کارگاه‌های آموزشی مرکز اطلاعات علمی

مقاله نوبه‌ی علم انسانی

اصول تنظیم قرارداد‌ها

آموزش مهارت های کاربردی در تدوین و چاپ مقاله
ارزیابی تأثیر حذف حلال در استخراج به کمک ماکروویوب بر میزان ترکیبات مورث و فعالیت ضد ماکروویوب اساس برگ بدیلیمو

محمدرضا گلمندی، آرمین قاسمی، محمدهادی اسکندری، مهداد نیاکوترا

چکیده

در این تحقیق اثر روش‌های مختلف استخراج، تقطیر با آب به کمک ماکروویوب و استخراج به کمک ماکروویوب بدون حلال، بر بازده، ترکیبات مورث و فعالیت ضد ماکروویوب (کمک ماکروویوب بدون حلال، 24 ساعت) اساس برگ بدیلیمو مقایسه می‌شود.

تاریخ دریافت: 8/12/1394
تاریخ پذیرش: 14/11/1394

۱. استادیار بخش علوم و صنایع غذایی، دانشگاه کشاورزی، دانشگاه شیراز
(گولمندی@shirazu.ac.ir)

۲. دانش‌آموز کارشناسی ارشد بخش علوم و صنایع غذایی، دانشگاه کشاورزی، دانشگاه شیراز

۳. دانش‌آموز بخش علوم و صنایع غذایی، دانشگاه کشاورزی، دانشگاه شیراز

۴. دانش‌آموز بخش علوم و صنایع غذایی، دانشگاه کشاورزی، دانشگاه شیراز

برای استخراج اساسی از گیاهان دارویی پیشنهاد می‌شود.

مقدمه

استخراج، یکی از اساسی‌ترین مرحله جهت بیاینده و خالص‌سازی اساس از گیاهان دارویی می‌باشد. انتخاب روش استخراج به نوع گیاه، مواد موجود و همچنین درجه خوشصوحی نهایی بستگی دارد. روش تقطیر با آب، میتواند ترین روش استخراج اساسی می‌باشد. این روش نیازمند زمان طولانی استخراج بوده و علاوه
آنتزی اشاره کرد (2006). از انجایی که یکی از روش‌های انتقال حرات در روش استخراج به کمک ماکروویبو تابش می‌باشد. این امواج می‌تواند در کردن دانلی و موی‌پی عضوی اب درون سلول‌های موجود در دیواره سلولی و عضوی‌های حاوی سبزیجات و در نتیجه از اندورانت و غیره فراهم می‌گردد.

(Golmakani & Moayyedi, 2015; Rezvanpanah & Heidarkhani, 2010, a, b, 2012) انسان و (2001, 2008a, b) و Rezvanpanah و (2011) منتقدان در موضوعیات مختلف در نهایت توجه ساختاری (144 سال) در سال 2006 حرف و (Golmakani & Rezaei, 2008a, b), 2012) در این موضوع دو روش استخراج به کمک ماکروویبو به عنوان یک روش جدید نه تنها بر طبق کیفیت انسان اثر نامطلوبی ذخیره کلک در مقایسه با روش تقطیر با آب، منجر به کاهش قابل توجه ساختار (24 کیلوولت ساعت در 24 ساعت در برای 2 کیلوولت ساعت) گردید.

 algunos چای‌های تکیبی-عصاره Aloysia citrodora}

7 Solvent-free microwave extraction
ارزیابی تأثیر جذب خلال استخراج با کمک ماکروکروموی بر

موجود در اساس برگ بلهیمو شامل سیترال، لیمون، لیمونران، دیزل، دیزل، سنتونامه امی باشند. از نمونه‌های آبی ترکیبات عمده این اساس شامل لیمون، لیمونران، دیزل، دیزل، اینک-3-ال و ألفا کورکومامه امی باشند (مظفریان، 1394).

