ارزیابی تأثیر حذف حلال در استخراج به کمک ماɪکروویپ بردیمیو مورث و فعالیت‌های مایکروویپ اساس‌ری بردیمیو

محمدمهدی قدیمی ۱، آرمان قاسمی ۲، محمد حسینی‌زاده اسدی ۳، محمدرضا میقاتی ۴

1. استادیار بخش علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه شیراز
 (golmakani@shirazu.ac.ir)
2. دانش‌آموزی کارشناسی آرش بخش علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه شیراز
3. دانش‌آموزی کارشناسی آرش بخش علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه شیراز
4. دانش‌آموزی کارشناسی آرش بخش علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه شیراز

چکیده
در این تحقیق اثر روش‌های مختلف استخراج، تقطیر با آب به کمک ماɪکروویپ و استخراج به کمک ماɪکروویپ بدون حلال، بر بازدهی، ترکیبات مورث و فعالیت‌های مایکروویپ 44 برکتی (گرم منفی) اساس‌ری بردیمیو مقایسه یابند. هدف اصلی تحقیق با آب پرسته شده است. نتایج کروماتوگرافی گازی/طیف سنگری بین جریان بینگر که زمان (۵/۳۵ ـ ۲۳/۰۸) و زمان (۳۸/۵۳ ـ ۲۴/۲۳) (تارال ۱۳۹۵/۱۱) اصلی ترکیبات مورث اساس‌ری بردیمیو پوئید. میان ترکیبات مورث اساس‌ری به‌دست‌آمده با روش استخراج به کمک ماɪکروویپ و بدون حلال به‌اساس روش‌های تقطیر با آب و تقطیر با آب به کمک ماɪکروویپ، اختلافات آماری معنی‌داری وجود داشت (P<0/05). فعالیت‌های مایکروویپ اساس‌ری بردیمیو با_run دست‌آمده به کمک ماɪکروویپ بدون حلال نسبت به اساس روش‌های تقطیر با آب و تقطیر با آب به کمک ماɪکروویپ بالاتر بوده که به دلیل بیشتر بودن میزان ترکیبات اکسیژن داری یکن‌زه زمان (از افریض ۱۲۴/۱۰ ـ ۴۱/۳۰) و تارال (افریض ۱۳۴/۱۰ ـ ۳۰/۱۳) می‌باشد. در نتیجه، روش استخراج به کمک ماɪکروویپ بدون حلال را می‌توان به عنوان یک روش جایگزین سریع، کارآم و اختراعگر برای استخراج اساس از گیاهان دارویی پیشنهاد می‌گردد.

مقدمه
استخراج یکی از اساسی‌ترین مراحل جهت به‌زاینده‌سازی و خالص‌سازی اساس از گیاهان دارویی می‌باشد. انتخاب روش استخراج به نوع گیاه، مواد مورد نظر و همچنین درجه خلوص محصول به‌ناء بستگی دارد. روش تقطیر با آب، متناوب‌ترین روش استخراج اساس می‌باشد. این روش نیازمند زمان طولانی استخراج بوده و علاوه
آنجایی که یکی از روش‌های اندازه‌گیری بادکونه (حذف) و نمونه‌برداری از نظر شیمیایی یا زیست‌شناسی (بررسی) بر روی لیمو ایتالیایی (Aloysia citrodora) استفاده می‌شود. این روش می‌تواند در بررسی اثرات عامل‌های مختلف بر عملکرد نبات و محیط زیست، به‌особاً در غذاهای سبز و سرخ کاربرد داشته باشد.

2 Aloysia citrodora

3 Solvent-free microwave extraction
روش تقطير با آب به کمک ماکروویو

اساس روشهای استخراج تقطیر با آب به کمک ماکروویو همانند استخراج به وسیله دستگاه الکترومنتل می‌باشد. با این تفاوت که در این روش استخراج، میکروسب همراه با ترکیبات آب و خاک، از میکروویو خارج می‌شوند. در این روش از یک ماکروویو خانگی تحقیق یافته (سامسونگ، مدل W-3148) ساخت کشور مالزی و حداکثر توان خروجی 1000 وات استفاده شد (شکل 1 (الف)). در این روش از 50 گرم برگ - نیم با 2500 میلی‌لیتر آب تقلاً، 30 دقیقه به حرارت 91.2 تا 100 درجه سانتی‌گراد استخراج می‌پذیرد. با استفاده از آن آزمایشگاهی و در دمای 105 درجه سلسیوس تا رطوبت به وزن طبیعی اندک‌تر گردید (AACC، 1983) شده‌است. درصد بُردب‌های در دمای 105 درجه سلسیوس بود. نتایج با روشهای مختلفه این استخراج اساس برگ بالیمو غربی شده‌اند.

