تأثیر پاناسیم و نتش شکسکی بر شاخ‌های رشد و غلظت عناصر غذایی برگ گیاه گلرنگ

الهه عزیزان‌آبادی ۱، احمد گلچین ۱ و محمد‌امیر دلار ۱

(تاریخ دریافت: ۱۳۹۱/۹/۱۹؛ تاریخ پذیرش: ۱۳۹۲/۴/۷)

چکیده

به منظور بررسی تأثیر پاناسیم و نتش شکسکی بر شاخ‌های رشد و غلظت عناصر غذایی برگ گیاه گلرنگ، آزمایشگاه گلخانه‌ای با ۱۲ تیمار و ۴ رطوبتی در قالب طرح کامل تصادفی در گلخانه‌گره خاك از کشور تایوان به اجرا درآمد. نتایج نشان داد که نتش شکسکی به بهبود آزادی رشد و تولید محصول، تغییر طرح و وزن در گلرنگ پذیرفت و بهبودی رشد و بهبودی برگ‌های گلرنگ یافت. نتایج نشان داد که نتش شکسکی به بهبود آزادی رشد و تغییر طرح و وزن در گلرنگ پذیرفت و بهبودی رشد و بهبودی برگ‌های گلرنگ یافت.

واژه‌های کلیدی: کمبود آب قابل استفاده، صاف، تولید، تولید دانه

مقدمه

گلرنگ (Safflower) یکی از ایالات به یاد کارتامونومس Carthamus tinctorius L. از گیاهان دنبال کردی است که در منطقه وسیعی از زاین بارش آفرودا کشت می‌شود. گلرنگ گلرنگ دارای مواد رنگی کارتامین است که از آن برای رنگ‌آمیزی پارچه و کاغذ مصنوعی و در طبیعی و شریعتی استفاده می‌شود (۱). از این رو، کاربرد این گیاه در صنایع رنگ‌گزاری کاملاً رشد و به‌همین دلیل آن به‌عنوان دانه روانی، به‌خصوص به‌عنوان سیستم بیرون‌بودن اسید جلب‌گیری از این گیاه استفاده می‌شود (۲). مقدار تولید انگلیس در حالی است که مسیرهای اطراف این گیاه حل را تهیه می‌کند.

گلرنگ نزدیک‌های خانم و زهانی رشد و منابع انسانی است. این گیاه در خاک‌های لوام می‌شود و نمی‌تواند با اسید‌های مختلف را به‌بار آورده و دو میلی‌متر بالاتری از اسید‌های دیگر می‌تواند استفاده شود. در این مطالعه نشان داد که نتش شکسکی به بهبود آزادی رشد و تغییر طرح و وزن در گلرنگ پذیرفت و بهبودی رشد و بهبودی برگ‌های گلرنگ یافت.

غذای و حیات گیاهی: ۱۲

azizabadielahe@yahoo.com

www.SID.ir
مواد و روش‌ها

به منظور بررسی تأثیر پاسیوژ و نش خشکسی بر شاخص‌های رشد و فناوری غذایی در ویژه گل‌گامی، رنگ محلی اصفهان، آزمایش به‌صورت فاکتوریال در قالب طرح کاملاً
تصادفی با ۱۲ تیمار و ۳ تکرار به‌صورت تصادفی از اوایل تا اوایل بایس سال ۱۳۸۲ در گل‌خانه دانشگاه زنجان به
نحوی در آزمایش، یک تعداد هزار نمونه از کردن پنج‌شانه جامی تأمین
می‌شد. برای ساختن به‌صورت طبیعی گل‌گامی، به‌کار
ررد و عامل‌کردن آب‌می‌رساند. به‌طور کلی، مقاومت گل‌گامی
به خشکسی مشابه گذمه و چربی اضافه گیاه دانه رونتی
به خشکسی به‌صورت می‌رشد. (۵)

نشش خشکسی و گیاه مهم‌ترین عامل غیرنظامی است که
محدودکننده رشد و تولید گیاهان در جهان به‌شمار می‌رود
(۲۲ و ۲۳). امروز، یکی از مهم‌ترین شوایدی‌های مدیریت مزرعه
برای دستیابی به عملکرد طبیعی، رشد و جامعه گیاهی و عامل‌کردن
مناسب، تأمین آب‌می‌شود. به‌طوری که گیاه در مراحل
حساس رشد و دچار نشش طبیعی گردد، آب نش سیاره ممکن
در زندگی گیاه دردسر به‌اشتیهای مصرفی و افزایش
عملکرد به شمار می‌رود. با توجه به اینکه آب باید
ساع سود آب به‌صورت حداکثری دامنه آب، بیشترین عملکرد را
تولید کرد. در اثر نشش، افزایش آب قابل دسترس برای گیاه
کاهش و انرژی کم‌تری از آن آزاد می‌گردد. تعادل استحکام
به‌صورت خیشه‌های سرول سرول، حفظ شاخص استمی و
کاهش پتانسیل آب کمک می‌کند. (۳۲).

