توزیع فصلی جلبک‌های ایبی فیت روی بسترها تطبیقی و مصنوعی و رابطه بین بیوماس آنها با برخی عوامل فيزيکوشیمیایی در تالاب انزلی

مصطفي نوروزی(1)، طاهر نژاد سلاری(1) و مريم فلاحی کپورجال(3)

Noroozi@Alzahra.ac.ir

1- گروه زیست‌شناسی دانشکده علوم دانشگاه الزهرا (س)
2- مرکز علوم و تحقیقات دانشگاه آزاد اسلامی، گروه علوم گیاهی
3- دانشکده آبیاری پروری آبیاری داخلی، بند با انزلی، صندوق پستی: 66
تاریخ ورود: فروردین ۱۳۸۲ تاریخ پذیرش: تیر ۱۳۸۴

فناک کلیدی: جلبک‌های ایبی فیت، عوامل فيزيکوشیمیایی، تالاب انزلی

هدف از این مطالعه بررسی توزیع جلبک‌های ایبی فیت بود که از مهرماه ۱۳۸۰ تا شهریور ماه ۱۳۸۱ به مدت ۱۲ ماه در تالاب انزلی استان گیلان صورت پذیرفت.

جلبک‌ها به عنوان تولیدکننده جانوری اولیه، یکی از مهم‌ترین عوامل زنجیره غذایی بخصوص در اکوسیستم‌های آبی می‌باشند. آنها بطور مستقیم یا بطور غیرمستقیم مورد تغذیه ماهی‌ها قرار می‌گیرند. ابتدا توسط زنبوران‌ها مصرف شده و سپس ماهی‌ها آنها را به عنوان گذار مصرف می‌نمایند. لذا در امور شیلات و پرورش آبزیان اهمیت پژوهشی دارد. این فیت‌ها مجموعه‌ای نامتانسی از جلبک‌ها باکتری‌ها و لیپوزوم‌ها می‌باشند. در اثر خوردن می‌شوند. (Wetzel, 1983) جلبک‌های پریفتون اهمیت زیادی دارند و ۲۰ تا ۵۰ درصد تولیدات اولیه دریاچه‌ها تولید نموده و منابعیاتی آنها برای سایر موجودات قابل استفاده است (Siver, 1977). هنگام بهار با افزایش دما و بارش تولیدات و بیوماس جلبک‌های ایبی فیت بخصوص دیاتومه‌ها و در تابستان کلروفیت‌ها و سیانوفیت‌ها افزایش می‌یابند. در ابتدا هم کاهش باعث افزایش بیوماس می‌گردد. از طرفی کاهش بیوماس در ارتباط با محیط‌شرایط غذایی و تشکیل‌های محیطی و غلاف‌خواری است. در شرایط کمبود ازت سیانوفیت‌های تنگوئید کننده ازت شکوفا می‌شوند (Crumpton, 1989). مطالعات نشان داده است که

www.SID.ir
توزیع فصلی چلبکه‌های ای، شبیه روزی بستر‌های طبیعی و مصنوعی ویب

نویسندگان:

یستگاه‌های با کاهش فسفات، بیوماس سیانوفیت‌ها افزایش یافته که به عنوان فعالیت شدن انیزم کالکن، فسفات و مصرف فسفات ذخیره سلولی است (Riber, 1984). مطالعات روی ای، شبیه مشابه گیاهان طبیعی با بستر‌های مصنوعی نشان داده است که فعالیت الکالین فسفاتاز روزی ای، شبیه متصلاً به بستر‌های مصنوعی بستر از گیاهان طبیعی است. چون گیاهان زندگی می‌کنند. این فسفات مورد نیاز را برای ای، شبیه تأمین می‌کند (Cattaneo & Kalff, 1979). برخی میزان‌ها مکانیسم‌هایی دارند که از رشد ای، شبیه می‌باشند. می‌توان گفت این روش به مراحل موارد بلی فلیت مانند رشد ای، شبیه می‌باشد.

(South & Whittic, 1987) به این ترتیب، رشد که ماکروفیت‌ها برای دریافت بهتر نور و فتوسترن بهتر از کلوئیده شدن ای، شبیه روى برگ‌های خود جلوگیری می‌کنند. این بسته طبق تحقیقات Conell (1997) ای، شبیه ماکروفیت‌ها فاقد هم دارند به طوری که باعث می‌شود جفتی از ماکروفیت بسی

ای، شبیه تغییر جهت داده و باعث حفاظت ماکروفیت از آسیب تراکنگدا می‌گردد.

