کارگاه‌های آموزشی مرکز اطلاعات علمی

آموزش مهارت های کاربردی ISI در تدوین و جاب مقالات
روش تحقیق کمی
آموزش نرم افزار برای پژوهشگران
Word
طقه‌بندی سیب رددی‌اشت براساس تغییرات پاسخ آکوستیکی در دورهِ نگهداری
با استفاده از تبدیل موجک گسته‌تای و شبکه‌های عصبی مصنوعی

مجد لوگری، رضا مح媚ل

چکیده
امروزه استفاده از سیستم‌های نوینی که قادر به انتقاد‌گیری غیرمحبوب ویژگی‌های کیفی محصولات غذایی بوده و قابلیت نصب روی خطوط درجه‌بندی را دارند، از اهمیت برخوردار است. تحلیل پایه‌ای آکوستیکی پیک از شیوه‌های غیرمحبوب اندازه‌گیری ویژگی‌های کیفی میوه‌ها بشری می‌آید. بررسی امکان استفاده از تحلیل پایه‌ای آکوستیکی در طبقه‌بندی سیب رددی‌اشت در رویکرد سیستم‌های نوینی مورد بررسی و آزمون قرار می‌گیرد.

واژه‌های کلیدی
پاسخ آکوستیکی، تبدیل موجک، زمان نگهداری، سیب رددی‌اشت، شبکه عصبی

مقدمه
شناخت خواص مختلف فیزیکی، مکانیکی و شیمیایی میوه در فرآیندهای مختلف پس از برداشت موجب ابراز ویژگی‌های مربوط به این محصولات می‌شود. این محصولات زیرین و سرشار از مواد غذایی خاصی هستند که اغلب سیستم‌های طبقه‌بندی کیفی انواع میوه‌ها و سیب‌ها که با صورت تجاری و صنعتی مورد استفاده قرار می‌گیرند، براساس ویژگی‌های طبیعی آنها از قبیل رنگ، اندازه، عدم وجود لک و غیره عمل می‌کنند. لذا

1- استادیار، گروه مکانیک بوسیتم، دانشگاه اراک، اراک
m-lashgari@araku.ac.ir

2- تربیت‌معلم دبیرستان اول اراک
m-lashgari@araku.ac.ir
ارزیابی کیفی محصولات کشاورزی از کارآیی بهتری برخوردار است، زیرا تحلیل نسگال‌ها در دو جهت زمان و فراکس در این روش قابل اثبات است (Singh et al., 2010) به‌طورکلی، فردی موج‌بندی به دو صورت بیشتر و گسترش صورت می‌گیرد. در تبدیل موج‌بندی پیشنهادی اطلاعات مربوط به دست‌سازی، این امر ممکن است همانند در حالت‌های مختلفی نشان‌دهنده‌ای در تبدیل موج‌بندی حسابی همه این‌گونه موج‌بندی پیشنهادی و نیز اطلاعات بدهد کارآمد و معنادار است. در شرایطی که نباید تبدیل موج‌بندی سه‌گانه در مقایسه به تبدیل موج‌بندی پیشنهادی کارایی بهتری دارد.

در دو شیوه پژوهش‌های انجام‌شده در دو سرمایه‌ای، پژوهش‌گر برای تخمین در اطلاعات طیف‌گیری یکدیگر بهبود است. در بسیاری از مواد پژوهش‌گر یکی از اصول‌های مناسب‌ترین و خاصیت بسیاری از تجربیات و فردی‌ساختاری صدا نیز در سایر Costa et al., 2010 و Tiplica et al., 2010 استفاده از سیگنال‌های صدا ممکن است حاوی اطلاعات مفید دیگری نیز باشد. لذا پژوهش‌های با استفاده از تحلیل پایش آکوستیک برای ارزیابی ویژگی‌های درون‌برنامه کننده کامپوزیت‌های از لحاظ بادم (Ebrahimii & Mollazade, 2010) و عضای (Khalifahamzehghasem et al., 2012) انجام شده است که غالب ویژگی‌های مورد استفاده در آن، طیف کامل سیگنال صدا را مورد گردش است.