هدف از این تحقیق مقابله اثر روش‌های مختلف استخراج اساس برگ بلهیمو با کمک ماکروکروموی با فروش مداوم تقطیر با آب و بررسی ترکیبات موتره و فعالیت ضد میکروسکوپی استخراج شده می‌باشد.

مواد و روش‌ها

آماده‌سازی نمونه

برگ بلهیمو از یک های استان فارس در 20 شهریور 1391 جمع‌بندی گردید. جنس و گونه بلهیمو توسعه مختص هزارابی بخش زیست‌شناسی دانشگاه شیراز با شماره تبلیغ ۲۵۰ مورد تأیید قرار گرفت. برهگهای این گونه با روش دستی جدا و در دمای میکروفنر ۲۰ درجه سلسوس و رطوبت نسبی ۹۵ درصد به روش دستی جدا و در دمای میکروفنر ۲۰ درجه سلسوس و رطوبت نسبی ۹۵ درصد به روش دستی جدا و در دمای میکروفنر ۲۰ درجه سلسوس و رطوبت نسبی ۹۵ درصد به روش دستی جدا و در دمای میکروفنر ۲۰ درجه سلسوس و رطوبت نسبی ۹۵ درصد به روش دستی جدا و در دمای میکروفنر ۲۰ درجه سلسوس و رطوبت نسبی ۹۵ درصد به روش دستی جدا و در دمای میکروفنر ۲۰ درجه سلسوس و رطوبت نسبی ۹۵ درصد به

استخراج اساس برگ بلهیمو

روش تقطیر با آب به کمک الکترومنتی

اساس استخراج با این روش هم‌مانند استخراج با روش تقطیر با آب به کمک ماکروکروموی می‌باشد (شکل 1). این روش نسبت افزایش عمده آب موجود در برگ بلهیمو به درجه دنیا آب موجود در برگ بلهیمو به

1 Citral
2 Limonene
3 Geranial
4 Neral
5 1,8-Cineole
6 Geranial
7 1-octan-3-ol
8 α-Curcumene
تغییرات و کلاسیفیک‌سازی اساس برگ بهلمی شده با استفاده از کرومومتگرافی گازی/طیف بنف wenig جرم اساسی‌های استخراج شده به وسیله سولفات سدیم از آب، ششوک و به وسیله یک میلی لیتر نرمال هالان رقیق شدنی. پس از مخلوط کردن کاملاً استخراج، یک میکرولیتر از آن به دستگاه کرومومتگرافی گازی/طیف بنف wenig جرم اساسی‌های استخراج شده با استفاده از Agilent Technologies 7890A و مایکروتگرافی GC/MS (تغییرات گردیده) شامل دستگاه کرومومتگرافی GC/MS ساخت Agilent Technologies که نسخه آمریکا و طیف بنف wenig جرمی (مدل 5975C) ساخت کشور آمریکا, به دستگاه مایکروتگرافی GC/MS پخش گردیده، شکل تغییرات و به دست آورن کرومومتگرافی، شناسایی و تغییر مقدار هر یک از ترکیبات با استفاده از طیف جرمی آنها انجام شد. تعیین نوع ماده ورودی به طیف بنف wenig جرمی بر اساس داده‌های کتابخانه‌ای و Spectral Library (Edition/ NIST 2012 Mass Spectral Library (Upgrade)) ISBN: 978-1-118-61613-08) صورت گرفت. جهت محاسبه شاخه ماده، نمودن استانداردی از نرمال آلکانهای تحت همان برهمکاری ماده و سوانح را در پرده بسته گذری شکل. شاخه ماده ترکیبات GC/MS شکل موجود در اساس برگ بهلمی با استفاده از زمان ماند ترکیبات آلکانهای تغییرات شده، تعیین گردید.