با توجه به شرایط قسمت‌های مختلف تالاب 5 ایستگاه برای نمونه‌برداری در نظر گرفته شد.

بعنوان بستر طبیعی از گیاهان زیر نمونه‌برداری صورت پذیرفت:

Phragmites australis (Cav.), Polygonum persicaria (L.), Juncus acutus (Plant.), Nelumbium capiscum (Eichew.). Typha latifolia (E.)

طول و عرض جغرافیایی ایستگاه‌ها را به کمک دستگاه به‌دست می‌آمده: G.P.S.

1- ایستگاه اول به طول ۲۳:۳۷ شمالی و عرض ۳۱:۴۹ شریفی در روآنگه پیرانز دارای

ای، شبیه: چوب و ماکروفیت

2- ایستگاه دوم به طول ۲۵:۳۷ شمالی و عرض ۴۰:۳۲ شریفی در روودخانه شیجان دارای

Phragmites

ای، شبیه: چوب و ماکروفیت

3- ایستگاه سوم به طول ۲۵:۴۵ شمالی و عرض ۴۵:۴۴ شریفی در روودخانه راسته خاله دارای

Typha و phragmites

ای، شبیه: چوب و ماکروفیت‌های

4- ایستگاه چهارم به طول ۴۵:۳۷ شمالی و عرض ۴۵:۴۴ شریفی در منطقه حفاظت شده سیاه

Typha و Nelumbium و Phragmites

کشی در یارای باگ‌های: چوب و ماکروفیت‌های

5- ایستگاه پنجم به طول ۴۹:۲۷ شمالی و عرض ۴۴:۴۹ شریفی در کانال ماهوروزه دارای

Juncus و Typha و Phragmites

ای، شبیه: چوب و ماکروفیت‌های

چوب‌بایی به قطر ۱/۵ سانتی‌متر و بطول ۲ متر در هر ایستگاه قرار داده شد و در ماه بعد بعنوان بستر مصنوعی از تارنامه‌برداری گیاه شبیه و جواب ۱۰ سانتی‌متر زیر سطح آب قطع شد و قطعات ۱۰ سانتی‌متری بعدی برداشته شدند. نمونه‌های در فرمالیدهید ۴ درصد تنشیت و به آزمایشگاه منتقل شدند. کلیه نمونه‌برداری‌ها بین ساعت ۹ تا ۱۲ صبح صورت پذیرفت.

جلبک‌های ای، شبیه توسعه بررسی نمو از سطح ماکروفیت جدا شده و در بطوری‌های به حجم ۱۰۰۰

www.SID.ir
شکل 1: موقعیت استگاههای مختلف در ناحیه انزلی

برای شمارش ایبی فیت‌ها و تعیین تراکم آنها از لام سدبوک رفته استفاده شد. این لام به ابعاد 1×0.20×1 میلیمتر و مساحت داخلی آن 1000 مترمربع و حجم آن 1000 مترمکعب مجدد 1 میلی لتر می‌باشد. تراکم جلبک‌های ایبی‌فیت از رابطه زیر محاسبه شد:

\[\text{NO/mL} = \frac{C \times 1000}{L \times D \times W \times S} \]

\(W \) = تعداد موجودات شمارش شده (طبق اکولور مدرج)
\(D \) = عمق نوار برابر 1 میلیمتر
\(S \) = تعداد نوار شمارش شده
\(L \) = طول هر نوار شمارش شده که معمولاً برای طول 1 میلیمتر است. تعداد جلبک در سانتیمتربر این به دست آوردن تعداد در میلی لتر (NO/mL) محاسبه می‌شود. (Andrew et al., 1995)

دمای آب و هوا با ترمومتر جیوهای و pH آب با استفاده pH متر صحراوری در محل سنجش شد.

جهت سنجش نیترات، فسفات کل و ازت کل، نمونه آب به آزمایشگاه تجزیه آب در پژوهشکده آبی
توزیع فصلی جلبکه‌ای ایبی‌فیت روی بستر‌های طبیعی و مصنوعی و ضروری آهی‌های داخلی - بند انزیل انقلاب داده شد و طبق روشهای استاندارد سنجش‌ها صورت پذیرفت.