لذا در این پژوهش برای بررسی برتری پیش‌بینی سیگنال‌های صدا حسیب حساسیت ضد ضریب و ضریب مثبتهای که سیگنال‌ها مورد کارگیری دارند. نتایج در این چنین مقایسه به کارگیری آن در

برای این روش بشرمندی بیشتری تحریک نموده و سرعت بیشتری بازگشت نموده است. نتایج در این روش بشرمندی دارند. نتایج در این روش بشرمندی بیشتری تحریک نموده است. نتایج در این روش بشرمندی بیشتری تحریک نموده است. نتایج در این روش بشرمندی بیشتری T

نتایج این روش بشرمندی بیشتری تحریک نموده است. نتایج در این روش بشرمندی بیشتری T

نتایج این روش بشرمندی B
سازمان آکوستیک

برای انجام آزمایش‌ها، یک گروه آکوستیک ساخته شده از مونولوگری باشد که بتواند اطلاعاتی در ضمن جمع‌آوری کند. این گروه شامل دو قسمت به دو گروه به‌شکل جداگانه وجود داشته که از قبیل این قسمت‌ها می‌تواند اطلاعات از دو جهت گرفته شود. بنابراین این گروه‌ها بنابراین اطلاعاتی در دو جهت می‌توانند جمع‌آوری شوند. این گروه‌ها به طور جداگانه در دو جهت می‌توانند اطلاعات جمع‌آوری شوند. این گروه‌ها به طور جداگانه در دو جهت می‌توانند اطلاعات جمع‌آوری شوند. این گروه‌ها به طور جداگانه در دو جهت می‌توانند اطلاعات جمع‌آوری شوند. این گروه‌ها به طور جداگانه در دو جهت می‌توانند اطلاعات جمع‌آوری شوند. این گروه‌ها به طور جداگانه در دو جهت می‌توانند اطلاعات جمع‌آوری شوند. این گروه‌ها به طور جداگانه در دو جهت می‌توانند اطلاعات جمع‌آوری شوند. این گروه‌ها به طور جداگانه در دو جهت می‌توانند اطلاعات جمع‌آوری شوند.
آکوستیکی از نوع غیرمخرب محصول می‌شوند. بنابراین شدت ضربه‌ای باعث به گونه‌ای باشد که در محل ضریب تغییری در بافت میوه‌ها رخ ندهد.

پیش از شروع اندازه‌گیری میکروفون توسط کالیبراتور مدل CA111 که طبق صوت ثابت 94 و 142 دسی‌بل را در فرکانس یک کیلوهرتز اجاید کنن، کالیبره شد.

پاتوجیوه اینکه در این پژوهش مقایسه فرکانس‌ها نیز مدت نظر بود از نظر میوه‌ای مطلقات مدل استفاده گردید که نسبت به تمامی فرکانس‌های صوتی دارای حساسیت بکس‌دار است. پاتوجیوه وجود مدل آنالوگ به دیجیتال ۲۴ بیتی در این سامانه، میزان نویز دائم سامانه در حد پایین بوده و علاوه بر این ساغت مذکور دارای سرعت نمونه‌برداری ۴۴۱ کیلوهرتز می‌باشد که حمایت از آن می‌باشد. با فیلتر V.32 (Oppeinheim et al., 2014) نرم‌افزار (Scope V1.32). نرم‌افزار که در پایان‌های و بی‌گاهی مطلوب برای انجام این پژوهش است. انتخاب و برای نمايش و ضبط سیگنال‌های صدا در حوزه زمان مورد استفاده قرار گرفته. از نرم‌افزار مذکور می‌توان به موارد زیر اشاره نمود: نمایش سیگنال ضبط‌شده در حوزه زمان، ضبط هزارمین صدای ارتباطی و میکروفون به طور مجزا. سادگی استفاده از نرم‌افزار در حین آزمون‌های مماین و ذخیره سیگنال در حین آزمایش با کالب موج ۳ که در این صورت هیچ‌گونه فیلتری روی صدا

1 Aliasing
2 Wave Format

به همین منظور سرعت گوی پلاستیکی در زمان برخورد با سطح میوه برابر ی/۴ متر بر ثانیه اندازه‌گیری شد که منطبق بر محدوده گزارش شده در سایر Wang et al., 2004; Wang et al., 2006. روزه‌ها نیز قطع برگ میوه‌ها انجام گرفتند. داده‌برداری نیز در موقعیت ۱۸۰ درجه نسبت به محل عمل ضریب لجام شدن.