استخراج اساس برگ بالیمو

روش تقطیر با آب به کمک الکترومنتل

روش تقطیر با آب به کمک الکترومنتل یکی از روشهای مرحله‌بندی استخراج اساس می‌باشد. در این روش انتقال حرارت فقط به صورت هیدرات و جاقیتی صورت پذیره و نمونه آب با حرارت تولید شده به وسیله انرژی الکتریکی گرم می‌شوند. حرارت موجود در اساس برگ بالیمو شامل سیتناول، لیمونئ، نیترات، 3-دیاکان و لیمونئ، نیترات، 3-دیاکان، آپ و آلفا کورگون می‌باشد. (مکّزیران، 1394).

مواد و روش‌ها

آب با تخلیه برگ بالیمو از یافته استخراج فلزی‌های مغناطیسی در طول 20 ساعت که 741 ۶۰۰۰ گرم دارد. جنس و نوع بالیمو توسط متن‌ها به خوش‌زیستی شناسی دانسته شریان با شماره تیپ 250 تای‌بند قرار گرفت. برگ‌های این گیاه با روش دستی جدا و در دمای محیط ۴۵ درجه سلسیوس و رطوبت نسبی ۲۰ درصد برخورد که پذیر اساس برگ بالیمو استفاده گردید.

تغییرات در تخته‌های حذف حلال در استخراج به کمک ماکروویو بز

در این مطالعه برای انجام آزمایش‌ها، به کمک ماکروویو بدون حلال استخراج با روشهای مورد استفاده در این مطالعه استفاده کرد. ایمنی برگ بالیمو به وسیله تحلیل الکترومنتل می‌باشد. (شکل 2 (ب)). ایمنی برگ بالیمو به وسیله تحلیل الکترومنتل می‌باشد. در این روش از 25 گرم برگ بالیمو و 350 میلی‌لیتر آب تقلاً، 30 دقیقه به حرارت 91.2 تا 100 درجه سانتی‌گراد استخراج می‌پذیرد. با استفاده از آن آزمایشگاهی و در دمای 105 درجه سلسیوس بود. نتایج با روشهای مختلفه این استخراج اساس برگ بالیمو غربی شده‌اند.

ارزیابی تأثیر حذف حلال در استخراج به کمک ماکروویو بر...

1 Citral
2 Limonene
3 Geranial
4 Neral
5 1,8-Cineole
6 Geranial
7 1-octan-3-ol
8 α-Curcumene
پژوهش و نوآوری در علوم و صنایع غذایی، سال ۱۳۹۱، جلد ۵، شماره ۱

۱۰۹

تغییرات ترکیب اساس برگ باملیمو با استفاده از کروماتوگرافی گازی/طیف سنج جرم

اساس‌های استخراج شده ب به وسیله سولفات سدیم بی‌اب، شکل و ب به وسیله یک میلی‌لیتر نرمال هگزان رفیق شدن. پس از مخلوط گردان کامل اساس با حل، یک میکرولیتر از آن به دستگاه کروماتوگرافی گازی طیف سنج جرمی (GC/MS) تزریق گردید.

دستگاه Agilent Technologies 7890A (مدلGC) و طیف سنج جرمی (مدلAgilent Technologies 5975C) مورد استفاده قرار گرفت. جهت محاسبه شاخص ماند، نمونه استانداردی از نرمال آلکان‌های تحت‌همان یک میلی‌لیتر سیستم در حالت ترمیم با نسبت ترمیم ۱۰۰:۱ نمایش داده شد. سیستم (مدلHP-5MS) از نوع کارایی با طول ۲۰ متر، قطر داخلی ۲۵ میلی‌متر و ضخامت فیلم ۱۵ میکرو‌متر بود.

۱:۱۰۰ توزیع در سیستم برگ باملیمو با استفاده از زمان ماند ترمال آلکان‌های تزریق شده، تغییرات گردید.

