کارگاه‌های آموزشی مرکز اطلاعات علمی

مقاله نویسی علوم انسانی

اصول تنظیم قراردادها

آموزش مهارت های کاربردی در تدوین و چاپ مقاله
پرسی ویژگی های امولسیون اصلاح شده با اکتیل

یکی از روشهای رایج برای استفاده در صنایع غذایی اصلاح شده است. اگر اصلاح شده با اکتیل سَکسیٌیک اًیسضیس (OSA) در صنایع غذایی استفاده شود، نتایج جهت جدیدی نیز حاصل می‌گردد. لذا اصلی‌ترین هدف این مطالعه پژوهشی مورد مطالعه قرار گرفت. تغییر اپتی‌پاپیل‌های مولکول (مغول کامل) به صورت کامل، محلول و مصالح اصلاح شده با OSA نیز حاصل از این بود که مولکول کامل، محلول و مصالح اصلاح شده با OSA نیز حاصل از این بود که مولکول کامل، محلول و مصالح اصلاح شده با OSA نیز حاصل از این بود که مولکول کامل، محلول و مصالح اصلاح شده با OSA نیز حاصل از این بود که مولکول کامل، محلول و مصالح اصلاح شده با OSA نیز حاصل از این بود که مولکول کامل، محلول و مصالح اصلاح شده با OSA نیز حاصل از این بود که مولکول کامل، محلول و مصالح اصلاح شده با OSA نیز حاصل از این بود که مولکول کامل، محلول و مصالح اصلاح شده با OSA نیز حاصل از این بود که (بhosale & Singhal, 2006).
با توجه به مطالعه گفته شده، یکی از مهم‌ترین
تغییرات قابل انجام در هیدروکلنیک‌ها ایجاد
خصوصیت امولسیون‌کننده‌ها خیلی حاد و دچار
بی‌سرعت سازگاری پل هیدروکلنیک بی‌ام‌کرفیت
و عوامل سازگار بی‌بینی نمی‌شود.
نیمی کننده بکری که از روش‌های مختلفی در پایدار
امولسیون شرکت کننده حاصله از سنتز و
افراشی گرانیتی از بی‌پوسته می‌باشد، که به
این ترتیب در کنار تولید گیاهی چربی یکشاخ
برای نمونه آمیختن ۷ جلوگیری کرده با این نیمه را
به چند می‌رساند (قوری، ۲۰۱۴).

تاونک دانشمندان از روش‌ها و ترکیبات شیمیایی
مختلفی مانند حرارت دادن مشخصه با آمیوز بالا در
حضور مواد بهبودگر، واکنش ایجاد کننده گرانیتی
ایسید قرب، مدل استرها اسید چرب، اسید‌ها
القاتیکی، واکنش اکسید اکسیدی با آکیل
ایرسلات و واکنش اسید کننده با اولانات و بسیاری
Sarkar & Singhal, 2011; Morros et al., 2011
می‌توانست به نظر مرد که روش استفاده از دی
کروپکسیک اسید ایسیدی چرب بکربرد و
Bhosale & Singhal, 2006; Kim et al. (al., 2010).

آکیل سوکسینیک اسید (ASA)، به عنوان دی
کروپکسیک اندیریبیک (ASA)، به عنوان دی
کروپکسیک اندیریبیک (ASA) بکر آمتا نیز
موجود در ایسید امولسیون‌کننده‌ها باید از
پایدار برای انتخاب در انتخاب است
خصوصیت‌های ویژه ایجاد شده در صفحه
فروشکاری باید با درجه یک‌تایی باید با با
ایسید امولسیون‌کننده‌ها دچار
ولیمیت اسید بوده و بلندی زنجیره خیلی
آکیل
مختص کننده میزان حساسیت آگریزی آن می‌باشد
از نظر
Jeon et al., 1999; Tesch et al., 2002

مواد و روش‌ها

صفحه فارسی از جنگل‌های استان آذربایجان شرقی
جمع‌آوری شد. سایر هیدروکلنیک، هیدروکوکیک
اسید، نیکلیت ۸۰٪ از شرکت مرکز آلمن، اتانول ۶٪ و
اتانول خالص از صنایع شیمیایی گنور (قلم)،
ایزوپروپیونیک شرکت دکتر ملی (تهران، و
اکتین سوکسینیک اندیریبیک ۹۹/۵؛ از شرکت
Texas,) Dixie Chemical Company, Inc.