در این پژوهش برای اندازه‌گیری فشار صدا حاصل از ضربه در حوزه زمان از یک میکروفون MP201 مترکم‌کننده از پیش قطعی شده مدل استفاده شد. از انجاکه میکروفون‌های نوع یک در مقایسه با نوع دو از دقت بالاتری برخورد هستند، بنابراین در اندازه‌گیری نویز پژوهش‌ها از نوع یک استفاده می‌شود که در این پژوهش نیز میکروفون به کارگرفته‌ای می‌باشد که با زمان استاندارد IEC 705 ثبت که با زمان استاندارد IEC 61094 مطلوبی دارد (2000, 61094).

میکروفونی که در این پژوهش مورد استفاده قرار گرفت دارای حساسیت ۵۵ میلیولت بر پاسکال است. حساسیت زبان میکروفون‌های اندازه‌گیری، امیدهای خروجو آنها را برای سازگاری می‌کند. لذا نیازمند یک پیش‌نویس بندی ساخته شده باشد تا امیدهای را بارا ورود به مدل آلودگی به دیجیتال کاهش دهد. به همین منظور در این پژوهش از یک پیش‌نویس کاتالیست مدل استفاده شد تا امیدهای را کاهش دهد. MAP231.
مورد آزمون انجام نمی‌شود و بین سیگنال صدای ضبطشده با سیگنال منفی‌شده‌ای ضبطشده از سیگنال صدای ضبطشده با سیگنال منفی‌شده‌ای ضبطشده از ضرب، اختلافی وجود نخواهد داشت.

تبدیل موجک گستنی
در اغلب سیگنال‌ها، به‌خوبی که دارای فرکانس‌های است قسمت مهم سیگنال محصول شده و قسمت دارای فرکانس‌های معمولاً نیز ایجاد‌شده روی سیگنال بیشمار می‌رود (Stark, 2005). (2) تبدیل موجک گستنی، سیگنال به‌وسیله‌دو فیلتر دیجیتال تجزیه می‌شود. در سطح اول، سیگنال از دو فیلتر بالاتر و پایین‌تر که به ترتیب مقادیر «جزئیات» و «ترکیب» را ایجاد می‌کند، عبور داده می‌شود. در سطح دوم، سیگنال سیگنال مجدد از دو فیلتر بالاتر و پایین‌تر عمده و سیگنال‌های جزئیات و ترکیب جدیدی حاصل می‌شوند. در این پژوهش، Matlab تبدیل موجک گستنی در محیط نرم‌افزار Matlab انجام پذیرفت. در شکل (2) نتیجه تبدیل موجک گستنی با استفاده از موجک دابوچی-چهار با سه سطح تجزیه اورده شده است.

شکل ۲ - تبدیل موجک گستنی در سه سطح

استخراج ویژگی‌ها
در این مرحله، پارامترهای مناسب معنی‌دار که ویژگی‌های سیگنال نامیده می‌شوند، استخراج می‌گردد. نتایج حاصل از این مرحله در فرآیند طبقبندی مورد استفاده قرار می‌گیرد. با استفاده از برخی توان‌های ویژگی‌ها محاسبات شده و در نتیجه، حجم مجموعه داده‌ها کاهش می‌یابد. به‌این ترتیب بار

شکل عصبی مصنوعی
شکل‌های عصبی یکی از روش‌های ساخت مدل طبقبندی‌های هستند که در آنها مدل با گره‌های سه‌بعدی به‌صورت مجموعه‌ای از گره‌های منظم به‌همراه ارتباطات ورودی در آنها نشان‌داده می‌شوند. در طول مرحله آموزش، شکله به تنظیم وزن‌های اتصالات می‌پردازد. به کمک شکله‌های عصبی امکان مدل‌سازی یک نهایت غیرخطی که بردار و وروشی را به

1 Kurtosis
2 Skewness
ورودی های مختلف (ویژگی‌های) یکسان بودند. این عمل در نرم‌افزار مورد استفاده قابل انجام بود و از نظر قوت‌های آن بیشتر می‌رود. برای ارزیابی قابلیت تعمیم (Fβ)، مدلی از شاخ هماهنگ دقت و حساسیت استفاده شد. رابطه (1) در شاخ مادرکور حساسیت و دقت مدل به صورت تأمین اثرگذار هستند و مقدار آن در Han et al. (2012) رابطه (1) است.

\[
F_\beta = \frac{\text{Precision} \times \text{Sensitivity}}{\beta^2 \times \text{Precision} + \text{Sensitivity}} + \text{Sensitivity}
\]

شاخ میانگین هماهنگ دقت و حساسیت برای ارزیابی قابلیت تعمیم مدل، ضریب ونی (β) تبیین شد. در تغییرات آن پس از 2 ماه نگهداری در شرایط سردخانه‌ای ناهانگیز شد. میانگین سفی یافته نمونه‌ها در زمان برداشت و پس از 2 ماه نگهداری به ترتیب برابر 4/03 و 33 کیلوگرم به ترتیب رسید. بنابراین سفی یافته نسبت به زمان نگهداری روندی کاهشی دارد. طی 2 ماه نگهداری، میانگین کاهش سفی یافته برای سپی‌های ردلیتزی 3/31 درصد به دست آمد.