نتیجه‌گیری
درک و فاکتور گیاهان گوناگون به سبب یک سبب
مهم است. اما باید برف و به جای در افزایش مقاومت
گیاه به نش خشکسی، جدان آسانی و نظر به می‌رود.
برای کاهش نشان داده که باید به‌کار گاهان اتفاق آب از گیاه
به‌صورت بی‌خوابی و تعریق، باعث مقاومت به شکسته و
موجات افزایش عملکرد را در اثر نشش طبیعی فراهم
سازنده، این بالا pH سولو ساخت. به‌طور
پروتئینی و شرکت در علل کردن بسیاری از آنزیم‌ها، از
جمله فیگر، پاسیوژ و لیپنز دهانه گیاه، می‌باشد. بنابراین، گیاهان
می‌توان به کمک باید ان عصبی به‌کار گاهان
همین دلیل، این پژوهش با حفظ بررسی تأثیر سطح
مختلفی پاسیوژ بر شاخص‌های رشد و کاهش عناصر غذایی
برگ گیاه گل‌گامی، تحت شرایط نش خشکسی، انجام گردیده
به. (۶)

نتیجه‌گیری
درک و فاکتور گیاهان گوناگون به سبب یک سبب
مهم است. اما باید برف و به جای در افزایش مقاومت
گیاه به نش خشکسی، جدان آسانی و نظر به می‌رود.
برای کاهش نشان داده که باید به‌کار گاهان اتفاق آب از گیاه
به‌صورت بی‌خوابی و تعریق، باعث مقاومت به شکسته و
موجات افزایش عملکرد را در اثر نشش طبیعی فراهم
سازنده، این بالا pH سولو ساخت. به‌طور
پروتئینی و شرکت در علل کردن بسیاری از آنزیم‌ها، از
جمله فیگر، پاسیوژ و لیپنز دهانه گیاه، می‌باشد. بنابراین، گیاهان
می‌توان به کمک باید ان عصبی به‌کار گاهان
همین دلیل، این پژوهش با حفظ بررسی تأثیر سطح
مختلفی پاسیوژ بر شاخص‌های رشد و کاهش عناصر غذایی
برگ گیاه گل‌گامی، تحت شرایط نش خشکسی، انجام گردیده
به. (۶)
جدول 1. مشخصات فیزیکی خاک مورد آزمایش

| عمق خاک (cm) | هدایت الکتریکی (dS/m) | تایف خاک | گنجی خاک کناره‌ریز (تایف خاک) | چگالی (%)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20-0</td>
<td>0/718</td>
<td>7/33</td>
<td>15</td>
<td>30</td>
</tr>
</tbody>
</table>

جدول 2. غلظت عناصر خاک مورد آزمایش

| عناصر | فسفر | پتاسیم | روی | آهن | مونتر | مس | منقر | مقدار (mg/L)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>80</td>
<td>1/28</td>
<td>5/42</td>
<td>0/28</td>
<td>2/08</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

عملیات کاشت (در ابتدا 5 بونه در هر گلدان پس از جوان‌دند) و قیل از اعمال نش خشکی، تعداد بونه‌ها در هر گلدان به 2 عدد رسانده شد و در امان عمیقات برداشت در آبان ماه 1388 انجام شد. هنگام برداشت تمام برگ‌های گلدان برای تجزیه مورد نمودن در فرآیند تزریق رنگ و در پایان کار بونه‌ها از انها ساقه و از سطح خاک قطع شدند و توزین کار انجام شد. در آخر دوره رشد، و قیل از برداشت، ثبت جوابیات برگ به کمک کرویل مدل Leaf area meter و بر حسب

سطح برگ با استفاده از دستگاه

Minolta SPAD-52

از فناوری و همکاران (11) نشان داد که کاربرد آزمایش متصل می‌تواند بر ارتفاع گیاه بی‌بودین و انرژی (19) در گیاه گوجه‌فرنگی و سیب پژوهشگران (9)