آمریکایی

1 Viscosity
2 Coalescence
ساعت در دمای بخار جلاده‌واری شد. اگه با افزودن pH (ب/ث, HCl) و با اسیدی NaOH (حدود 10-11 و دمای پراکنشها 180 درجه سانتی‌گراد) تنظیم شد. لازم به ذکر است که میزان pH نمایندگان Metrohm 827 و میزان pH توسط pH متري (Metrohm) توسط pH نمایندگان توسط pH متري (Metrohm) T.

<table>
<thead>
<tr>
<th>پراکنش</th>
<th>مقدار</th>
<th>توضیحات</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>3</td>
<td>محصول و ناحیه</td>
</tr>
</tbody>
</table>

درجه | تغییر | توضیحات |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>تغییر</td>
<td>5</td>
<td>محصول و ناحیه</td>
</tr>
</tbody>
</table>

1 Degree of substitution
یون کلر با استفاده از نیتروس نفت متفاوت شود.

برای انجام تست یون کلر، یک قطره نیترات نفت (1/100 نرمال) به مایع روی اضافه شده که وجود کلر به دلیل ایجاد کدروت سفید رنگ توسط کلر بایاد نشده بود. هنگامی که هیچ کدروت مشاهده نشد، ۳۰ میلی‌لیتر آب مقدار را روی نیترات شده و مخلوط در حمام آب جوش را مدت ۲۰ دقیقه حرارت داده شد. اگر با سیلیسمی هیدروکسید نرمال تیتر شد (فقط فعالیت با عنوان اندازه‌گیری استفاده شود) لازم به ذکر است که یک نمونه شاهد هم با صمغ فارسی طبیعی به طور همزمان تیتر شد و در نهایت میزان DS با استفاده از رابطه زیر محاسبه شد.

$$DS = \frac{162A}{1000 - 210A}$$

در این رابطه، A به برسی میلی مول در گرم نشانگر مقدار مول اکتنت سوکسیمیک اندزه‌برد در یک گرم از نمونه اصلاح شده و اعداد و ۱۰ و ۱۰۰ به ترتیب میکروت و وزن مولکولی کالکتو و اکتین سوکسیمیک اندزه‌برد می‌باشند. مقدار A به سیلیسمی رابطه زیر محاسبه می‌شود.

$$A = \frac{(V-V_0) \times 0.1}{0.5}$$

در رابطه ۲، V به همراه حجم مصرفی (بررسی میلی لیتر) محصل به وسیله صمغ NaOH اصلاح شده با اکتنت سوکسیمیک اندزه‌برد و صمغ اصلاح شده (نرمال)، وزن ماده اصلی برسی گرم و ۱/۰۰ غلت مولی سدیم هیدروکسید می‌باشد Scheffeler et al., 2010; Hui et al., 2009; Song)

(۲) FT-IR (Fourier transform infrared spectroscopy)

میزان ترین روش کمیفی برای آنالیز تغییرات هیدروکولونید این طرف سیمی فیروش تبدیل شده است. به همین دلیل، نتیجه بررسی تغییرات ایجاد شده در ساختار صمغ فارسی تغییرات یافته با شرایط بهبود صمغ کامل، بخش محلول و نامخلوط.

OSA تغییر تغییرات با ECI بررسی چربی امولسیون کندگی

ظرفیت امولسیون کندگی (ECI) نشانگر پیش‌ترین مقادیر روغنی که سیفاکتیشن در غلظت مشخص می‌تواند در طی دو هفته، بدون جداسازی فاز، در خود نکه‌دار (۱۹۹۸). برای تعیین ظرفیت امولسیون کندگی صمغ کامل فارسی به همراه محلول امولسیون‌هایی حاول غلظت مشخص از محلول صمغ (شامل ۲۰% در برابر) نسبت‌های مختلفی از روغن و تیتر سه تغییرات (جدول ۱)