خصوصیت‌های میکروبی اساس برگ بهلمی
برای ارزیابی اثر ضد میکروبی اساس برگ بهلمی، قطر هاله‌های معکوس از رشد، حداقل غلطات بازدارنده‌گی

شکل 1- استخراج اساس با روش‌های

![igrams](https://via.placeholder.com/150)
مرحله بعد به منظور تعیین حداقل غلظت باکتری کشی (MIC) و حداقل غلظت پاک‌کننده کشی (MBC) روي 4 باکتری گرم منبت استاتیلیوکوکوس اورتوس (PTCC:11112)، باسیلس سرتوس (PTCC:11111)، لوكوسنتورک مئوتورزیندیس (PTCC:1059)، استریلا مونینسانتورینزین (PTCC:13478) و 4 باکتری گرم منفی ارشتیاکی (PTCC:11764)، سالمانلا تابعی (PTCC:11679)، اتروبابتر کونیازورن (PTCC:12316) و سودوموناس پوپسیا (PTCC:12649) بررسی گردید.

نتایج به بحث

بازدهی و ماندگاری استخراج اساس برگ بایلامو زمان تکمیل استخراج اساس برگ بایلامو در روش تقطیر با آب به كمک الکترومنوتل 120 دقیقه در روست تقطیر با آب به كمک ماکروویزی 10 دقیقه و در روست ماکروویزی بدون خلوت 5 دقیقه می‌باشد. استخراج گردیده است. زمان استخراج هدف در روش تقطیر با آب به كمک ماکروویزی به دلیل انقراض سریع و همگن در حالت بسته کانونی می‌باشد. البته با توجه به تاببدون مقدار اساس در برگ بایلامو، روش‌های تقطیر با آب به كمک الکترومنوتل و ماکروویزی بدون خلوت تأثیر نسبی بر مقادیر نهایی اساس (به ترتیب 0.018 ± 0.02 و 0.023 ± 0.04 درصد) و با استخراج به كمک ماکروویزی نهایی باعث کاهش زمان استخراج هدف است. این نتایج با مطالبت در داده روابط استخراج اساس منتروسی انشنا به با هم روست تقطیر با آب به كمک الکترومنوتل و ماکروویزی به $1.2/1.2$ درصد وزنی (ویژه) می‌باشد.

اندازه‌گیري حداقل غلظت بازادارنگي و حداقل غلظت باکتری کشی

برای تعیین حداقل غلظت بازادارنگی و حداقل غلظت باکتری کشی از روش تعیین حساسیت در Rezvanpanah et al., 2010 محیط مایع استخراج گردید. حداقل غلظت بازادارنگی 2001 به منظور اندازه‌گیری حداقل گردید.

اندازه‌گیری حساسیت باکتری کشی

برای تعیین حساسیت باکتری کشی از روش تعیین حساسیت در Rezvanpanah et al., 2010 محیط مایع استخراج گردید. حداقل غلظت بازادارنگی 2001 به منظور اندازه‌گیری حداقل گردید.

1 Minimum inhibitory concentration
2 Minimum bactericidal concentration
ترکیبات اساسی برگ بالیمو

اساس برگ بالیمو استخراج شده به کمک روش‌های تقطیر با آب به کمک الکترومکتال و ماکروبروکت استخراج به کمک ماکروبروکت بدون حلال به وسیله استخراج بالیمو گرفته مورد ارزیابی قرار گرفته است.

در این مطالعه، به کمک ترکیبات موجود در اساس برگ بالیمو (بر منابع سطح زیر پیک اجزای کم‌تولیدی) را تشکیل گذاشت. می‌توانستن در اساس برگ بالیمو ترکیباتی ایجاد کنند. زانیال اصلی‌ترین ترکیب موجود در اساس برگ بالیمو (53/73-54/25) می‌باشد. بعد از زانیال، نرال (20/51-23/76) در رتبه دوم و لیمون (11/21-12/51) در رتبه سوم قرار داشتند. این نتایج با یافته‌های شاهحسینی و همکاران (2012) یکی می‌باشد.