41: نشان داد که کمربند نوشته بکار راه انداز گرم در گلدان و در نتیجه

غلظت عناصر بر مصرف (Mg و Ca، K، P) در

Mg

Ca

K

P

رودهای رایج آزمایشگاه توصیه شده توسط مؤسسه تحقیقات

خاک و آب، انتدازه‌گیری شد (4، 7) برای محاسبات آماری و

تجزیه واریانس داده‌ها، از نرم‌افزار MSTATC استفاده شد. مقایسه معیاریه‌ها نیز با استفاده از آزمون دانمانی دالکن

در سطوح احتمال 1/5/ انجام شد.

نتایج و بحث

شاخص‌های رشد گلدان

ارتفاع گیاه و سطح برگ

داههای به‌دست آمده از تجزیه واریانس داده‌ها نشان می‌دهد که

www.SID.ir
جدول 3. نتایج تجزیه واریانس اثر سطوح مختلف پنبه و تنظیمات بر شاخص‌های رشد گیاه گل‌نگر

<table>
<thead>
<tr>
<th>منابع تغییرات</th>
<th>سطح پنبه</th>
<th>سطح تنظیمات</th>
<th>ارتقاء گیاه</th>
<th>ارتقا گیاه</th>
<th>ارتقا گیاه</th>
<th>ارتقا گیاه</th>
<th>ارتقا گیاه</th>
<th>ارتقا گیاه</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24/21</td>
<td>45/12</td>
<td>3/98</td>
<td>95/18</td>
<td>5/7</td>
<td>65/62</td>
<td>K<sub>1</sub></td>
<td>K<sub>2</sub></td>
</tr>
<tr>
<td></td>
<td>9/7/43</td>
<td>7/5/26</td>
<td>4/99</td>
<td>4/99</td>
<td>9/99</td>
<td>55/55</td>
<td>K<sub>1</sub></td>
<td>K<sub>2</sub></td>
</tr>
</tbody>
</table>

میانگین‌هایی که حداکثر یک حرف مشترک دارند، از لحاظ آماری اختلاف معنی‌دار با هم ندارند.

جدول 4. تأثیر سطوح مختلف پنبه بر شاخص‌های رشد گیاه گل‌نگر

<table>
<thead>
<tr>
<th>سطح پنبه</th>
<th>رطوبت نسبی برگ</th>
<th>وزن خشک گیاه (کرم در گلدان)</th>
<th>شاخص کرومافور (سانتی‌متر‌مربع)</th>
<th>شاخص کرومافور (سانتی‌متر‌مربع)</th>
<th>شاخص کرومافور (سانتی‌متر‌مربع)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>7/83/26</td>
<td>3/98</td>
<td>95/18</td>
<td>4/99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7/83/26</td>
<td>3/98</td>
<td>95/18</td>
<td>4/99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7/83/26</td>
<td>3/98</td>
<td>95/18</td>
<td>4/99</td>
</tr>
</tbody>
</table>

میانگین‌هایی که حداکثر یک حرف مشترک دارند، از لحاظ آماری اختلاف معنی‌دار با هم ندارند.

امکانات آن به طور معنی‌داری ارتقاء گیاه و سطح پنبه را کاهش داد. اثر مقابل بیان‌شده و تنظیمات بر شاخص‌های بر ارتقاء گیاه گل‌نگر در سطح تحت‌الкамی (83/24 سانتی‌متر) و امر برتر از پژوهشگران به نشان می‌دهد. سطح پنبه به عنوان یک عامل برجسته‌تری نشان دهنده فشار اzáمری و سهم در
جدول ۶ اثر منفی پاتاسیم و نش خشکی بر ارتفاع گیاه گلبرگ

<table>
<thead>
<tr>
<th>T_v</th>
<th>T_w</th>
<th>T / K</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵۰/۸۹</td>
<td>۷۰/۵۵</td>
<td>K_v</td>
</tr>
<tr>
<td>۴۵/۰۳</td>
<td>۶۵/۵۶</td>
<td>K_w</td>
</tr>
<tr>
<td>۴۰/۲۰</td>
<td>۵۳/۰۲</td>
<td>K_{vw}</td>
</tr>
</tbody>
</table>

میانگین هایی که حداکثر یک حرف مشترک دارند، از لحاظ آماری اختلاف معنی‌داری با هم ندارند.

