تولید فیلم خوراکی از صمغ کتیار و تهیه وزن‌های فیزیکی و مکانیکی آن

حمیده السادات عقیلی نصیری، باقر علی‌زاده فرشته، حسن اسدی

چکیده

به‌دلیل معادل محدود مواد استانداردی که از قبل مهارت تکریبات پلیمری به محتوای مواد غذایی، ابجای اولدگی زمین‌محیطی، عدم باره‌بزی آسان، گران بودن مواد اولیه و بالا بودن هزینه تولید و همچنین در سالهای اخیر پلیمرهای طبیعی به عنوان جایگزین‌هایی ایمن و قابل تخریب این دسته‌ها پلاستیک‌های ناشی از طبیعت از هم‌تصویب‌های مصرف شده در جهان دانشگاه تخصصی توزیع رشد و به‌طور عمده تولید و توزیع فیلم‌های خوراکی از صمغ کتیاری، پودر ایران و تهیه مشخصات فیزیکی و مکانیکی آن به‌صورت تحقیقی و آزمایشی مختلف پلاستیک‌ها، پلاستیک‌ها و پلاستیک‌ها به‌طور گشایش نشان داد صمغ کتیار، خاصیت فیلم‌سازی مناسب به‌دست آورد و فیلم‌های جالب در اثر شفافیت و بین‌المللی در این دسته‌ها به‌طور مستقل و بین‌المللی در این دسته‌ها در اثر شفافیت و بین‌المللی در این دسته‌ها به‌طور مستقل و بین‌المللی در این دسته‌ها در اثر شفافیت و بین‌المللی در این دسته‌ها به‌طور مستقل و بین‌المللی در این دسته‌ه

مقدمه

تأثیرات مخرب محیطی ناشی از تجمیع مواد پلاستیکی و عدم تخریب پذیری که از مهارت نگاری‌های که در جهان امروز است، حجم قابل توجهی از این زباله‌ها مربوط به پلیمرهای مورد استفاده در بسته‌بندی مواد غذایی می‌باشد، از این‌رو در سال‌های اخیر متخصصان صحت
ترکیباتایکنتریهصدمعیبیشتریهایاستکهاز
سالهایگیاههبتامگرئهمیشور، (Grob et al., 2005). اینگیاهبیشتردر
چندمیلیآسیا به‌خصوصدرمناطقکوهستانیو
خشکیائیانوپرکیسیپرید
تولیدکنندگیکنتریهایاستکهسالهایحدود
۳۰۰تانتصمیمکنتریهصدمیکنند. اثرگویی
بهبودیایسرپروتئوگلاییکنزیتریز،
اسپیدیوزنیامکولیبااست. محدودهpH
۵تای۴است. وسکوزیت淀粉اموکولیشگرفته
درpH باقیه۴بهحدکار
می‌رسد. درمقایسهبه‌هیدروکوئیدهایدیگر، پادکار
اندرابرایسپردهزیست. درنتیجهالمابیسیمهم
کنتریتپکتیفکز، گلیکوز، گلیکوز، رامنوز، و
کردگروههایمتغییردرآنشناختهشدکهگروههایمتغییر
اینستبهدایی بودنرکازیکهقدیران‌آبیوپنشش
نیتریزی‌درآنکنتریهصدمیبزنامست
پایدارکنندهامولسینکننده، قنظمده‌دمجمیکین
جبک‌گردودینیهداردماحمیدیو
همکاران، ۱۳۹۱. مطالعه‌نیشانمیدهدنستفاده
ازگروههایمختلطکنتریهصدمیتولیدنتولید
به۲۰۰۰سپردهبیاگرگوردپایدارترا
شود. مصرفکنتریگنماونرزیاگرگوردپایداروقدامباولاو
امحساسخانمهایبیشتریمدیدهشدکهکنتریه
دروهموقداریکنرطیقیمیدگر
همچنینکنتریهانتگریلیورزیجداییفازرودین
میشورزنگرشنتومشتری‌بیشتریباشند
رکا (Krochta et al., 1994).

درداروسازیمزیبیانیزملل‌سازی، عاململعکس‌و
اقتصادندهندگهبتایفقر‌pha، داروهاو‌رزین‌درمانیمواد
مختلفیواستفادهبرنمختلطیمیکنند.
درعملگیوندکنتریهصدمیتکنندهاکینکیناراکی
سلولسرطنیهمانعکسکردهومصرفبندیآنبااعث
تعدیقلندخوردنیبیمانندداشتمیشورواثرآند

1 L-fucose
2 D-xylose
3 L-arabinose
4 Rhamnose
5 D-galacturonicacid
6 D-galactose
ازمایش‌ها در پژوهش‌کده علم و فناوری مواد غذایی گیاه دانشگاه مشهد انجام گردید.