(Andrew et al., 1995)

در نمودارهای 1 تا 4 توالی رده‌های مختلف جلبکه ایبی‌فیت و Typha Phragmites و بازسازی مصنوعی چوب دیده می‌شود که رده بسیاری‌ترین درصد در همه آن‌ها غالب می‌باشد. Nelumbium در نمودار 1 دیاتومه‌ها رده غالب هستند و در زنده‌اند سه‌تایی 1 درصد را به خود اختصاص داده‌اند. در بهار کلروفیس‌ها و در تابستان سیانوفیس‌ها افزایش یافته‌اند. در خرداد ماه تقریباً درصد باسیلاروفیس‌ها با کلروفیسه‌های بالابه به حدود 40 درصد می‌رسند.

در نمودار 2 هم دیاتومه‌ها غالب هستند و در آذر ماه 100 درصد جلبکه‌ای ایبی‌فیت، دیاتومه‌ها بودند. کلروفیسه‌ها در آغز بهار و اسفندماه و اوگلوفیسه‌ها در تابستان افزایش یافته‌اند. از این که در ایستگاه دو در مهر ماه از 1884/1872 به 124/124 در مهر ماه به 124/274 در آبان ماه افزایش یافته‌اند، از جهت‌های هوا نسبتاً گرم بود (20 درجه سانتی‌گراد) و امکان رشد سیانوباکتریا فراهم شد. لذا افزایش رشد سیانوفیسه‌ها در ماه‌های مهر و آبان مشاهده گردید.

در نمودار 3 هم دیاتومه‌ها غالب هستند و با مساعد شدن شرایط محیطی، کلروفیسه‌ها و سیانوفیسه‌ها هم افزایش یافته‌اند. اختلالات افزایش رشد و درصد بیوماس سیانوفیسه‌ها در ایستگاه چهار در در این ماه افزایش گلخانه‌ای از رشد و فسفر کل می‌باشد.

در نمودار 4 نیز دیاتومه‌ها غالب هستند. کلروفیسه‌ها در بهار افزایش و در تابستان به اوج رسیده است. سیانوفیسه‌ها نیز در تابستان افزایش یافته است.

لازم به ذکر است که در برخی ماه‌های سرد سال سطح آب تالاب به‌قدری پایین بود که نمونه‌ها از آب خارج می‌شدند و امکان نمونه‌برداری نیوده و برخی گیاهان هم در بخ rez سرد، خشک و فاقد اندام رویشی جهت نمونه‌برداری بودند.

در نمودارهای 5 تا 8 رابطه بین عوامل محیطی با بیوماس نشان داده شده است. در نمودار 5 رابطه مستقیم بین افزایش دما و بیوماس جلبکه‌ای ایبی‌فیت روی بستر چوب در ایستگاه ناحیه مشاهده می‌گردد. در حالی که در نمودار 6 رابطه منفی بین افزایش دما و بیوماس جلبکه‌ای ایبی‌فیت روی بستر باعث افزایش دما در ایستگاه 24 هزار می‌شود. رابطه‌ای مستقیم بین فسفر کل و افزایش Phragmites روی بستر طبیعی کلی به ترتیب مشاهده می‌شود. هرچه غلظت فسفر و افزایش دما، بیوماس جلبکه‌ای ایبی‌فیت افزایش می‌یابد (نمودارهای 6 و 7). همان‌طور که در نمودارها مشاهده می‌شود تا 70 درصد از کل بیوماس جلبکه‌ای ایبی‌فیت را دیاتومه‌ها یا از خوای این‌ها داده‌اند بطوری که در برخی ماه‌های سال به 100 درصد و در ماه‌های گرم سال به 80 درصد بیوماس رسیدند. در سال 1990 نیز بیان نمود که دیاتومه‌ها در Nezal نیز در سال 1981 به‌این نتیجه رسیدند. اوایز زمستان و اوایل بهار تراکم و درصد بالاتری دارند.

www.SID.ir

202

دو عنصر مهم غذایی که در سوخت و ساز حیات موجود زندگی جمله جلبک‌های اپی‌فیت نقش اساسی دارند فسفر و نیتروژن می‌باشند که بعنوان عوامل محدود کننده تلقی می‌شوند لذا در کمبود این عناصر توان رشد جلبک‌های کاهش می‌یابد و در حضور غلظت بالاتر آنها، بیوماس جلبک‌های اپی‌فیت سیر فزا Moves می‌یابد.