GC/MS ترکیبات اساس در بر بالیمو را توسط شناسایی کرده‌اند. مطالعات داده‌اند. آنها نیز گزارش کرده‌اند که بالیمو، نرال و لیمون اصلی‌ترین ترکیبات اساسی برگ بالیمو می‌باشند. شاهحسینی و همکاران (2008) ترکیبات اصلی شناسایی شده در بالیمو آرانتزینی را زانیال
جدول 1- ترکیبات موجود در اساس برگ بادام زمین استخراج شده به کمک روش‌های مختلف

<table>
<thead>
<tr>
<th>روش استخراج اساس</th>
<th>شاخچ</th>
<th>زمان ماند (دقیقه)</th>
<th>نام ترکیب</th>
<th>رده‌بندی</th>
</tr>
</thead>
<tbody>
<tr>
<td>استخراج به کمک مایکروویو بدون حلال</td>
<td>1/15±0/20</td>
<td>385 ± 17</td>
<td>6-Methyl-5-hepten-2-one</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1/20±0/15</td>
<td>385 ± 17</td>
<td>Limonene</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1/25±0/20</td>
<td>385 ± 17</td>
<td>1,8-Cineole</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1/30±0/25</td>
<td>385 ± 17</td>
<td>(E)-β-Ocimene</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1/35±0/30</td>
<td>385 ± 17</td>
<td>α-Terpineol</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1/40±0/35</td>
<td>385 ± 17</td>
<td>Nerol</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1/45±0/40</td>
<td>385 ± 17</td>
<td>Neral</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>1/50±0/45</td>
<td>385 ± 17</td>
<td>Geraniol</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>1/55±0/50</td>
<td>385 ± 17</td>
<td>Geranial</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>1/60±0/55</td>
<td>385 ± 17</td>
<td>Geranyl acetate</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>1/65±0/60</td>
<td>385 ± 17</td>
<td>(E)-Caryophyllene</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>1/70±0/65</td>
<td>385 ± 17</td>
<td>Germacrene D</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>1/75±0/70</td>
<td>385 ± 17</td>
<td>α-Curcumene</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>1/80±0/75</td>
<td>385 ± 17</td>
<td>α-Zingiberene</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>1/85±0/80</td>
<td>385 ± 17</td>
<td>Bicyclergmacrene</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>1/90±0/85</td>
<td>385 ± 17</td>
<td>β-Curcumene</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>1/95±0/90</td>
<td>385 ± 17</td>
<td>Cubeb</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>1/100±0/95</td>
<td>385 ± 17</td>
<td>(E)-Nerolidol</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>1/105±1/00</td>
<td>385 ± 17</td>
<td>Spathulenol</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>1/110±1/05</td>
<td>385 ± 17</td>
<td>Caryophyllene oxide</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>1/115±1/10</td>
<td>385 ± 17</td>
<td>epi-α-Cadinol</td>
<td>21</td>
</tr>
</tbody>
</table>

* میانگین‌های ارائه شده با حروف مختلف در هر رده‌بندی به شکل معنی‌داری (در مطالعه اصلی 95 درصد) تعیین شده است. *
بررسی فعالیت ضد میکروگی اساس برگ بلیمو