تهیه فیلم‌های کنترل

به‌منظور تهیه فیلم، محلول 1/5 نمونه‌های کنترل در آب‌مغذیر سرد تهیه شده و به مدت یک شبانه‌روز در محیط انگل‌بی‌بی‌ای شده. سپس در دمای 80 – 100 درجه سانتی‌گراد کاملاً هم رده شد تا محلول یک‌واژی حاوی شود. گلیسرول در مقدار ۳۰٪ تهیه شده است.

(۱) قابل مشاهده است.

در این معادله m جرم و v حجم نمونه می‌باشد.

ویژگی‌های مکانیکی

ویژگی‌های مقاومت به کشش ۱ و درصد ازدادی طول تا نقطه ASTM. ۱/۵ مدل بانک ۲ بر اساس استاندارد B882-02 (۲۰۰۲) و اندکی تغییرات به‌وسیله RS مدل ۲۳۲ لود ساخت توسط دستگاه بادن‌سنج لود لود. خودت عرضه شده در آمریکا اندازه‌گیری گردید. قطر از انقباض نمونه‌ها اندازه‌گیری محسوب می‌شود و در دستگاه‌های دیگر به‌صورت ۴/۲٪ با مدت ۲۴ ساعت در دمای آزمایشگاه قرار گرفتند تا اندازه‌گیری رطوبت تعیین گردد. فاصله بین دو فک قابل از شروع آزمون ۵۰ میلی‌متر، سرعت حرکت فک‌ها ۵۰ میلی‌متر بر دقیقه و حداکثر بار

\[\rho = \frac{m}{v} \]

۱ Tensile Strength (MPa)
۲ & Elongation
۳ Young's Modulus (MPa)
پژوهش و نوآوری در علوم و صنایع غذایی، سال 5931، جلد 1، شماره 2
022

(1) نتایج و بحث

ضخامت و دانشمندی

بر اساس نتایج آنالیز واریانس و مقایسه میانگین‌ها، افزایش درصد غلیبرول در ساختار فیلم تهیه شده از کننده سپر تغییرات منجر دارد در دانشمندی و ضخامت فیلیم‌های حاوی نشده است. (P<0.05) (جدول 1). در تحقیقات مشابه نیز تغییر نسبت‌های غلیبرول در فرمولاسیون فیلیم‌های مختلف تأثیر معتبر دارد در ضخامت فیلم‌های ایجاد نکرد. است (جوانمرد و گلستان، 1389).

اعمالی 5 نیوتن تنظیم شد. مقاومت به کشش و درصد ازدیاده طول تا نقطه پارگه با رابطه‌های (2) و

1 رابطه (2)

قصاید نیروی وارد شده به فیلم (نیوتن)

سطح مقطع عرضی عایق اولیه فیلم (مترمربع)

2 رابطه (3)

درصد کش آمادگی

مقدار اندازه‌گیری اولیه فیلم (میلی‌متر)

طول اولیه نمونه بین دو فک (میلی‌متر)

مدول یاکگ، یا مدول الاستسیسه به نسبت تنش به کرش مواد جامد خلیق در پایین‌تر از استحکام تسلیم کننده می‌شود که در این رابطه قانون هوك صادق بوده و

مدول الاستیک ثابت است.

عبور نور و شفافیت

ویژگی معمولی‌کننده در برای نور متری در فیلم‌ها با استفاده از دستگاه ساخت اکلستن در طول موج UV-Vis اسپکتروفوتومتر مدل CAMSPECM550 تعمین شده است. گیرنده‌های رنگی از دستگاه‌های واریانس و مقایسه میانگین‌ها با استفاده از نرم‌افزار MSTAT-C و آزمون LSD در صفحه 0.05 طراحی گردید. برای رسم نمودارها از نرم‌افزار Excel استفاده شد.

نتایج و بحث

ضخامت و دانشمندی

بر اساس نتایج آنالیز واریانس و مقایسه میانگین‌ها، افزایش درصد غلیبرول در ساختار فیلم تهیه شده از کننده سپر تغییرات منجر دارد در دانشمندی و ضخامت فیلم‌های حاوی نشده است. (P<0.05) (جدول 1). در تحقیقات مشابه نیز تغییر نسبت‌های غلیبرول در فرمولاسیون فیلیم‌های مختلف تأثیر معتبر دارد در ضخامت فیلم‌های ایجاد نکرد. است (جوانمرد و گلستان، 1389).
جدول 1- میانگین ضخامت و دانسیتنگ فیلم‌های کنترا با درصدی های مختلف پلاستی سایزر

<table>
<thead>
<tr>
<th>ضخامت (سانتی‌متر)</th>
<th>ضخامت پلاستی سایزر</th>
<th>دانسیتنگ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

درجه حرارت بر‌بستن نشان‌دهنده عدم اختلاف معنی‌دار در سطح معنی‌داری 5 درصد است.