خاصیت ترمیمیکروی اساس برگ باملیمو برای ارزیابی اثر ضدمیکروی اساس برگ باملیمو، قطر هاله می‌ممانند از رشد حداصل فلزات بزادارنده‌گی

۱۰۱

شکل ۱- دستگاه استخراج اساس با روش‌های (الف) تقطیر با آب به کمک مایکرووربو و (ب) مایکرووربو بدون حلال.
مرحله بعد به منظور تعیین حداقل غلظت باکتریکشی (MIC) و حداقل غلظت باکتری‌کشی (MBC) در روش 4 باکتری گرم منبت استافیلوکوکوس اورتونوس (PTCC:1111)، پتوکوکسیتکتر (PTCC:1059)، لیستریا منوسال benzoئی (PTCC:1378) و 4 باکتری گرم منفی اثرسیالگی (PTCC:1176)، سالسونلا تایفی (PTCC:1361)، انتروباکتر گی (PTCC:1624) و سودوموناس پوپی (PTCC:1624) بررسی گردید. نتایج نشان دادند که باکتری گرم منفی اثرسیالگی در آزمایشگاه میکروبیولوژی به شکل علوم و صنایع غذایی داشته که اثرانگی بنفیک تأکید شد. نتایج نشان دادند که باکتری‌کشی (MBC) میکرو بیوکوکس اورتونوس (MIC) برابر می‌باشد. نتایج نشان دادند که میکروبیولوژی به شکل علوم و صنایع غذایی داشته که اثرانگی بنفیک تأکید شد. نتایج نشان دادند که باکتری‌کشی (MBC) میکرو بیوکوکس اورتونوس (MIC) برابر می‌باشد.

تیز بود و تحلیل آماری

نطاق و بحث

به‌طور کل، از ارزیابی فعالیت ضد میکروبی انسان برگ بی‌لیمو از روش ارزیابی انتشار دیسک استفاده شد (Anders, 2001). در این مطالعه، بر روی سطح کریستال سولف بمیکروبا، مقدار میکروبی هنیتون آثار کشتگی به شکل سولف بمیکروبا به روش سولف بمیکروبا می‌باشد. نتایج نشان دادند که باکتری‌کشی (MBC) میکرو بیوکوکس اورتونوس (MIC) برابر می‌باشد. نتایج نشان دادند که باکتری‌کشی (MBC) میکرو بیوکوکس اورتونوس (MIC) برابر می‌باشد.

اندازه‌گیری حداقل غلظت باکتری‌کشی

برای تعیین حداقل غلظت باکتری‌کشی، از روش تعیین حساسیت در میکرو بیوکوکس اورتونوس (MIC) بررسی گردید. در این مطالعه، میکروبیولوژی به شکل علوم و صنایع غذایی داشته که اثرانگی بنفیک تأکید شد. نتایج نشان دادند که باکتری‌کشی (MBC) میکرو بیوکوکس اورتونوس (MIC) برابر می‌باشد. نتایج نشان دادند که باکتری‌کشی (MBC) میکرو بیوکوکس اورتونوس (MIC) برابر می‌باشد.
ترکیبات اسانس برگ بیلیمو

اسانس برگ بیلیمو استخراج شده به کمک روش‌های تقطیع با آب به کمک الکترومیل و ماکروپروپون و استخراج به کمک ماکروپروپون بدون حلول به وسیله دستگاه کرومانتوگرافی کاگی‌ای اتفاق سنج جریمه مورد ارزیابی قرار گرفتند (جدول 1). مجموعاً 21 ترکیب در اسانس برگ بیلیمو وجود دارد که بیش از 99 درصد ترکیبات موجود در اسانس برگ بیلیمو (بر مبنای سطح زیر پیک اجزای کرومانتوگرام) را تشکیل می‌دهند. سه ترکیب زراتیال، نزال و لیمونیون ترکیبات عمده اسانس برگ بیلیمو را تشکیل می‌دهند. زراتیال اصلی‌ترین ترکیب موجود در اسانس برگ بیلیمو (63/54 درصد) می‌باشد. بعد از زراتیال، نزال با 62/76 درصد در رتبه دوم و لیمونیون با 12/51 درصد در رتبه سوم قرار داشتند. این نتایج با یافته‌های شاهحسینی و همکاران (1390)، که GC/MS ترکیبات اسانس برگ بیلیمو را توسط شناسایی کردند، مطابقت دارد. آنها نیز گزارش کردند که در اسانس برگ بیلیمو می‌باشد (شاهحسینی و همکاران 2008) ترکیبات اصلی شناسایی شده در بیلیمو آرزانتینی را زراتیال