قطره الکم وضعیت باکتری

نتایج قطره الکم وضعیت باکتری‌های گرم منفی و منفی
در اثر افزودن حجم‌های مختلف (5، 10 و 15
میکرولیتر) اساس برگ بلیمو استخراج شده با
روش‌های مختلف تقییر با آب به کمک الکترومنوت و
مایکروبوپ و همچنین مایکروبوپ بدون حلال در جدول
8 نشان داده شده است. به طور کلی، اگر چه اساس‌های
برگ بلیمو حلال از روش‌های مختلف استخراج بر
روی باکتری‌های گرم منفی بهتر از مایکروبوپ قابل قبول
بودند، اما بر روی باکتری‌های گرم منفی اثر
بازدارنده مناسب نبودند. این امر به خاطر این
است که دیواره سلولی باکتری‌های گرم منفی در طی
غشای بیروبی لایه‌ای قرار می‌گیرد. مقاوت‌های
باکتری‌های گرم منفی به‌صورت وقیحانه گشا و
غلیکولیزیست‌های باکتری‌های گرم منفی به
بی‌دیافری، دیافری سلولی و غشای باکتری را تخریب نموده و
منجر به خروج سیتوپلام می‌گردد (یرموند و
یسیکی، 2010). این مقاوت‌های گوناگون باکتری‌های گرم
منفی یک قاعده کلی نبوده و برخی محققین به مقاومت
مشابه و حتی بالاتر باکتری‌های گرم منفی نسبت به
باکتری‌های گرم منفی در برای اساس‌های نیز اشاره
نموده‌اند (اجاقی و همکاران، 2011). نتایج حاصل از
مقاومت الکم وضعیت باکتری‌های گرم منفی به
اختلاف بین حجم‌های مختلف اساس در مقایسه با
استفاده از حجم‌های مختلف در مقایسه با
متولید آیکلینیک نشان داد که حجم 15
میکرولیتر اساس برگ بلیمو مشابه با ضعیف‌تر از
تتراساکلین داشت. اما حجم‌های 10 و 15
میکرولیتر اساس بهتر از
تتراساکلین عمل کرده‌اند. در مورد باکتری‌های گرم
منفی، اگر حجم‌های 5 و 10 میکرولیتر اساس
ضعیف‌تر از تتراساکلین عمل کرده‌اند اما حجم
15 میکرولیتر اساس عملکرد بیشتر نسبت به تتراساکلین
از خود نشان داده است.

ارتباط مستقیم بین قطره الکم وضعیت باکتری‌های
با حجم اساس افزوده شده مشاهده گردید. با افزایش
حجم اساس، قطره الکم وضعیت باکتری‌های گرم مثبت
جدول 2 - قطع هاله عدم رشد باکتری‌ها (میلی‌متر) توسط استاس برک بایلیمو

<table>
<thead>
<tr>
<th>روش استخراج ساس</th>
<th>استخراج با کمکMaizkorio مصرف</th>
<th>پاسیکوس سروسو</th>
<th>استایلیکوکسوس</th>
<th>اوتروسوس</th>
<th>استروپاترئسوس</th>
<th>لیستریا</th>
<th>مونوسایتیوتزون</th>
<th>لیکوسایتیوتزون</th>
<th>منژنیوسایتیوتزون</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/36±1.02</td>
<td>1/4±1.02</td>
<td>1/8±1.02</td>
<td>5</td>
<td>2/36±1.02</td>
<td>1/4±1.02</td>
<td>1/8±1.02</td>
<td>5</td>
<td>2/36±1.02</td>
<td>1/4±1.02</td>
</tr>
<tr>
<td>2/36±1.02</td>
<td>1/4±1.02</td>
<td>1/8±1.02</td>
<td>5</td>
<td>2/36±1.02</td>
<td>1/4±1.02</td>
<td>1/8±1.02</td>
<td>5</td>
<td>2/36±1.02</td>
<td>1/4±1.02</td>
</tr>
<tr>
<td>2/36±1.02</td>
<td>1/4±1.02</td>
<td>1/8±1.02</td>
<td>5</td>
<td>2/36±1.02</td>
<td>1/4±1.02</td>
<td>1/8±1.02</td>
<td>5</td>
<td>2/36±1.02</td>
<td>1/4±1.02</td>
</tr>
<tr>
<td>2/36±1.02</td>
<td>1/4±1.02</td>
<td>1/8±1.02</td>
<td>5</td>
<td>2/36±1.02</td>
<td>1/4±1.02</td>
<td>1/8±1.02</td>
<td>5</td>
<td>2/36±1.02</td>
<td>1/4±1.02</td>
</tr>
<tr>
<td>2/36±1.02</td>
<td>1/4±1.02</td>
<td>1/8±1.02</td>
<td>5</td>
<td>2/36±1.02</td>
<td>1/4±1.02</td>
<td>1/8±1.02</td>
<td>5</td>
<td>2/36±1.02</td>
<td>1/4±1.02</td>
</tr>
<tr>
<td>2/36±1.02</td>
<td>1/4±1.02</td>
<td>1/8±1.02</td>
<td>5</td>
<td>2/36±1.02</td>
<td>1/4±1.02</td>
<td>1/8±1.02</td>
<td>5</td>
<td>2/36±1.02</td>
<td>1/4±1.02</td>
</tr>
</tbody>
</table>