ویژگی‌های مکانیکی

بر اساس نتایج بعید‌نامه ویژگی‌های مکانیکی فیلم‌ها بر اساس درصد متفاوت گلیسرول مورد استفاده در ساختار آنها تفاوت معنی‌دار در سطح 5 درصد است.

شکل 2- مقیاس‌گر درصد کش‌آمکنی تا نقطه پارکی فیلم‌های کنترا با درصد گلیسرول مختلف (حرف‌های‌کنکان بر روی ستون‌ها نشان‌دهنده عدم اختلاف معنی‌دار در سطح معنی‌داری 5 درصد است).

ملاحظات:

- کازنبین و پیشنهادات کیمیائی، ضخامتی و کیفیتی اساسی و کیفیتی اخراجی شامل نظر کش‌آمکنی می‌باشد. این محدودیت کیفیتی شامل کش‌آمکنی، ضخامتی و کیفیتی اخراجی اساسی می‌باشد.

- تغییرات خواص مکانیکی با تبادل درصد گلیسرول در تحقیقات دیگر محققان بر اثر گزارش شده است.

- جوانمرد و برادری (1385) در مطالعه خود مشاهده نمودند که افزودن گلیسرول منجر به افزایش معنی‌داری در میزان کش‌آمکنی فیلم‌ها می‌گردد.

- همچنین گزارش میزان زمان افزایش در تمامی مقالات کش‌آمکنی افزایش گزارش شده است که افزایش میزان افزایش میزان کش‌آمکنی که کش‌آمکنی که کاربرد کش‌آمکنی (Choi & Han, 2001) نشان‌دهنده میزان درصد عبور از این نشان‌دهنده میزان درصد عبور از این
در تحصیلات دیگر گزارش گردیده گلیسرول و روغن بین زنجیره‌های ناشده (امیلوز و آمیلپیکتین) قرار گرفته و باعث کاهش میزان نیروی بین مولکولی بین زنجیره‌های آمیلوز و آمیلپیکتین می‌شود. به همین‌وکت، زنجیره‌های آمیلوز و آمیلپیکتین روش‌هایی بهتر حرکت کرده و همین امر باعث افزایش میزان کشش یادبندی فیلم و کاهش مقاومت به کشش Chillo et al., Bravin et al., 2006, Rodriguez et al., Perez-Mateos et al., 2008, 2009.

بررسی نتایج ویژگی مقاومت به کشش و درجه سختی فیلم یک نشان داد که بین نمونه‌های گلیسرول دو دمو نمونه ۵۰٪ و ۴٪ گلیسرول نفاوت معمدی‌دادن وجود داشته و نمونه ۳۰٪ مقاومت کشش بیشتر و درجه نرمی کمتری را نشان داد و نمونه ۵۰٪ دارای نرمال بیشتر بوده که مطلوب‌تر می‌باشد (شکل ۳ و ۴).

مقاومت به کشش فیلم در سطح اطمینان ۹۰٪ گردیده، درصورتی که افزایش گلیسرول و روغن در سطح اطمینان ۹۹٪ باعث کاهش میزان مقاومت به کشش گردیده. گلیسرول در سطح اطمینان ۹۹٪ و روغن در سطح اطمینان ۹۰٪ باعث افزایش میزان کشش یادبندی فیلم نشان می‌شود. البته وجود میزان کمی از میزان کشش یادبندی فیلم تأثیری نداشت (فاضل و همکاران, ۱۳۹۱). جوانمرد و همسران (۱۳۸۹) گزارش کردند افزایش میزان گلیسرول در مقادیر ۴٪ و ۱۰٪ باعث افزایش وزن گلیسرول در تولیدی شد. همچنین آزمون‌های مقاومتی نشان داد که جربه بعنوان یک پلاستیسایزر، پانداری نسبت به شکستگی فیلم‌ها را افزایش می‌دهد. نتایج تحقیق گروی و همکاران (۱۳۹۰) نیز نشان داد افزایش میزان گلیسرول و پلی‌ابن گلیسرول در فیلم‌ها منجر به کاهش در مدول یانگ و قطرت کششی می‌شود.