کاریفوریل/آکسید (11/1 درصد) (گزارش کردن) (et al., 2008)

میزان ترکیبات اصلی (زراتیال و نزال) در روش استخراج به کمک ماکروپروپون بدون حلول به شکل معنی‌داری بیشتر بوده و در روش‌های استخراج به کمک ماکروپروپون ترکیبات اکسیدی‌دار مانند زراتیال و نزال بیشتر استخراج می‌شوند. از انجایی که شدت استخراج در روش‌های استخراج به کمک ماکروپروپون بیشتر می‌باشد، ترکیبات اکسیدی‌دار و سنگین‌تر به Wang & Weller (2006) مقدار بیشتری استخراج می‌شوند. آب به کمک ماکروپروپون نیز بیشتر از روش تقطیر با آب به کمک الکترومیل بود اما نتایج معنی‌داری میان آنها مشاهده نگردید. مشابه بافته‌های Mazidi و همکاران (2012) نشان دادند که بین ترکیبات اصلی اسانس برگ کوهی (زره سیاه ایرانی) استخراج به آب و چربی تقطیر با آب و ماکروپروپون نتایج معنی‌داری و ندارد (Mazidi et al., 2012). اگرچه روش تقطیر با آب به کمک ماکروپروپون روش سریع‌تری بوده اما ماکروپروپون اثر محرزی بر ترکیبات زیست فعال اسانس نداشته است.
<table>
<thead>
<tr>
<th>Rosh Extraction Basal</th>
<th>Extraction by KMK Microbore</th>
<th>Methyl-5-hepten-2-one</th>
<th>Limonene</th>
<th>1,8-Cineole</th>
<th>(E)-β-Ocimene</th>
<th>α-Terpineol</th>
<th>Nerol</th>
<th>Neral</th>
<th>Geraniol</th>
<th>Geranial</th>
<th>Geranyl acetate</th>
<th>(E)-Caryophyllene</th>
<th>Germacrene D</th>
<th>α-Curcumene</th>
<th>α-Zingiberene</th>
<th>Bicyclolemaicene</th>
<th>β-Curcumene</th>
<th>Cubeol</th>
<th>(E)-Nerolidol</th>
<th>Spathulenol</th>
<th>Caryophyllene oxide</th>
<th>epi-α-Cadinol</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.55±0.24 e</td>
<td>1/17±0.30 a</td>
<td>0.60±0.24 b</td>
<td>0.64±0.24 c</td>
<td>6-Methyl-5-hepten-2-one</td>
<td>1</td>
<td>Limonene</td>
<td>2</td>
<td>1,8-Cineole</td>
<td>3</td>
<td>(E)-β-Ocimene</td>
<td>4</td>
<td>α-Terpineol</td>
<td>5</td>
<td>Nerol</td>
<td>6</td>
<td>Neral</td>
<td>7</td>
<td>Geraniol</td>
<td>8</td>
<td>Geranial</td>
<td>9</td>
<td>Geranyl acetate</td>
</tr>
</tbody>
</table>
بررسی فعالیت ضد میکروبی اساس برگ باریمو

قطر خاله عدم رشد بакتریی

نتایج قطر خاله عدم رشد بакتری‌های گرم مثبت و منفی در اثر آزمودن حجم‌های مختلف (1، 5، 10 و 15 میکرولیتر) اساس برگ باریمو استخراج شده با مایکروبی و همچنین مایکروبی بدون حلال در جدول 2 نشان داده شده است. به طور کلی اگر چه اساس‌های باریمو حلال مستقیماً رشد بакتری‌های گرم مثبت اثر ضد میکروبی قابل قبولی داشتند، اما بر روی بакتری‌های گرم منفی اثر باریمو تحمدیکی داشتند. این امر به خاطر این است که دوباره سلنیوم باتکتی به گرم مثبت دارد و تحقیق Rezvanpanah و همکاران (2011) فعالیت ضد میکروبی اساس منزه تابعیتی استخراج شده به کمک روش‌های مختصر استخراج را بر خود باکتری استافیلوکوکوس اورتوس و اترشیکلیک بررسی و گزارش کرده که اساس‌های استخراج شده به کمک روش‌های تقطیر با آب به کمک مایکروبی و الکترومزتیل فعالیت ضد باکتری‌ای مشابه داشتند. در نتیجه، استخراج به کمک مایکروبی به عنوان یک روش سریع و هیچگونه اثر مطلوبی بر فعالیت ضد میکروبی اساس‌های استخراج بین نمی‌یابد.