همزمان با افزایش درود و شدت نور، فعالیت فتوسنتزی و رشد جلبک‌های اپی‌فیت و متعاقباً بیوماس آنها افزایش می‌یابد. این وضعیت به خوبی در نمونه‌دار 5 روی بستر مصنوعی چوب نشان داده شده است. اما روی بستر طبیعی فعالیت مکاروفیت در ابتدای بهار با افزایش در بیوماس Phragmites اپی‌فیت افزایش می‌یابد اما در لواست بهار بیوماس جلبک‌های اپی‌فیت سیر نزول یافته که مشاهده برخلاف بستر‌های مصنوعی چوب (نمونه4) احتمالاً دارد علت آن افزایش فعالیت‌های متابولیکی مکاروفیت‌ها باشد چرا که حضور جلبک‌های اپی‌فیت در سطوح اندام‌های فتوسنتزی گیاهان منع رسیدن دور کافی و تبادل مواد مغذی لذا گیاهان با ترشح مواد مهار کننده مثل مواد فنلی از حضور و کلونی‌های آنها ممکن است کنند.

احتمالاً حضور عوامل مهار کننده رشد با مواد آللوپاتیک در مکاروفیت‌ها عامل مهار رشد اپی‌فیت‌ها می‌تواند باشد. مطالعه این مواد و اثرات آنها روی جلبک‌های اپی‌فیت می‌تواند ارزشمند باشد. شاید بتوان این عوامل آللوپاتیک را بعنوان عوامل مهارگر رشد جلبک‌ها بخصوص هنگام شکوفایی سری جلبک‌ها با سایر موارد مکرر برد. همچنین بدیل اهمیت تالاب بین الالهی انتزولی و تخریب‌هایی که اخیراً صورت گرفته، پیشنهاد می‌گردد فلور جلبکی آن بیوماس و تاثیر عوامل فیزیکی و شیمیایی روا فلور منطقه هر سال بررسی شود.

تشکر و قدردانی

از مساعدة‌های مدیریت محترم وقت جناب آقای دکتر پری علی کمال تشکر را داریم. از مساعدة‌های آقایان خداویرست مسئول محترم آزمایشگاه تجزیه آب و آقای شمایی و سایر کارکنان محترم آزمایشگاه تجزیه آب مرکز تحقیقات شیلات بندر انزلی تشکر می‌گردد. همچنین از آقایان مرتضوی و جبرنی و سایر همکاران محترم قدردانی می‌نماییم.
توزیع فصلی چلبه‌های ایپی‌فیت روی بستر‌های طبیعی و مصنوعی و

نمودار ۱: درصد تراکم چلبه‌های ایپی‌فیت روی بستر چوب

نمودار ۲: درصد تراکم چلبه‌های ایپی‌فیت روی بستر لیموییم

نمودار ۳: درصد تراکم چلبه‌های ایپی‌فیت روی بستر تفا

نمودار ۴: رابطه بین ماده و پیوپامس چلبه‌های ایپی‌فیت روی بستر تفا

نمودار ۵: رابطه بین ماده و پیوپامس چلبه‌های ایپی‌فیت روی بستر چوب

نمودار ۶: رابطه بین ماده و پیوپامس چلبه‌های ایپی‌فیت روی بستر چوب

Seasonal distribution of epiphytic algae on natural and artificial substrates and the relationship between their biomass and water physico-chemical properties in Anzali Lagoon

Noroozei M. (1) ; Nejad Satari, T. (2) and Falahi M. (3)

Noroozi@Alzahra.ac.ir

1- Biology Group, Dept., of Science, Al-Zahra University, P.O.Box: 1993891176
 Tehran, Iran
2- Science and Research Branch, Islamic Azad University, P.O.Box: 14155-775
 Tehran, Iran
3- Inland Waters Aquaculture Research Center, P.O.Box: 66 Bandar Anzali
 Received: March 2004 Accepted: July 2005

Keywords: Algae, Epiphytic, Seasonal Distribution, Physico-Chemical factors, Anzali Lagoon.

Abstract

We studied epiphytic algae in Anzali Lagoon in Guilan Province from September 2000 to August 2001. The algae were removed from natural and artificial substrates and their biomass were determined using Sedgwick - Rafter Cell and Olympus microscope. Species of bacillariophyceae were the most abundant with increased density of chlorophyceae in spring and cyanophyceae in summer. Also oglenophyceae algae showed a slight increase in summer. Direct correlation between algal biomass and environmental factors such as temperature, total phosphorous, total nitrogen and nitrate were seen. Also, a reverse relationship between epiphytic algal biomass and increased activity of macrophyte was detected. It is suggested that the excretion of allelopathic substances from macrophyte algae inhibits growth of epiphytes.