شکل ۳ - مقاومت ویژگی مقاومت به کشش فیلم‌های مختلف با درصد گلیسرول مختلف (جراح بکسان بر روی ستون‌ها نشان دهنده عدم اختلاف معنی‌دار در سطح ۵ درصد است).

1 Stiffness (N/m)
شاکل ۴- مقایسه درجه فیلم‌های مختلف با درصد گلیسرول مختلف (حروف یکسان بر روی ستون‌ها نشان دهنده عدم اختلاف معنی‌دار در سطح ۵ درصد است).

پایین‌ترین نتایج آنالیز مدول پانک مشاهده شد که بین نمونه‌های ۳۰% گلیسرول و نمونه‌های ۱۰% گلیسرول تفاوت معنی‌داری وجود نداشت. نمونه‌های ۱۰% و ۱۵% در مدول پانک بالاتری برخوردار بودند (شکل ۵).

شاکل ۵ - مقایسه مدول پانک فیلم‌های مختلف با درصد گلیسرول مختلف (حروف یکسان بر روی ستون‌ها نشان دهنده عدم اختلاف معنی‌دار در سطح ۵ درصد است).
عبور نور و شفافیت

شفافیت یک ویژگی بسیار مهم برای فیلم‌های استفاده در علوم و صنایع غذایی است که به عنوان پوشش با استحکام برای مواد غذایی مورد استفاده قرار می‌گیرد. (Gontard et al., 1992) همچنین شفافیت یک شاخص مؤثر و کارآمد در تعیین اطلاعات مربوط به امداد ذرات پراکنده شده در متانسی پلیمر است. به طور کی در ذرات و کرالول‌های بزرگتر از طول موج ملی، سیستم عبور نور را مسدود نموده و باعث افزایش کد‌ریزی فیلم می‌شوند.

نتایج اندکی بررسی‌های معنی‌دار شفافیت و عبور نور فیلم‌ها نشان داد کلیه نمونه‌های به‌دست‌آمده از شفافیت بسیار بالایی برخوردارند که قابل مقایسه با فیلم‌های سنتزی می‌باشند. آنالیز واریانس نتایج به‌دست‌آمده توسط دستگاه اسکیتروفوتومتر حاکی از این است که تفاوت شفافیت انواع فیلم‌های مورد آزمون در سطح احتمال 5 درصد معنی‌دار نبود (P<0.05) (شکل 6).

شکل ۶- مقایسه شفافیت فیلم‌های کیتی با درصد گلیسرول متواش (حوا میکسان بر روی ستون‌ها نشان‌دهنده عدم اختلاف معنی‌دار در سطح ۵ درصد است.)

بخصوص بیشتر از ۲۵٪ نسبت به سایر ترکیبات در فیلم‌های تولید شده، دارای حلالیت بیشتری می‌باشند و در این بروزه‌نشین میزان گلیسرول بالایی ۳۰٪ بود که فیلم‌ها بطور کامل حل شدند. در تحقیق Araujo-Farro و همکاران (۲۰۱۰) که به بررسی تاثیر مقدار گلیسرول در بالاتر از آماری انجام دادند، مشخص شد که با افزایش مقدار RSM گلیسرول، حلالیت افزایش می‌یابد.

حلالیت فیلم‌ها در آب

صخ ما کتی در آب می‌شود و در حالی به‌طور کامل حل شده. در حالی که مقاومت به‌طور کامل حل شده.

نتایج نشان داد که فیلم‌های کتی با درصد گلیسرول متواضع (حواکس یکن بر روی ستون‌ها) دهنده عدم اختلاف معنی‌دار در سطح ۵ درصد است.

نتایج نشان داد که فیلم‌های دارای گلیسرول بالایی ۳۰٪ نسبت به سایر ترکیبات در فیلم‌های تولید شده، دارای حلالیت بیشتری می‌باشند و در این بروزه‌نشین میزان گلیسرول بالایی ۳۰٪ بود که فیلم‌ها بطور کامل حل شدند. در تحقیق Araujo-Farro و همکاران (۲۰۱۰) که به بررسی تاثیر مقدار گلیسرول در بالاتر از آماری انجام دادند، مشخص شد که با افزایش مقدار RSM گلیسرول، حلالیت افزایش می‌یابد.
نتایج گیری

مجموع نتایج به‌دست‌آمده از آزمایش‌های مختلف نشان داد که فیلیم تهیه شده از کتریا باوجود ظاهر مناسب و شفافیت، به دلیل حلالیت بسیار زیاد در آب برای تولید فیلیم خوراکی مطلوب نیست. مگر اینکه با سایر فیلیم‌های خوراکی به دلیل داشتن ویژگی‌های قابل قبول کتریا ترکب شود، همچنین می‌توان گزینه مناسبی برای تلفیق با سایر فیلیم‌های شفاف انتخاب کرد.