نتایج و بحث

تغییرات بافت نمونه‌ها

میانگین سفی یافته نمونه‌ها در زمان برداشت و تغییرات آن پس از 2 ماه نگهداری در شرایط سردخانه‌ای ناهانگیز شد. میانگین سفی یافته نمونه‌ها در زمان برداشت و پس از 2 ماه نگهداری به ترتیب برابر 4/03 و 33 کیلوگرم به ترتیب رسید. بنابراین سفی یافته نسبت به زمان نگهداری روندی کاهشی دارد. طی 2 ماه نگهداری، میانگین کاهش سفی یافته برای سپی‌های ردلیتزی 3/31 درصد به دست آمد.

نتایج حوزه فرکانس

نتایج حاصل از کارگیری عملکرد انتخاب ویژگی در حوزه فرکانس در جدول (2) آورده شده است. هم‌نظر با کاهش پارامتر مدل انتخابی، گیمدور و ندا عملکرد کلی شکمه در قابلیت ماتریس اقتضات بیان می‌شود. این پژوهش برای رسیدن به ارزیابی درست، مجموعه داده‌های مورد استفاده در فرایندهای آموزش (نمونه‌ها) و تمرین شکمه‌ها به ارزیابی سطح ویژگی عملکردی شکمه‌های عصبی، فرابرد آموزش، تست و اغیرارسانی بهطور همزمان سورت می‌گیرد و با عملکرد کلی شکمه در قابلیت ماتریس اقتضات بیان می‌شود. این پژوهش برای رسیدن به ارزیابی درست، مجموعه داده‌های مورد استفاده در فرایندهای آموزش (نمونه‌ها) و تمرین شکمه‌ها به ارزیابی
نتیجه طبقهبندی داشتم. نتایج سایر پژوهش‌ها نیز حاکی از اهمیت این دو ویژگی در بردارش صدا هستند (Ebrahimi & Molla zade, 2010). مشاهده این اثر از هشت ویژگی استخراج شده توسط گزارش کشیدگی و چولگی در حوزه فرکانس از اولیت برخوردار هستند و سایر ویژگی‌ها در نتایج رتبه‌بندی و شایع بود.

جدول ۲- نتایج مربوط به انتخاب ویژگی در حوزه فرکانس

<table>
<thead>
<tr>
<th>آمار ویژگی</th>
<th>نام ویژگی</th>
<th>ضریب T</th>
<th>سطح نزدیکه</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/871</td>
<td>کشیدگی</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>0/611</td>
<td>چولگی</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0/881</td>
<td>A</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>0/877</td>
<td>D</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0/722</td>
<td>چولگی</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>0/755</td>
<td>A</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>0/781</td>
<td>D</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>0/755</td>
<td>AD</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>0/715</td>
<td>AAD</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

سطح کم ۲/۱۵ درصد و شاخص میانگین همزاد حساسیت دقت (Fβ) نیز ۰/۵۴ به‌دست‌آمده است. با توجه به نتایج ارزیابی، ویژگی‌های عمیق با سطح مشاهده ۰/۳ استفاده از ویژگی‌های آماری در حوزه فرکانس مشخص است.

