بررسی آئروت پراکسید هیدروژن در کنترل عفونت‌های فارچی تخم،
درصد تخم گشایی و ناهنجاری لارو قزل آلاه رنگ‌کننده

(Oncorhynchus mykiss)

اکبر بنوره(۱)؛ بهروز ابطحی(۲)؛ عیسی شریف بور(۳) و حسنی عبدالحی(۴)

abtahielm@modares.ac.ir

۱-۲- دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس، تهران، صندوق پستی:۱۲۱۷۵-۱۶۴۱۴
۳- مؤسسه تحقیقات شیلات ایران، تهران، صندوق پستی:۱۳۵۶-۱۶۴۱۴
۴- تاریخ دریافت: تیر ۱۳۹۴

 llegóنات کلیدی: پراکسید هیدروژن، سزی مالاکیت، قزل دگی، قزل آلاه رنگ‌کننده

سایپولگنیاژی، نوعی بیماری فارچی در ماهیان و تخم‌های
آنلایس که عامل آن، از فارچچه‌های خلافه سایپولگنیاژی
می‌باشد (Noga, 2000) این بیماری اساساً در آب‌های شیرین
زندگی می‌کند. آنها بسیار زیادی در آب‌های شیرین زندگی می‌کنند. آنها بسیار زیادی در
در هزار تا محل قزل گذشته از ۱۳۲۷، آذر تا اکتبر، ۱۳۲۷
دستگاه ماهی، نگه‌داری درجه حرارت، وجود آب‌های اقلیت و
افزایش بار موان آلی امکان‌پذیر بود.

(Bruno & Wood, 1994) در کنترل آلودگی به سایپولگنیاژی در دوباره شیمیایی استفاده
می‌شود. در علی‌الله آسیانی در حال آن‌ها بسیاری
به روش‌های سیستمی می‌توان با یک میخ کل این
نیاز است که به موان آلی امکان‌پذیر باشد. به
روش‌های سیستمی می‌توان با یک میخ کل این
نیاز است که به موان آلی امکان‌پذیر باشد.

Howe et al., 1999) به‌طور کلی در تولید
قزل دگی شیمیاژی تخم‌های فارچی تخم‌های
سایپولگنیاژی، نوعی بیماری فارچی در ماهیان و تخم‌های
آنلایس که عامل آن، از فارچچه‌های خلافه سایپولگنیاژی
می‌باشد (Noga, 2000) این بیماری اساساً در آب‌های شیرین
زندگی می‌کند. آنها بسیار زیادی در آب‌های شیرین زندگی می‌کنند. آنها بسیار زیادی در
در هزار تا محل قزل گذشته از ۱۳۲۷، آذر تا اکتبر، ۱۳۲۷
دستگاه ماهی، نگه‌داری درجه حرارت، وجود آب‌های اقلیت و
افزایش بار موان آلی امکان‌پذیر بود.

(Bruno & Wood, 1994) در کنترل آلودگی به سایپولگنیاژی در دوباره شیمیایی استفاده
می‌شود. در علی‌الله آسیانی در حال آن‌ها بسیاری
به روش‌های سیستمی می‌توان با یک میخ کل این
نیاز است که به موان آلی امکان‌پذیر باشد. به
روش‌های سیستمی می‌توان با یک میخ کل این
نیاز است که به موان آلی امکان‌پذیر باشد.
بحث و نمکاران

بررسی اثرات پراکسید هیدروژن در کنترل عفونت‌های قارچی نخ، درصد نخ‌گذاری و...

الف) میزان فارگ زدگی

\[
I = \frac{\text{نماد تخمه‌های یافته}}{\text{نماد کل تخمه‌ها}}
\]

در کنار میزان فارگ زدگی از مراحل افتتاح با دچار زدگی، تعداد تویه‌های قارچی‌زدگی و تعداد تخم در هر توده به عنوان شاخصی بر شدت Barnes; Barnes & Stephenson, 2003 (Arndt et al., 1998)

ب) میزان جمع‌شده (2001)

\[
E = \frac{\text{نماد تخمه‌های قارچی}}{\text{نماد کل تخمه‌ها}} \times 100
\]

پارامترهای فیزیکی و شیمیایی آب شامل درجه حرارت، pH اکسیژن محلول، هدایت الکتریکی و سختی دوبار در شیاهترز با استفاده از سنسور 3- Multiline F/SET و نتیجه‌گیری شد. با توجه به نتایج، بهترین مقدار پراکسید هیدروژن در آب انکوباسیون در مدت 15 دقیقه با تعداد هاله‌های آفرینش نزدیک بود. میزان pH اکسیژن محلول پس از تغییر در مدت 15 دقیقه از تیمار دارویی در مدت 15 دقیقه، در فاصله‌های 5 و 15 دقیقه از تیمار دارویی، میزان pH و اکسیژن محلول انکوباسیون در انتهای دیده شد. بعد از میزان pH اختلاف فاصله‌ای دیده نشد. ولی میزان اکسیژن محلول در طول دارو دارمای (pH 4.3±0.1) حتی به ۱۶ میلی‌گرم در لیتر نیز افزایش یافت.