منابع

1. Aslam, S., M., محمدزاده، میلادی، ج. و کساسی، م.، ۱۳۹۲. بررسی اثر نوع و غلظت ترم نانه‌برد و ویژگی‌های فیلیم خوراکی تهیه شده از صمغ خرچنگ. نشریه پژوهش و نوآوری در علوم و صنایع غذایی، ۲۳:۳۷۱-۳۷۷.
2. Jawanmard, M., و بصیری، غ.، ۱۳۹۳. بررسی امکان تهیه فیلیم زیست‌زاگار از نشان‌گرگر نخود و تأثیر رطوبت نسبی و یالایی سازی بر ویژگی‌های فیزیکی و مکانیکی آن. نشریه علوم محیطی، ۲۴:۷۱-۱۱۷.
3. Jawanmard, M.، و کلسنیان، ل.، ۱۳۸۷. تفویض‌پذیری نسبت به خیار آب در فیلیم‌های خوراکی بر پایه کنسانتره پروپیون آبی‌پنیر و روغن زیتون. مجله مهندسی شیمی ایران، ۴۲:۱۳۱-۱۴۲.
4. حیدری، م.، ضرابی، ع.، و نادی‌پرستانی، ز.، ۱۳۹۱. بررسی خواص و کاربردهای صمغ‌های بومی ایران. دومین سمینار ملی انتباه غذایی، ۲۷-۲۷ مهر ماه، دانشگاه آزاد اسلامی واحد سوادکوه.
5. دیواندوی، ن.، دیواندوی، م.، مرادی، س.، و آریمی، م.، ۱۳۸۷. بررسی خواص کنشی فیلیم‌های خوراکی بر پایه آب‌پنیر، کاریکاتور نان دم و صح‌گرگری. هیچ‌پنجم، کنفرانس ملی علوم و صنایع غذایی، ۲۷-۲۷ مهر ماه، پژوهشکده علوم و صنایع غذایی.
6. فاضل، م.، عزیزی، م.، عباسی، س.، و برزگر، غ.، ۱۳۹۱. بررسی تأثیر کنتریا، گلپسول و روغن روی خصوصیات فیلیم خوراکی بر پایه نداشت سپی‌زمینی. فصلنامه علم و صنایع غذایی، ۴۲:۱۱۷-۲۴۲.
7. فراخاچی، غ.، مجذوبی، م.، و مصباحی، غ.، ۱۳۸۸. خصوصیات و کاربردهای هیدروکلسین‌های در مواد غذایی و دارویی (زلانین).
8. فراخاچی، غ.، نداشت‌بنیان، ع.، و کتیمی، ظ.، ۱۳۸۸. نشان‌گرگر نخود و تأثیر ترشح عنصر کلوروزی ایران، صفحه ۷۶ و ۸۴.

Production of Biodegradable Edible Films from Tragacanth Gum and Determination of Their Physical and Mechanical Properties

Hamideh sadat Aghili moghaddam1*, Bagher Emadi2, Fereshteh Hosseini3, Hassan Sadrnia4

1- MSc Graduated, Department of Biosystems Engineering, International Campus of Ferdowsi University of Mashhad
* Corresponding author (melinaaghili@gmail.com)
2- Associate Professor of Department of Biosystems Engineering, Ferdowsi University of Mashhad, Iran
3- Assistant Professor, Food Additives Research group, ACECR, Khorasan Razavi Branch, Iran
4- Associate Professor of Department of Biosystems Engineering, Ferdowsi University of Mashhad, Iran

Abstract

Due to the disadvantages of synthetic packaging materials such as migration into food, polluting the environment, difficult recovery, high costs of raw materials and production, natural biopolymers have recently been paid more attention as alternatives to the petroleum-derived plastics for packaging. The aim of this study was producing biodegradable edible films based on native tragacanth from Iran and determining their physical and mechanical properties. Also, the effects of different percentages of glycerol as a plasticizer (30%, 40% and 50%) on the films properties were investigated. According to the results, tragacanth based films showed appropriate mechanical properties and high transparency. Different percentage of glycerol did not affect the physical properties of the samples, but made some changes in mechanical properties. Among all treatments, films with 30% glycerol showed higher tensile strength in comparison to the other samples. Also, films with 50% glycerol showed more %E and lower stiffness. Because of high solubility of tragacanth films, they cannot be used in film production alone, but it is an appropriate candidate for composite films.

Keywords: Biodegradable, Edible film, Tragacanth