(Rezvanpanah et al., 2011)

شده‌مانشته است (2011) فعالیت ضد باکتری‌ای اساس پوستی نوعی حاصل از روش‌های تقطیر با آب و استخراج به کمک مایکروبی بدون حلال را مورد بررسی قرار دادند. اگر فعالیت ضد میکروبی اساس‌های بسته‌آمده را با روش ازبینی انتشار دیسک در بردار باکتری‌های سودوموناس آتروژنوس، کلیسپا پنومونیا، استافیلوکوکوس اورتوس، استرپتوكوکوس پیوئز و استرپتاسپیلا مورد ارزیابی قرار داده و نشان دادند که فعالیت ضد میکروبی اساس استخراج شده به کمک مایکروبی بدون حلال از روش تقطیر با آب مشابه بود.

(Uysal et al., 2010)

و گرم منفی نیز به شکل معنی‌داری افزایش یافته است. بنابراین، حجم بالای اساس تا 15 میکرولیتر نیز به نسبت از قبل در میکروب‌های باکتری‌ای برخورد این در منابع رخ‌های مختلف استخراج، بالاترین قطار و سه جزئیات مربوط با مایکروبی بدون حلال و کمک الکترومزتیل، فعالیت ضد باکتری‌ای مشابه داشتند. نتیجه استخراج به وسیله مایکروبی و گزارش کردن که اساس‌های استخراج شده به کمک روش‌های تقطیر با آب به کمک مایکروبی و الکترومزتیل، فعالیت ضد باکتری‌ای مشابه داشتند. در نتیجه، استخراج به کمک مایکروبی به عنوان یک روش سریع و هیچگونه اثر مطلوبی بر فعالیت ضد میکروبی اساس‌های استخراج بین نمی‌یابد.

(Uysal et al., 2010)

بررسی فعالیت ضد میکروبی اساس برگ باریمو

قطر خاله عدم رشد بакتریی

نتایج قطر خاله عدم رشد بакتری‌های گرم مثبت و منفی در اثر آزمودن حجم‌های مختلف (1، 5، 10 و 15 میکرولیتر) اساس برگ باریمو استخراج شده با مایکروبی و همچنین مایکروبی بدون حلال در جدول 2 نشان داده شده است. به طور کلی اگر چه اساس‌های باریمو حلال مستقیماً رشد بакتری‌های گرم مثبت اثر ضد میکروبی قابل قبولی داشتند، اما بر روی بакتری‌های گرم منفی اثر باریمو تحمدیکی داشتند. این امر به خاطر این است که دوباره سلنیوم باتکتی به گرم مثبت دارد و فعالیت ضد میکروبی موجود در اساس برگ باریمو حلال سلنیوم و غشاء باکتری را تخبیز نموده و منجر به خروج سبیل‌کش می‌گردد (بروند و همکاران، 2011). الکتروزمسترات بودن باکتری‌های گرم منفی یک قاعده کلی نیست و برخی محققین به مقاومت شبه‌های باکتری‌های گرم مثبت نسبت به باکتری‌های گرم منفی در برای اساس‌ها نیز اشاره نموده‌اند (اجاق و همکاران، 2011). نتایج حاصل از مقاومت قطر خاله عدم رشد باکتری‌های گرم مثبت با استفاده از حجم‌های مختلف اساس در مقایسه با اساس‌های تراساکلیکین ناشان داد که حجم 5 میکرولیتر اساس برگ باریمو عملکرد مشابه به ضعیف‌تر از تراساکلیکین داشته. اما حجم‌های 10 و 15 میکرولیتر اساس بهتر از تراساکلیکین عمل کرده‌اند. در مورد باکتری‌های گرم منفی، اگر حجم‌های 5 و 10 میکرولیتر اساس ضعیف‌تر از تراساکلیکین عمل کرده‌اند اما حجم 15 میکرولیتر اساس عملکرد بهتری نسبت به تراساکلیکین از خود نشان داده است.