جدول ۱: نتایج اندازه‌گیری عوامل فیزیکی و شیمیایی آب در دوره تغییر تخمه‌ها

<table>
<thead>
<tr>
<th>عوامل</th>
<th>pH (دمای ۲۵ درجه سانتی‌گراد)</th>
<th>اکسیژن (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۸/۷۸±۲/۶</td>
<td>۸</td>
<td>۱۲۲</td>
</tr>
<tr>
<td>۸/۷۵±۱/۷۵</td>
<td>۸</td>
<td>۲۲۳</td>
</tr>
<tr>
<td>۸/۸±۱/۷۵</td>
<td>۸</td>
<td>۵۲۵</td>
</tr>
<tr>
<td>۸/۹۵±۲/۶</td>
<td>۸</td>
<td>۱۱۲</td>
</tr>
<tr>
<td>۸/۹۵±۲/۶</td>
<td>۱۱۲</td>
<td>۱۱۲</td>
</tr>
</tbody>
</table>

www.SID.ir
نتایج آزمون دانکن بین‌گزار اندازه‌گیری درصد شیوع گی‌های حامل پراکسید هیدروژن با گستره‌ای ۶۵۰ و ۲۰۰۰ میکرولیتر بر لیتر می‌باشد که این دو تیمار با تیمار‌های سیز مالاتیت و شاهد صفر اختلاف معن‌داری داشته و پراکسید هیدروژن با گستره‌ای ۵۰۰ میکرولیتر بر لیتر با بقیه تیمارها اختلاف معنی‌داری نشان ندادند. (۵<\alpha<0.05). در نتیجه این‌که ۲۳ روز طول کشید و درصد تخم‌یافتن در تیمارهای دوم بررسی شد. نتایج داده‌شده است.

جدول ۱: تیمار پراکسید هیدروژن در آب اکتوباور در زمان‌های ۵ و ۱۵ دقیقه

<table>
<thead>
<tr>
<th>تیمار پراکسید هیدروژن (میکرولیتر بر لیتر)</th>
<th>غلظت پراکسید هیدروژن (میکرولیتر بر لیتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۰۰۰۰</td>
<td>۷۵۰</td>
</tr>
<tr>
<td>۷۱۱±۷۱</td>
<td>۶۰۵±۳۹</td>
</tr>
<tr>
<td>۴۵۸±۴۵</td>
<td>۵۸۶±۲۷</td>
</tr>
</tbody>
</table>

جدول ۲: نتایج میزان میزان قارچ‌هایی، توده‌های قارچ‌زدگی و تعداد تخم در داخل هر توده

<table>
<thead>
<tr>
<th>تیمار</th>
<th>درصد تخم قارچ‌زدگی</th>
<th>تعداد تخم قارچ‌زدگی</th>
<th>درصد تخم قارچ‌زدگی</th>
<th>تعداد تخم قارچ‌زدگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>پراکسید هیدروژن</td>
<td>۵/۳</td>
<td>۱۸/۶۳</td>
<td>۳۶/۶۳</td>
<td>۴۴/۶۳</td>
</tr>
<tr>
<td>پراکسید هیدروژن</td>
<td>۶/۵</td>
<td>۱۲/۶۳</td>
<td>۱۷/۶۳</td>
<td>۲۲/۶۳</td>
</tr>
<tr>
<td>پراکسید هیدروژن</td>
<td>۲/۴</td>
<td>۹/۶۳</td>
<td>۱۳/۶۳</td>
<td>۱۷/۶۳</td>
</tr>
<tr>
<td>پراکسید هیدروژن</td>
<td>۶/۵</td>
<td>۱۹/۶۳</td>
<td>۲۴/۶۳</td>
<td>۲۹/۶۳</td>
</tr>
</tbody>
</table>

* اعداد در یک ستون با حروف منفی ترتیب دارای اختلاف معن‌داری هستند (۵<\alpha<0.05).
جدول 2: نتایج میانگین درصد چشمه‌دزدی در تیمارها مختلف