جدول ۳- نتایج مربوط به شیب‌های عمیق‌ بر حسب به‌دبایه در حوزه فرکانس

<table>
<thead>
<tr>
<th>حساسیت (Fβ)</th>
<th>دقت (C1)</th>
<th>سطح تحریم (C1)</th>
<th>نتایج تجزیه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۵۹</td>
<td>۶۸/۵</td>
<td>۶/۵</td>
<td>۱</td>
</tr>
<tr>
<td>۰/۳۷</td>
<td>۶۸/۵</td>
<td>۶/۵</td>
<td>۱</td>
</tr>
<tr>
<td>۰/۵۸</td>
<td>۶۸/۵</td>
<td>۶/۵</td>
<td>۱</td>
</tr>
</tbody>
</table>

کشیدگی و چولگی از ۸ ویژگی استخراج‌شده از اولیت برخوردار هستند. با این تفاوت که در حوزه زمان، چولگی طبق داده‌ها در مقایسه با کشیدگی از اهمیت‌بیشتری برخوردار است. نتایج حائز اهمیت در نتایج مربوط به انتخاب ویژگی در حوزه زمان، مقادیر بالای P است که به‌هریک عناصر از ویژگی‌ها اختصاص داده شده است. در میان ویژگی‌ها، کشیدگی‌های D در سه سطح تحریم، بیشترین مقدار P را به خود اختصاص داده و در رسای اولویت‌بندی‌ها جای گرفته است.

نتایج حوزه زمان

نتایج حاصل از یک‌گانه‌برای عمیق‌ بر حسب به‌دبایه در حوزه زمان نیز در جدول (۴) آورده شده است. در این مرحله با توجه به تعادل با ویژگی‌های که مقدار P آنها نبود، پایلاس گزارش شده. نتایج این گزارش شده با ویژگی‌های P که مقدار P آنها نبود از مجموعه خرج‌های دیدگی و سایر ویژگی‌های اولویت‌بندی‌شده برای مراجعت بعد لحاظ شدند.

با نگاه به جدول (۴) می‌توان دریافت که در حوزه زمان نیز همچون حوزه فرکانس نیز دو ویژگی
جدول 4- نتایج مربوط به انتخاب ویژگی در حوزه زمان

<table>
<thead>
<tr>
<th>پمیوند</th>
<th>تعداد</th>
<th>جدول تجزیه</th>
<th>روایت</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>1999</td>
<td>1</td>
<td>F بیشتری است</td>
</tr>
<tr>
<td>A</td>
<td>1994</td>
<td>1</td>
<td>F بیشتری است</td>
</tr>
<tr>
<td>D</td>
<td>1977</td>
<td>1</td>
<td>F بیشتری است</td>
</tr>
<tr>
<td>D</td>
<td>1999</td>
<td>1</td>
<td>F بیشتری است</td>
</tr>
<tr>
<td>AD</td>
<td>1998</td>
<td>2</td>
<td>F بیشتری است</td>
</tr>
<tr>
<td>AA</td>
<td>1995</td>
<td>3</td>
<td>F بیشتری است</td>
</tr>
<tr>
<td>D</td>
<td>1999</td>
<td>1</td>
<td>F بیشتری است</td>
</tr>
<tr>
<td>AD</td>
<td>1998</td>
<td>2</td>
<td>F بیشتری است</td>
</tr>
<tr>
<td>AAA</td>
<td>1995</td>
<td>3</td>
<td>F بیشتری است</td>
</tr>
<tr>
<td>AD</td>
<td>1998</td>
<td>4</td>
<td>F بیشتری است</td>
</tr>
</tbody>
</table>

در جدول (4) نتایج مربوط به انتخاب ویژگی در حوزه زمان با استفاده از روش تجزیه و تحلیل ماتریس ارائه شده است. میانگین صحت طبقه‌بندی شکل 3-9 نشان داده شده است.

جدول 5- نتایج مربوط به شکل ویژگی با استفاده در حوزه زمان

<table>
<thead>
<tr>
<th>Fسی</th>
<th>حساسیت (٪)</th>
<th>دقیقه (٪)</th>
<th>صحت (٪)</th>
<th>سطح تجزیه</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.68</td>
<td>67/9</td>
<td>68/1</td>
<td>67/9</td>
<td>1</td>
</tr>
<tr>
<td>0.81</td>
<td>82/1</td>
<td>82/1</td>
<td>82/1</td>
<td>2</td>
</tr>
<tr>
<td>0.85</td>
<td>74/2</td>
<td>84/7</td>
<td>80/8</td>
<td>3</td>
</tr>
</tbody>
</table>

شکل 3- ساختار شبکه عصبی مورد استفاده در حوزه زمان (سطح تجزیه دو)

ماتریس اغتشاش، دقیقه گویی‌های طبقه‌بندی را نمایش می‌دهد. خلاصه عملکرد طبقه‌بندی با شبکه‌های عصبی در قابلیت این ماتریس ارائه می‌شود (Hagan et al., 1996)
نتیجه‌گیری