ارتباط مستقیم بین قطر خاله عدم رشد باکتری‌ها با حجم اساس افزوده شده مشاهده گردید. با افزایش حجم اساس، قطر خاله عدم رشد باکتری‌های گرم مثبت
جدول 2 - قطر قطعی خاک در استخراج به کمک ماکروویو بر

<table>
<thead>
<tr>
<th>شرایط‌کلیدن</th>
<th>شیوه استخراج اساسی</th>
<th>تقطیر با آب به کمک ماکروویو بدون</th>
<th>کلتورمنتل</th>
<th>پاسیوئس سرتسو</th>
<th>باکتری (میکروپیلو)</th>
<th>حجم اساس</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.34±0.23</td>
<td>1/3.1/12 (^{a/b})</td>
</tr>
<tr>
<td>3/45±0.34</td>
<td>1/3.1/12 (^{a/b})</td>
</tr>
<tr>
<td>4/56±0.34</td>
<td>1/3.1/12 (^{a/b})</td>
</tr>
</tbody>
</table>

جدول 3 - حداکثر غلظت بازانهدنگی

روش استخراج اثر معنی‌داری بر حداکثر غلظت بازانهدنگی باکتری‌های گرم مثبت و گرم منفی را نشان می‌دهد. حداکثر غلظت اساس برگ به‌لایه از رشد باکتری‌های گرم مثبت نسبت به باکتری‌های گرم منفی کمتر بوده که نشان دهنده حساسیت بیشتر یافته‌ای باکتری‌ها در مقابل اساس برگ به‌لایه می‌باشد. حساسیت باکتری‌های گرم مثبت به دلیل عدم وجود دیواره‌ی پلی‌سکاربود است. دیواره‌ی پلی‌سکاربود باکتری‌های گرم منفی از ورود ترکیبات فعال به سیستم جلوگیری می‌کند. مقاومت باکتری‌های گرم منفی در برای ترکیبات ضد باکتری‌ای با این در ارتباط می‌باشد.

پس از برگ و کوچک بکسان به ترتیب در هر سینوس (هر غلظت) و رنگ نشان دهنده اختلاف معنی‌دار در سطح اختلاف ۵ درصد می‌باشد.
جدول 3- حذال غلظت بازدارنگی (میلی گرم/آیل) اساس بکه بایله خاصیت استخراج شده به کمک روش‌های مختلف.

| روست انتخاب | خاصیت استخراج | مکان میکروبی | معیاریت بایله | غلظت مکان میکروبی | عبرت اکسید و کاهش
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>باکتری</td>
<td>استخراج با کمک میکروبی</td>
<td>باسالس سرطوس</td>
<td>0.0125</td>
<td>0.0125</td>
<td></td>
</tr>
<tr>
<td></td>
<td>متغیر کارکن</td>
<td>استخراج با کمک میکروبی</td>
<td>0.0125</td>
<td>0.0125</td>
<td></td>
</tr>
<tr>
<td></td>
<td>متغیر کارکن</td>
<td>استخراج با کمک میکروبی</td>
<td>0.0125</td>
<td>0.0125</td>
<td></td>
</tr>
<tr>
<td></td>
<td>متغیر کارکن</td>
<td>استخراج با کمک میکروبی</td>
<td>0.0125</td>
<td>0.0125</td>
<td></td>
</tr>
<tr>
<td></td>
<td>متغیر کارکن</td>
<td>استخراج با کمک میکروبی</td>
<td>0.0125</td>
<td>0.0125</td>
<td></td>
</tr>
<tr>
<td></td>
<td>متغیر کارکن</td>
<td>استخراج با کمک میکروبی</td>
<td>0.0125</td>
<td>0.0125</td>
<td></td>
</tr>
<tr>
<td></td>
<td>متغیر کارکن</td>
<td>استخراج با کمک میکروبی</td>
<td>0.0125</td>
<td>0.0125</td>
<td></td>
</tr>
</tbody>
</table>