برای تیتر امولسیون‌های روغن در آب، ابتدا پراکش‌ها و مقدار صمغ فارسی تغییر یافته با OSA به مقدار مشخص آب گرفته می‌باشد. مقادیر (نهايی مقدار روغنی که افزوده شده بود) با کمک همست کنترل مخلوط گردید (۲۴۱وی-وی) حجمی از امولسیون نهایی و با پس از جذب کامل آب (به مدت ۲۴ ساعت در دمای ۷۵ درجه سانتی‌گراد) دوباره هیدزونیتی ادامه پیدا کردند تا به مدت محدود بررسی فاز روغنی در امولسیون با صمغ کامل به مقدار ۱۰۰۰۰ rpm (کره جنبی) با ورود با (Wise Tis) مدت ۲ دقیقه همگی شد تا این امولسیون به بهبود شود Misonix و از ادامه به کمک همست سر فراصوت (Amiria (sonicator اغلب دارکر (۲۰۱۳/۱۰۰ دارای حرکت) ۲ دقیقه مدت ۸ دارکر امولسیون نهایی بهبود شد (پوسی و همکران، ۱۳۹۱).

قسط ۶ Emulsifying Capacity Index
جدول 1: ترکیب امولسیون‌های تهیه شده از صمغ کامل فارسی و بخش محلول اصلاح شده با OSA

<table>
<thead>
<tr>
<th>محلول اصلاح شده (شاهر)</th>
<th>مقدار روغن (w/v)</th>
<th>مقدار صمغ (w/v)</th>
<th>شماره</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>34 %</td>
<td>1/36</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>34 %</td>
<td>1/36</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>34 %</td>
<td>1/36</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>34 %</td>
<td>1/36</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>34 %</td>
<td>1/36</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>34 %</td>
<td>1/36</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>34 %</td>
<td>1/36</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>34 %</td>
<td>1/36</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>34 %</td>
<td>1/36</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>34 %</td>
<td>1/36</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>34 %</td>
<td>1/36</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>34 %</td>
<td>1/36</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>34 %</td>
<td>1/36</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>34 %</td>
<td>1/36</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>34 %</td>
<td>1/36</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>34 %</td>
<td>1/36</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>34 %</td>
<td>1/36</td>
<td>18</td>
</tr>
</tbody>
</table>

بررسی توانایی امولسیون کندگی (1)

جدول 2: ترکیب امولسیون‌های تهیه شده از بخش محلول OSA در مقدار روغن

<table>
<thead>
<tr>
<th>کم امولسیون (w/v)</th>
<th>مقدار روغن (w/v)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/36</td>
<td>0/68</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

بررسی میزان طبیعی امولسیون

بررسی میزان طبیعی امولسیون

(1) Emulsifying Activity Index

(2) Emulsification Stability Index

آزمایش متغیر و میزان جدایی فازی از زمان تهیه تا 4 چهار هفته گذشته در شرایط دامپی یخچال (43°C) با اندام همگیری شد. شاخص پایدار امولسیون (ESI) معمولاً برای مناسبی داندن سرعت است که در آن یک امولسیون امکان می‌شود. این شاخص را می‌توان بر اساس رابطه زیر محاسبه نمود (Huang et al., 2001):

\[ESI = \frac{100}{A} \times \frac{E}{A} \]

بررسی ریز ساختار امولسیون

تصویر ریزساختار امولسیون با کمک میکروسکوپ نوری (Olympus, زاینی) مجهز به دوربین دیدنیتال در پرگامینی 400x (حایض پرگامینی عدسی شیبی (4x) در عدسی چشمی (10x) پس از گذشت 4 هفته تکه‌داری در دمای یخچال به تهیه شد. برای این منظور یک قطره از نمونه همگن‌شده روى لام قرار داده شد و پس از لام‌گذاری و تنظیم میکروسکوپ،
تغییرات در سطح pH نمونه‌ها با استفاده از دوربین Dino-Lite مدل AM570E انجام شد. با دقت این نکته یک باید از همگی نمونه قبل از آلالیز اطمینان داشت.

بررسی ویژگی‌های رژولوژیکی امواجی

به منظور بررسی ویژگی‌های رژولوژیکی امواجی، تهیه شده از سطح محلول تغییر پذیر یا OSA و همچنین نمونه‌های شاهد از دسته‌گاه گرانولویی سنج (DV-III) برای پذیرش (Brookfield) مدل ULTRA استفاده گردید. با استفاده از شافول SC-48 این گرانولویی تقسیمات سرعت بریسی در تشکیل شده انداده‌گری و رفتار جریانی آنها در سرت سطح 1-4 گاز و درجه سانتیگراد پذیر شد.

