</td>
<td>۸۸۸</td>
<td>۸۸۸</td>
<td>۱۰.۸</td>
<td>[۳۳]</td>
</tr>
<tr>
<td>Darwin</td>
<td>Sedex</td>
<td>۱۸۸۸۵۵</td>
<td>۱۸۸۸۵۵</td>
<td>۱۸۸۸۵۵</td>
<td>۱۸۸۸۵۵</td>
<td>۱۰.۸</td>
<td>[۳۴]</td>
</tr>
<tr>
<td>British Island</td>
<td>Syngenetic galena</td>
<td>۱۴۸۸۸۸</td>
<td>۱۴۸۸۸۸</td>
<td>۱۴۸۸۸۸</td>
<td>۱۴۸۸۸۸</td>
<td>۱۰.۸</td>
<td>[۳۵]</td>
</tr>
<tr>
<td>Broken Hill</td>
<td>Metamorphosed Sedimentary</td>
<td>۶۸۸</td>
<td>۶۸۸</td>
<td>۶۸۸</td>
<td>۶۸۸</td>
<td>۱۰.۸</td>
<td>[۳۶]</td>
</tr>
<tr>
<td>Shuikoushan, China</td>
<td>Skarn- hydrothermal</td>
<td>۱۴۸۸۸۸</td>
<td>۱۴۸۸۸۸</td>
<td>۱۴۸۸۸۸</td>
<td>۱۴۸۸۸۸</td>
<td>۱۰.۸</td>
<td>[۳۷]</td>
</tr>
<tr>
<td>Qaleh Zari</td>
<td>IOCG</td>
<td>۲۸۸۸۸۸</td>
<td>۲۸۸۸۸۸</td>
<td>۲۸۸۸۸۸</td>
<td>۲۸۸۸۸۸</td>
<td>۱۰.۸</td>
<td>[۳۸]</td>
</tr>
</tbody>
</table>
نقطه‌ای در گالن زمینه احتمالاً به دلیل پایین‌تر بودن فراوانی این عنصر از حد تشخیص روش آنالیزی بوده است. گالن تخلخلی از نظر اندازه به دو صورت درشت بلوی و ریز بلوی قابل مشاهده است. نمودار مقایسه ترکیب زنتیشیمیایی میانگین این دو نوع گالن در شکل (20) از کل سه است. بطور کلی هماهنگی خوبی بین عناصر فرعی دو نوع گالن وجود داشته با این حال در گالن‌های درشت بلوه عناصر کم‌پایه از فراوانی بالاتری برخوردار است. علت این تفاوت در زنتیشیمی گالن درشت و ریز بلوی را می‌توان در کانی نگاشته‌های آنها جستجو کرد که بطور کلی گالن‌های درشت بلوی نسبت به ریز بلوی فراوانی بیشتر ادغام و اندازه‌ای ادغام بزرگتر دارند.

با توجه به فراوانی عناصر در گالن کل، نقره با ارسنیک همبستگی مثبت و بالا (r = 0.725) و با مس همبستگی مثبت متوسط (r = 0.57) دارد (شکل 9). ارسنیک و مس به همراه آنتیمون عناصر سازندگی کالی‌های سری ترکیب‌ذرین‌تکان‌تدرک این است. با توجه به اینکه نقره با ارسنیک همبستگی بیشتری نسبت به آنتیمون (r = 0.755) نشان می‌دهد، احتمالاً نقره بیشتر در تنگ‌تیخت (Cu12As4S13) تمرکز یافته است. آنتیمون گالن نخلکی از جهت نظر جالب توجه است: 1 حضور در آنالیز کل گالن (344 ppm) عدم حضور در ادخال‌ها و 2 همبستگی پایین بین آنتیمون و نقره. این شاهد می‌تواند به این سبب باشد که آنتیمون به صورت محلول شامل با متمرکز پایین داشته که آنتیمون به صورت محلول شامل با متمرکز پایین در گلال زمینه پراکنده شده است. عدم شناسایی آنتیمون با آلاینر

شکل 9 همبستگی بین جز عناصر درون گالن کل. الف: نقره - ارسنیک

شکل 10 مقایسه مقدار میانگین فراوانی عناصر در گلال کل درشت و ریز بلوی کانسار نخلک.
قدردانی
این مقاله مربوط به طرح پژوهشی به شماره ۲۲۷۳۴ مورخ ۱۳۹۱/۴/۲۳ در دانشگاه فردوسی مشهد است.

مراجع