جدول 3 حذال غلطت باردارنگی

جدول 3 حذال غلطت باردارنگی استاس‌های استخراج شده به کمک روشهای مختلف علیه باکتری‌های گرم منیف را نشان می‌دهد. حذال غلطت باردارنگی استاس برک بایلیمو برای باردارنگی باکتری‌های گرم منیف سبب به باکتری‌های گرم منیف کمتر بوده که نشان دهنده حساسیت بیشتر این باکتری‌ها در مقابل استاس برک بایلیمو می‌باشد. حساسیت باکتری‌های گرم منیف به دلیل عدم وجود دیواره بی‌ساختاری است. دیواره بی‌ساختاری باکتری‌های گرم منیف از ورود ترکیبات فعال به سیتوپلاسم جلوگیری می‌کند. مقاومت باکتری‌های گرم منیف در برابر ترکیبات ضد باکتری‌ها نسبت باکتری‌های گرم منیف در برابر ترکیبات ضد باک‌
جدول ۳- حداکثر غلظت بازدارنده (میلی گرم/آی‌اِل) اسکن برگ بابلیو استخراج شده بکه کمک روش‌های مختلف

| روش استخراج اساس | باکتری | تقطیر با آب کمک ماکروبوی یا/و | تقطیر با آب کمک | تقطیر با آب کمک ماکروبوی یا/و | باسیله سرونس | اسکنفیلوکوس اوروس | اسکنفیلوکوس نت‌پیوسته | فیبرالیمسا پیونیدا | سولموناس گرین | انتریکس متیلوس | سالسولیا باینی | اسکنفیلوکوس کرکی | حداکثر کشش
|------------------|--------|-----------------|----------------|-----------------|---------|----------------|----------------|-----------------|--------------|-------------|---------------|----------------|----------------|----------|

جدول ۴- نتایج آزمون حداکثر غلظت باکتری کشی اسکن برگ بابلیو حاصل از روش‌های مختلف استخراج بر روی باکتری‌های گرم مثلث و گرم منفی فاسد کننده

در نتیجه، حداکثر حفاظت باکتری کشی باکتری‌های گرم مثلث در مقایسه با باکتری‌های گرم منفی کمتر بوده که باگارد سخت‌سازی بیشتر این باکتری‌ها می‌گردد. برای استخراج باکتری‌های گرم منفی، این می‌شود که به دلیل وجود دیواره لیپوساکاریدی در باکتری‌های گرم منفی می‌باشد.

** 注释**: بعضی از محتوای ایرانی در این صفحه را می‌توانید بکه کمک روش‌های مختلف استخراج شده بایستی واقع کنید.
بنا به آب به کمک الکترومنتل و مايکروویو اختلاف ام‌ماری معنی‌داری وجود نداشت. اما فعالیت ضد میکروبی استخراج شده با روش‌های مختلف بالا به کمک الکترومنتل و مايکروویو بدون حال بیشتر نسبت به سپر روش‌ها بیشتر بود که به دلیل استخراج ترکیبات اکسیژن‌دار نظیر زنابیل بالین و نزول در این روش‌ها. از این رو، روش استخراج مايکروویو بدون حال به دلیل فعالیت ضد میکروبی قوی‌تر و زمان استخراج کوچتر می‌تواند در مقایسه معنی‌دار به جایگزین روش‌های سنتی استخراج انسان گردد.