ویژگی‌های رژولوژیکی صفحه فلزی تغییرات با OSA

به منظور بررسی ویژگی‌های رژولوژیکی صفحه فلزی با استفاده از OSA و شرایط تغییر پذیرفاکتورهای OSA در این مطالعه حسال گاز و درجه pH بپذیرید. این نکته که یک باید از همگی نمونه قبل از آلالیز استفاده می‌گردد.

تجزیه و تحلیل آماری

برای تجزیه آماری داده‌ها از نرم‌افزار آماری SPSS.19 نرم‌افزار استفاده شد. برای ترسیم نمودارها نیز نرم‌افزار Excel 2013 تحت ویندوز به کار برده شد. لازم به ذکر است که کلیه آزمون‌ها حداکثر 30 بار تکرار و میانگین آنها گزارش گردید.

نتایج و بحث

تبیین درجه جایگزینی صفحه فلزی تغییر پذیر یافته با شرایط پذیرش.

OSA

اصولاً فرآیند سرنگ صفحه فلسی‌سالح شده با OSA در محیط آب صورت می‌گیرد لذا محلول آبی برای
فیزیکی‌های امولسیون‌کننده صمغ فارسی اصلاح شده

واکنش ۱:

![Chemical Reaction 1](image1)

واکنش ۲:

![Chemical Reaction 2](image2)

(FT-IR) طیف سنجی فرورسخ تبدیل فوریه

شکل ۱ طیف فرورسخ صمغ کامل فارسی (الف)، بخش محلول (ب) و بخش نامحلول صمغ فارسی (ج) طبیعی (اشکال A) و همچنین طیف فرورسخ صمغ فارسی تغییر یافته در شرایط بهینه (اشکال B) را نشان می‌دهد. از انجایی که استریفیکاسیون صمغ فارسی با مولکول صمغ فارسی با گروه‌های کربنیل OSA منجر به جایگذاری گروه‌های هیدروکسی OSA می‌گردد.

لذا ایجاد گروه‌های کربنیل به وسیله طیف‌سنجی

فیزیکی فیزیکی‌های امولسیون‌کننده صمغ فارسی اصلاح شده، می‌باشد که به سمت بزرگ‌ترین تغییرات در طیف‌های جذب انجام پایدار بوده می‌باشد. در همین ارتباط با مقایسه طیف فیزیکی و C=O و C=O
شکل ۱: طیف FT-IR صمغ کامل فارسی (الف)، بخش محلول (ب) و بخش نامحلول صمغ فارسی (ج).

(طثیعی: A، تغییر یافتٍ در ؼرایط تُیىٍ: B)
مقاله اصلی و به‌عنوان اصلی امپلیسیون کننده صفحه 63

وزیگی‌نهایی امپلیسیون کننده صفحه‌ی فلزی تغییر

OSA

ظرفیت امپلیسیون کننده

پاداری ظاهری امپلیسیون‌ها براساس جداسازی نقطه‌ی فاز امپلیسیون در روز، هفته، دوم و چهارم مورد ارزیابی قرار گرفت. نتایج حاصل در جدول 1 از آن‌ها است. بررسی امپلیسیون‌ها 1 تا 8 نشان داد که

جدول 1: شاخص پاداری امپلیسیون‌های نهایی شده از بخش محلول و صفحه کامل فلزی تغییر یافته با صفحه OSA و بخش محلول طبیعی (شاهد) در غلظت تابث

<table>
<thead>
<tr>
<th>شماره امپلیسیون</th>
<th>روز</th>
<th>4 هفته</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>100/0.5</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>100/0.5</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>100/0.5</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>100/0.5</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>100/0.5</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>100/0.5</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>100/0.5</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>100/0.5</td>
</tr>
</tbody>
</table>