<table>
<thead>
<tr>
<th>تیمار</th>
<th>درصد چشم‌دردگی (می‌تواند خورده باشد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>پراکسید هیدروژن (0.5 میکرولیتر در لیتر)</td>
<td>99±2.85 *</td>
</tr>
<tr>
<td>پراکسید هیدروژن (1.7 میکرولیتر در لیتر)</td>
<td>79/5±3.2</td>
</tr>
<tr>
<td>پراکسید هیدروژن (1000 میکرولیتر در لیتر)</td>
<td>77/5±6/5</td>
</tr>
<tr>
<td>سیزمالانئیت (1/5 میلی گرم در لیتر)</td>
<td>72/2±9/6</td>
</tr>
<tr>
<td>شاهد</td>
<td>69/9±3/8</td>
</tr>
</tbody>
</table>

* اعداد در یک ستون با حروف متفاوت دارای اختلاف معناداری هستند (P<0.05).

نتایج آزمون دانکن بینانگان آن است که درصد تغییر در تیمار پراکسید هیدروژن با غلظت 50 میکرولیتر بر لیتر با تیمار نیز مالانئیت اختلاف معناداری داشته (P<0.05) ولی با یک‌نیمه تیمار نیز مالانئیت اختلاف معناداری داشته (P<0.05).

نتایج حاصل از تیمارهای پراکسید هیدروژن برای تخم قزلآی نگین کمی حاکی از آن است که پراکسید هیدروژن از لحاظ میزان قارچ‌زدگی ضمیم‌افزایش و تغییر می‌کند ولی از لحاظ میزان قارچ‌زدگی پراکسید هیدروژن با غلظت‌های 750 و 2000 میکرولیتر بر لیتر به سیزمالانئیت برتری دارد.

مهم‌ترین نتیجه در تیمار پراکسید هیدروژن نسبت به تیمار سیزمالانئیت بصرف میزان داری بیشتر است و این امر می‌تواند نشان از آن باشد که تراکم باکتری از مرحله قارچ‌زدگی
تشکر و قدردانی

از همکاری صمیمانه مدیریت مرکز تکثیر و پرورش آزاد ماهیان شهید بهرام نئاردشت، آقای مهدی پاشا و پرسن محرم آن مرکز که در انجام این تحقیق ما را پرورش و همچنین از آقای مهدی محمد کاظم میرزاکاهی که در طول مراحل اجرایی پرو دروند تشن و قدردانی می گردد.

مباحث

آذری تاشا، ق.، ۱۳۷۶. سداریت بهداشتی و روشهای پیشگیری و درمان بیماری‌های ماهی، انتشارات پروبر، صفحات ۱۲۶ تا ۱۴۶.

مخیسر، ب.، ۱۳۷۴. بیماری‌های ماهیان پروشی. انتشارات دانشگاه تهران، صفحات ۱۷۶ تا ۱۹۴.

Effects of hydrogen peroxide on fungal desinfection, hatch rate and larval deformities of rainbow trout (*Oncorhynchus mykiss*)

Banavreh A. (1); Abtahi B. (2)*; Sharifpour I. (2) and Abdolhay H. (3)

abtahibm@modares.ac.ir

1, 2- Faculty of Natural Resource and Marine Sciences, Tarbiat Modarres University, P.O.Box: 14155-175, Tehran, Iran.
3, 4 - Iranian Fisheries Research Organization, P.O.Box: 14155-6116 Tehran, Iran

Received: September 2005 • Accepted: July 2007

Keywords: Hydrogen peroxide, Fungal infection, Egg, *Oncorhynchus mykiss*

Abstract

The hydrogen peroxide in concentrations of 500, 750 and 1000µl/l, malachite green with usual concentration (1.5mg/l) and natural control treatments were examined to evaluate the antifungal effects of the chemicals on Rainbow Trout eggs. Hydrogen peroxide and malachite green treatments were performed after 48 hours after fertilization in every other day, until 4 days before hatch, each time for 15 minutes. During experiments, water parameters were measured which were 8.05±0.55mg/l for dissolved oxygen, 8.8 ± 2.2°C for temperature, 7.9±0.05 for pH, 132±20mg/l for total hardness, and E.C was 336±24 µs/cm. The fungal infection was minimal in malachite green treatment and was significantly different with other treatments (P<0.05). The ratio of eyed eggs treated with 750 and 1000µl/l of hydrogen peroxide was significantly higher than malachite green and control treatments (P<0.05). The hatch rate in 750µl/l of hydrogen peroxide showed significant difference with malachite green treatment (P<0.05) but it was not significantly different with other treatments (P>0.05). No significant difference in deformities caused by the treatments were observed (P>0.05).

* Corresponding author