نتیجه‌گیری کلی

خواص ضد میکروبی انسان برگ بی‌لیمو استخراج شده با روش‌های مختلف بالا به کمک الکترومنتل و مايکروویو بدون حال و ام‌ماری معنی‌داری وجود نداشت. اما فعالیت ضد میکروبی استخراج شده با روش‌های مختلف بالا به کمک الکترومنتل و مايکروویو بدون حال بیشتر نسبت به سپر روش‌ها بیشتر بود که به دلیل استخراج ترکیبات اکسیژن‌دار نظیر زنابیل بالین و نزول در این روش‌ها. از این رو، روش استخراج مايکروویو بدون حال به دلیل فعالیت ضد میکروبی قوی‌تر و زمان استخراج کوچتر می‌تواند در مقایسه معنی‌دار به جایگزین روش‌های سنتی استخراج انسان گردد.

منابع

1- اخایی، س. م.، رضایی، م.، حسینی، س. م.، حسینی، س. م.، مطافه، اصل. زبان‌های آشامی‌گذاری در برای بی‌لیمو با فعالیت ضد میکروبی استخراج (Cinnamomum Zeylanicum) غذایی، 35:23-47

2- بی‌لیمو، غ.، جامعه، م.، پرورشی، ز.، نخود، غ. و گل‌مانند. غ.، بررسی خاصیت میکروبی استخراج برگ‌های (Coriandrum Sativum) غذایی، 15:71-87

3- جامعه، غ.، پرورشی، ز.، گل‌مانند، غ.، بررسی فعالیت ضد میکروبی برگ‌های کوچک (Anethum graveolens) غذایی ایران، 1:49-68
Lippia (Citriodora)

24- Xiao, X., Song, W., Wang, J., & Li, G. 2012. Microwave-assisted extraction performed in low temperature and in vacuo for the extraction of labile compounds in food samples. Analytica Chimica Acta, 712:85-93.
Effect of different microwave-extraction methods on active components and antimicrobial activities of lemon verbena essential oils

Mohammad-Taghi Golmakani¹*, Armin Ghasemi², Mohammad Hadi Eskandari³, Mehrdad Niakosari⁴

¹- Assistant Professor, Department of Food Science and Technology, School of Agriculture, Shiraz University, Iran
* Corresponding author (golmakani@shirazu.ac.ir)
²- M.Sc. Graduated Student, Department of Food Science and Technology, School of Agriculture, Shiraz University, Iran
³- Associate Professor, Department of Food Science and Technology, School of Agriculture, Shiraz University, Iran
⁴- Associate Professor, Department of Food Science and Technology, School of Agriculture, Shiraz University, Iran

Abstract

In this study, effects of different extraction methods, namely microwave-assisted hydrodistillation (MAHD) and solvent-free microwave extraction (SFME) were investigated in comparison with that of conventional hydrodistillation (HD) in terms of yield, active components, and antimicrobial activities (4 Gram-positive bacteria and 4 Gram-negative bacteria) of lemon verbena leaves essential oils (EOs). Gas chromatography/mass spectrometry results indicated that geranial (25.54-28.53 %), neral (20.76-23.51 %), and limonene (11.21-12.51 %) were main active components of lemon verbena EOs. There were significant differences among active components of EO obtained by SFME method with those of HD and MAHD methods (P<0.05). Antimicrobial activity of lemon verbena EO obtained by SFME method was higher than those of HD and MAHD methods, which is due to its higher oxygenated components such as geranial (increased by 4.96-11.70%) and neral (increased by 4.09-13.24%). Hence, SFME method can be proposed as a fast, efficient, and selective alternative method for extraction of EO from medicinal plants.

Keywords: Antimicrobial activity, Essential oil, Extraction method, Lemon verbena leaf, Microwave
کار گاه‌های آموزشی مرکز اطلاعات علمی

مقاله نویسی علوم انسانی

اصول تنظیم قراردادها

آموزش مهارت های کاربردی در تدوین و چاپ مقاله