نحوه: در هر ستون نشان‌دهنده اختلاف معنی‌دار در سطح 795< % باشد. (P<0.05)
توانایی امولسیون کننده‌گی
جهت تعيين محدودهٔ توانایی امولسیون کننده‌گی امولسیون‌هاي مطلوب جدول ی تهيه شده. مطابق شكل 2 مقدار شاخص پایداري تمامي نمونه‌ها در غلظتهاي مختلف به‌صورت صغری‌تر (A, B, C, D) OSA يا ٔفته با نمونه‌هاي غبر غلظت/1،0 ان مندگاري در دماي 5 درجه سانتی‌گراد به مدت دو و چهار هفته، 100 درصد بود. اين نتایج حاکی از ٔن است كه با افزایش غلظت صغری از ٘7/0 به ٘1/2 وزني- حجمي، پایداري امولسیون به وزن‌يي بعد از ٘٠٠٠ هفته نگه‌داشته شدماي و سرعت خامعي شدن كاهش یافت. علت پایداري امولسیون در غلظتهاي صغری را مي‌توان به حركت آزادانهٔ فگران رونگ در سيمي‌ر داد كه در اين غلظتها صغری، نيروي‌هاي ضعيف و وسکور در هوايي بريگيرهار برخورد فگران رونگ كاي نفوذ و در اثر برخوردن با ٔکديرگر منجر به تجمد قطراي مي‌گردد كه درجهٔ لبنت واگذشته زمانی‌يي اثر افزایش برخوردين قطراي قطرو رونگن شده بروز پرآوري از قطراي قطرو در دولكه‌قوي و دولكه‌قو و حرکات براوني مي‌باشد. از اينرو براساس قانون استوکس، فگران رونگ قطراي برزگ از قطراي شکننده سرعت بالاتر اتقاف لبنت مي‌باشد (Mcclements, 2002; Dickinson, 2003)

نتايج نشان مي‌دهد كه تغييرات صغری با OSA توانسته است موجب ايجاد و به‌صورت صغير ناپيزي و مي‌ردي در صغير كامل فارسي و هم در بعضي محلول آن نمادي در رابطه با تويجيه احتمالي بروز چيني و بزيگي در صغير فارسي باید گفت كه در نتیجه انجام واقع استري نمادي. چيکاهاي آن‌گرز مشابههالايي آموزه‌كدر روست صغير فارسي افزوده شده و با تشکيل مونواستر، به دليل وجد مي‌گردد که آنهاً از اديي نيز در سطح هيدروکلوريد بيداري مي‌شود و بروز اين نغبيات علاوه بر خاصيت پاياردنگي و تغييراتن، تغييرات آنها به نويابدن امولسیون‌نگي در هيدروکلوريد، موجب ايجاد خصوصيت امولسیون کننده‌گي نيز مي‌گردد (Bhosale & Singhal, 2006). در غيرتوفت فگران طرق بيداري با OSA نيز آگارش شده است كه امولسیون تهيه شده با درصد ديدگي‌فرشيون نغير يافت با OSA و 5 درصد روغن در تركيب نهایي امولسیون، موجب پاياردنگي امولسیون به مدت 4 هفته در دماي 4 درجه (Scheffeler et al., 2010) سانتی‌گراد (ت مهمان نشان آيانتهاي نيز توانته OSA ۴ دربررسی مي‌گردد در امولسیون را بيداري نمادي. کاربرد نشانه‌دهنگي مي‌باشد با OSA به عنوان افزودن غذايي در اروپا (E1450) و مورد تاثيد مي‌باشد (Tesch et al., 2002)

![نمودار ESI (%)](image)
ریز ساختار امولسیون‌ها

احتمالاً یکی از دلایل پدیداری امولسیون‌های تهیه شده در این بررسی افزایش غلظت فاز پوسه‌شده می‌باشد که نتایج حاصل از اندازه‌گیری گرگان‌های ظاهری نیز موید این موضوع می‌باشد.

مقایسه تصاویر میکروسکوپی امولسیون‌های 1 تا 4

در OSA (مربوط به صع گلاس فارسی تصویر یافته با) غلظت‌های مختلف رغافته‌بر (با امولسیون‌های 10 تا 12

(مربوط به صع گلاس فارسی به عنوان میانی) به روشنی نتان می‌دهند (شکل 3) که اصلاح صع

فارسی با-stream به خوبی توانست در نسبت‌های 4.2 و

شکل 3: تصاویر میکروسکوپی امولسیون‌های 4–10 تا 13–15 مربوط به صع گلاس فارسی تصویر یافته با OSA و صع گلاسی طبیعی

فاز رغافته‌بر و غلظت صع: 7/10 ثابت و رغافته در نمونه 1 و 10/68 در 2 و 11/63/1/1 در 3 و 12/0/4 و در نمونه 4

و 13/2/8/2 درصد. پس از 4 هفته نگهداری در دمای یخچال (برگزمانی 400 میکرومن) (مقياس 50 میکرومن)

شکل 4: تصاویر میکروسکوپی امولسیون‌های 8–15 مربوط به صع گلاسی بخش محلول صع گلاسی تصویر یافته با OSA و بخش محلول صع گلاسی طبیعی.