جدول 4- نتایج آزمون حذال غلظت باکتری کشی اساس بکه بایله حاصل از روشهای مختلف استخراج بر روی باکتری‌های گرم مثبت و گرم منفی نشان داده شد. حذال غلظت باکتری کشی باکتری‌های گرم مثبت در مقایسه با باکتری‌های گرم منفی کمتر بوده و به‌暹باست خاصیت بیشتری این باکتری‌های گرم مثبت در برای اساس بکه بایله خاصیت استخراج شده به کمک کروماتوگرافی و میکروبی نشان دهنده عدم وجود اختلاف آماری معناداری بین دو روشه استخراج می‌باشد. بر اساس محققیت‌ها باکتری‌های گرم مثبت در برای اساس بکه بایله خاصیت استخراج شده به کمک میکروبی اساس بکه بایله استخراج شده به کمک روشهای مختلف می‌باشد.
به‌عنوان اتحادیه‌ی آب و اثری که میکرو‌ویروسیون الرسین را به‌عنوان شیمی‌ای که در مسیر تولید پالاسیوس سروس در کاهش می‌کند، باعث شده است که در استخراج زمین‌های مختلف آماره‌ی مربوط به بی‌در شکل مایکرو‌ویروسیون باشد.

نتیجه‌گیری کلی
با این حال، باید به‌پیامدهای میکرو‌ویروسیونی اشاره کرد که در بیشتر وسایل استخراج مایکرو‌ویروسیونی در حال انجام است. این امر به‌عنوان یکی از شاخص‌های مهم سیستم‌های استخراج که در شرایط مختلف می‌تواند تأثیر بکریلیک و بکرینیک کانال‌های استخراج را در فاصله‌ی زمانی مختلف تغییر دهد. این نتایج می‌توانند به بازسازی سیستم‌های استخراج کمک نمایند.

مراجع
3- Şah Hesbini, R., Qorbani, J., Salaj, R., and Hamidi-Beygi, R. 1390. بررسی صفات کمی و کیفی اساس بذر به لیمو (Lippia citriodora).

4- مظفریان، و. 1394. درختان و درختچه‌های ایران. انتشارات فرهنگ معاصر، تهران، صفحه 1050.

24- Xiao, X., Song, W., Wang, J., & Li, G. 2012. Microwave-assisted extraction performed in low temperature and in vacuo for the extraction of labile compounds in food samples. Analytica Chimica Acta, 712:85-93.
Effect of different microwave-extraction methods on active components and antimicrobial activities of lemon verbena essential oils

Mohammad-Taghi Golmakani¹*, Armin Ghasemi², Mohammad Hadi Eskandari³, Mehrdad Niakosari⁴

1- Assistant Professor, Department of Food Science and Technology, School of Agriculture, Shiraz University, Iran
* Corresponding author (golmakani@shirazu.ac.ir)
2- M.Sc. Graduated Student, Department of Food Science and Technology, School of Agriculture, Shiraz University, Iran
3- Associate Professor, Department of Food Science and Technology, School of Agriculture, Shiraz University, Iran
4- Associate Professor, Department of Food Science and Technology, School of Agriculture, Shiraz University, Iran

Abstract

In this study, effects of different extraction methods, namely microwave-assisted hydrodistillation (MAHD) and solvent-free microwave extraction (SFME) were investigated in comparison with that of conventional hydrodistillation (HD) in terms of yield, active components, and antimicrobial activities (4 Gram-positive bacteria and 4 Gram-negative bacteria) of lemon verbena leaves essential oils (EOs). Gas chromatography/ mass spectrometry results indicated that geranial (25.54-28.53 %), neral (20.76-23.51 %), and limonene (11.21-12.51 %) were main active components of lemon verbena EOs. There were significant differences among active components of EO obtained by SFME method with those of HD and MAHD methods (P<0.05). Antimicrobial activity of lemon verbena EO obtained by SFME method was higher than those of HD and MAHD methods, which is due to its higher oxygenated components such as geranial (increased by 4.96-11.70%) and neral (increased by 4.09-13.24%). Hence, SFME method can be proposed as a fast, efficient, and selective alternative method for extraction of EO from medicinal plants.

Keywords: Antimicrobial activity, Essential oil, Extraction method, Lemon verbena leaf, Microwave
لینک های مفید

عضویت در خبرنامه
کارگاه های آموزشی
سرویس ترجمه تخصصی STRS
فیلم های آموزشی
بلاگ مرکز اطلاعات علمی
سرویس های ویژه