در این پژوهش، استفاده از پایگاه آکوستیک و شبکه عصبی صوتی به‌منظور طبقه‌بندی سیب دردبلیو براساس زمان تکه‌کاری مورد بررسی قرار گرفت. با توجه به انگیزه‌های شبکه‌های پیش‌بینی این پژوهش، در این سلسله‌بندی، از دیگر انتخاب ویژگی بیشتری سطوح پادکست و به‌کارگیری سایر مدل‌های طبقه‌بندی، موضوعاتی در پژوهش مورد بررسی قرار گرفت. نتایج طبقه‌بندی نشان داد که شبکه موجود با پس‌دردهای زمانی در پیش‌بینی زمان صوتی این پیشنهاد می‌شود.

منابع

1- خوشنام، ف.، مبی، ج.، حسنی‌پور، ر.، رقهی، ش.، رجبی‌پور، ع. و ایلی‌اف، ال. 1391. تشخیص رسیدگی خرده با روی‌نامه‌های پایگاه آکوستیک. مجله تحقیقات مهندسی کشاورزی، 13(3):93-102.

2- سعادت‌نیا، م.، عمادی، ب. و صدیقی، ج. 1389. تعمیر رسیدگی میوه سبزی که از پیاده‌سازی بر روی‌ده‌های آکوستیک می‌باشد. مقالات اولین همایش ملی مکانیاسپرت و فناوری‌های نوین در کشاورزی، 18-20 اسفندماه، موسسه علمی سیمای دانش، اهواز.

3- عسی‌زاده، ب.، حاجی‌افشار، م.، احمدی، ال. و امیری‌چاگان، ر. 1391. پیشینی سفید میوه‌شیر بر طول دورة انبارداری با استفاده از شبکه عصبی مصنوعی. مجموعه مقالات همایش‌های ملی مهندسی ماسکش های کشاورزی و مکانیاسپرت، 16-17 شهریور ماه، دانشگاه شیراز.

4- محمدی‌فرد، ف.، بقوقری، م.، رحمانی‌نژاد، ن.، کاربری‌میمند، م.، و پنجم‌انی، م. 1393. استفاده از فناوری انتقال و پردازش صدا و شبکه عصبی مصنوعی در جداسازی فندق با ارائه مختلف تکنیک‌های پیش‌بینی و توزیع در علم و صنایع غذایی. 3(4):299-306.

5- ملک‌ن، ب. و منجمی، نفیس. 1386. معاین جنبی برای تشخیص میوه با استفاده از شبکه عصبی پرستون جدید، پژوهش‌های پیش‌بینی‌کننده، تهران.

7- Costa, F., Cappellin, L., Longhi, S., Guerra, W., Magnago, P., Porro, D., Soukoulis, C., Salvi, S., Velasco, R., Biasioli, F., & Gasperi, F. 2011. Assessment of apple (Malus × domestica Borkh.) fruit

Red Delicious Apple Classification Based on Acoustic Response Changes during Storage Using Discrete Wavelet Transform and Artificial Neural Networks

Majid Lashgari*, Reza Mohammadiol

1- Assistant Professor, Biosystems Engineering, Arak University, Arak, Iran
* Corresponding author (m-lashgari@araku.ac.ir)

Abstract

Nowadays, new systems that are be able to measure the characteristics of the quality of food products for nondestructive testing and can be installed on the grading lines are very important. Analysis of the acoustic response is a non-destructive method for measuring fruit quality characteristics. Therefore, the potential of acoustic impulse response for non-destructive classification of Red Delicious apple was examined. In this study, sound signals in both time and frequency domains were analyzed using wavelet transform. Signals are decomposed into three levels using Daubechies 4. Eight statistical features were selected: maximum, minimum, mean, standard deviation, energy, kurtosis, skewness and third moment. Apples are classified according to changes in the acoustic response during storage time using multilayer perceptron neural network algorithm. According to results, classification performance of artificial network with 4-1-2 topology in time domain is better than the other networks. The classification accuracy and harmonic mean of precision and sensitivity for this topology were 82.1% and 0.81, respectively.

Keywords: Acoustic response, Neural network, Red Delicious apple, Storage time, Wavelet transformation
کارگاه‌های آموزشی مرکز اطلاعات علمی

آموزش مهارت‌های کاربردی ISI در نویسندگی و چاپ مقالات
روش تحقیق کمی

آموزش نرم‌افزار برای پژوهشگران

Word