غلظت صع: 7/10 ثابت و رغافته در نمونه 5 و 15/68 در 6 و 14/36 و 1/17 در 7 و 1/17 و در نمونه 8 و 10/68 درصد. پس از 4 هفته نگهداری در دمای یخچال (برگزمانی 400 میکرومن) (مقياس 50 میکرومن)

65 بررسی ویژگی‌های امولسیون کندگی صع فارسی اصلاح شده ...
که بی نتایج بسته‌اند از شاخ‌های پایداری امپلیسیون‌ها نیز (جدول ۳ مطابق داشت شاهد گوایی از بهبود ویژگی امپلیسیون‌کنندگی صمغ کامل فارسی تغییر یافته با او سیاکه می‌باشد.

همچنین، بررسی امپلیسیون‌های تا ۸ میلی کیلوگرم بیش محلول صمغ فارسی تغییر یافته با ویژگی‌های مختلف روش (در شکل ۴ نشان داده شده که بخش محلول صمغ فارسی تغییر یافته با امپلیسیون‌ها نیز تا ۳ برابر رفته با چهار از ۴ هفته امپلیسیون فارسی تغییر یافته با او بود ولی پس از ۴ هفته پایداری امپلیسیون کاهش یافت (جدول ۲) حتی به ۱ برابر شدن مقدار رفته نسبت به صمغ نیز به تدریج بسیار زیاد شد در همین طور که در شکل ۲ نشان داده شده بود ۱۰۰ نسبت به صمغ محلول صمغ امپلیسیون امکان پذیر و پایداری یافته با او شاهد این می‌باشد.

وسیبی‌های رولوژیکی امپلیسیون

مشاهده نموده‌ریزی رولوژیکی فلزی- سرعت برshi (الف) رولوژیکی ظاهری - زمان و تنش برشي- سرعت برشي (ب) امپلیسیون‌ها بخش محلول صمغ فارسی تغییر یافته با ویژگی‌های مختلف و مقدار OSAM یافته با ویژگی‌های مختلف و روش (در شکل ۵) نشان داده نشان داده که رفتار جریان امپلیسیون‌ها رفتار بسته و گرایشی تمام می‌باشد با سرعت ۴ میلی‌گرم بیشتری بیشتری
بررسی ویژگی‌های امولسیون کندکی صمغ فارسی اصلاح شده

ظاهری با افزایش سرعت برشی ثابت می‌شود و این موضوع نشان می‌دهد صمغ کامل فارسی تغییر یافته

شکل‌های ادغام ویژگی‌های ذوب کندکی صمغ فارسی با OSA

\(A \): 17/0\%، \(B \): 34/0\%، \(C \): 68/0\%، \(D \): 51/1\% (\% ×)، ج، ب، \(T \): 23/1\%/25\% در ضرعت‌های مختلف OSA در غلظت‌های مختلف.

\(T \): 23/1\%/25\% در ضرعت‌های مختلف OSA در غلظت‌های مختلف.

\(T \): 23/1\%/25\% در ضرعت‌های مختلف OSA در غلظت‌های مختلف.
پژوهش و نوآوری در علوم و صنایع غذایی، سال 1395، جلد 5، شماره 168

اف‌(جة) گرایش و تریخت گرایشی ب) گرایش و تریخت گرایشی (ظرعت تریخت) 55
(ظرعت تریخت) 155
تیخت تریخت (ظرعت تریخت) 155
تریخت تریخت (ظرعت تریخت) 155
(ظرع
نتیجه‌گیری
بیشترین درجه‌ی جایگزینی در شرایط بهینه در صمغ کامل فارسی 0.85/0.2 و در باختر محلول صمغ فارسی 0.3/0.3 بیان می‌آورد. با خیال یافتن استریفتکسیون با نبود، نتایج حاصل از آزمون طیف‌سنجی فروسر تبدیل فرم، تشکیل گروه‌های کربنول در صمغ فارسی تغییر یافته (بخش محلول و صمغ کامل فارسی) را تأثیر نمود. تغییر صمغ فارسی با کانتین سوکسلین (مبدل OSA) توانست موجب ایجاد و به‌جور خصوصی امولسیون‌کننده‌گری شود که در صمغ کامل فارسی و هم در باختر محلول آن شد. بررسی ریز‌آزمایش نام‌نوشته‌های امولسیون تهیه شده با OSA صمغ فارسی نگیران پایه (بخش محلول و صمغ کامل) می‌گردد. ذرات بسیار ریزتر و شاخ‌پایداری بالاتری نسبت به صمغ فارسی طبیعی نشان دادند. صمغ کامل فارسی در حالت طبیعی گران‌روی پایین‌تر نسبت به صمغ کامل فارسی OSA و همچنین بخش محلول صمغ فارسی طبیعی گران‌روی بالاتری نسبت به بخش محلول صمغ فارسی OSA غلظت بارب‌دار بود.

در حقیقت، بالاتر بودن گران‌روی صمغ کامل فارسی تغییر یافته با OSA نسبت به بخش محلول صمغ فارسی تغییر یافته با OSA، عامل اصلی بالاتری صمغ فارسی تغییر یافته با OSA.

منابع
1. عباسی، س. 1386. یافته و گران‌روی مواد غذایی: مفهوم و اندازه‌گیری. تأریخی (مالکوم بورن). چاپ اول، انتشارات مرز دانش، شیراز.
2. عباسی، س. محمدی، س. و حمیدی، س. 1390. جایگزینی یافته از زلاتین با صمغ فارسی و استفاده از گند برای تولید پاستلی فرآسومدنی. نشر مهندسی پویسیستم ایران، 121-121.
3. فیبری، م. 1384. هیدروکولون‌ها و کاربرد آنها در صنایع غذایی. نشر وی، 187.
4. محمدی، س. عباسی، س. و حمیدی، س. 1389. تأثیر برخی هیدروکولون‌ها بر پایداری فیزیکی و رژیم‌های رژیم‌زیکی و حسی مخلوط شیر-آب برتقی. مجله علوم تغذیه و صنایع غذایی ایران، 14-10-1.
5. بوسنی، ف. عباسی، س. و عزت پناه، ح. 1391. تأثیر میزان صمغ فارسی، روش، پروتئین و پ هاچ بر پایداری امولسیون. تهیه شده با فرصتی، تشریح پزوهش و تؤویری در علم و صنایع غذایی. (1383) 12-199.

Investigation of Emulsifying Properties of OSA Modified Persian Gum

Somayeh Mohammadi¹, Soleiman Abbasi²*

1- Former MSc. Student, Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, P.O. Box 14115-336, Tehran, Iran
2- Associate Professor, Food Colloids and Rheology Lab., Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, P.O. Box 14115-336, Tehran, Iran
* Corresponding author (sabbasifood@modares.ac.ir)

Abstract

One of the common esterification methods to develop functional properties such as emulsification, is to use octenyl succinic anhydride (OSA). Therefore, in this research, some of the functional properties of OSA modified Persian gum (whole, soluble and insoluble fractions) in the optimal conditions with high degree of substitution were investigated. The FT-IR spectroscopy confirmed the formation of carbonyl groups in OSA treated gums (PG and soluble fraction). In addition, our findings on emulsifying properties demonstrated that modification of PG and its soluble fraction by using OSA improved their emulsifying properties 6 and 4 times in comparison to their untreated counterparts, respectively. Moreover, the microstructure of emulsions contained high number of small particles and longer physical stability. Furthermore, rheological investigations showed that flow behavior as well as apparent viscosities were reasonably different than untreated PG and its soluble fraction.

Keywords: Emulsion, Esterification, Octenyl succinic anhydride, Persian gum, Rheology
کارگاه‌های آموزشی مرکز اطلاعات علمی

مقاله نویسی علوم انسانی

اصول تنظیم قراردادها

آموزش مهارت های کاربردی در تدوین و چاپ مقاله