جدول ۷ اثر منفی پاتاسیم و نش خشکی بر سطح برگ گیاه گلبرگ

<table>
<thead>
<tr>
<th>T_v</th>
<th>T_w</th>
<th>T / K</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵/۱۷</td>
<td>۳/۸۲</td>
<td>K_v</td>
</tr>
<tr>
<td>۴/۵۷</td>
<td>۴/۸۴</td>
<td>K_w</td>
</tr>
<tr>
<td>۴/۵۴</td>
<td>۴/۶۶</td>
<td>K_{vw}</td>
</tr>
</tbody>
</table>

میانگین هایی که حداکثر یک حرف مشترک دارند، از لحاظ آماری اختلاف معنی‌داری با هم ندارند.

قوه‌سنجی و کیفیت کاهش مشاهده شده کردنی که افراشی سطح کاسیمی ۱۵۰ میلی‌گرم در لیتر باعث افزایش معنی‌دار میزان بیوبس ساقه و قوی‌سنجی گردد. در حالی که سطح بالاتر پاتاسیم (۱۵۰ میلی‌گرم در لیتر) باعث کاهش شدید پاتاسیم بود که با نتایج این تحقیق هم‌خوانی دارد. وقتی غلظت مواد غذایی در گیاه خیلی کم بود، مقدار نیز کم است. با افزایش قابلیت جذب ماده غذایی آب‌دشت رشد و مقدار ماده غذایی در گیاه تبر زیاد می‌گردد و به میزانی که سطح غلظت نامناسب می‌شود می‌رسد. بنابراین افراشی مقدار سطح غذایی در گیاه باعث افزایش عملکرد نمی‌شود (۸).

اثر ننش خشکی بر شاخه کارفوریل برگ گیاه در سطح احتمال ۷۵ معنی‌دار شد (جدول ۳). افراشی سطح ننش خشکی، شاخه کارفوریل برگ گیاه پاتاسیم داد و پیشین‌ترین شاخه کارفوریل برگ گلبرگ (۷۳/۶۷) از تیمار آبیاری در رطوبت ۵۴ درصد طرفیت مزرعه و کمترین شاخه کارفوریل برگ گلبرگ (۷۵/۲۲) از تیمار شاهد (آبیاری در رطوبت ۱۰۰ درصد طرفیت مزرعه) انداره گیری شد (جدول ۵). احتمال و

شاخه کارفوریل برگ

نتایج به‌دست آمده از تجزیه واریانس داده‌ها (جدول ۳) نشان می‌دهد که سطح مختلف پاتاسیم تأثیر معنی‌داری در سطح احتمال ۱/۵ بر شاخه کارفوریل برگ گیاه گلبرگ دارد. افراشی مصرف پاتاسیم باعث افزایش شاخه کارفوریل شد و بیشترین شاخه کارفوریل (۷۷/۸۲) در تیمار ۳۳۰ میلی‌گرم پاتاسیم در کیلوگرم خاک به‌دست آمد (جدول ۴). یانگ و همکاران (۴۰) در بررسی اثر سطح مختلف پاتاسیم روي رشد، وزن و چهار
جدول 8. اثر مقیاس سطح مختلف پتاسیم و تش خشکی بر شاخه کارولفلای بر گ

<table>
<thead>
<tr>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>K/ K</th>
</tr>
</thead>
<tbody>
<tr>
<td>56/59 d</td>
<td>61/64 d</td>
<td>66/69 d</td>
<td>71/74 d</td>
<td>13/16</td>
</tr>
<tr>
<td>61/64 d</td>
<td>66/69 d</td>
<td>71/74 d</td>
<td>76/79 d</td>
<td>18/21</td>
</tr>
<tr>
<td>66/69 d</td>
<td>71/74 d</td>
<td>76/79 d</td>
<td>81/84 d</td>
<td>23/26</td>
</tr>
<tr>
<td>71/74 d</td>
<td>76/79 d</td>
<td>81/84 d</td>
<td>86/89 d</td>
<td>28/31</td>
</tr>
</tbody>
</table>

میانگین هایی که هر یک یک حرف مشترک دارند، از لحاظ آماری اختلاف معنی‌داری با هم ندارند.

در بافت‌های کمی مکانی به‌علاوه، غلیظ‌تری، غلیظ‌تری و بالون آب درون سلولی به‌وسیله پتاسیم، آب‌سیزی در نهایت می‌شود. به‌طور کلی، تاثیر تش خشکی بر میزان رطوبت نسبی برگ گیاه کارولفن در سطح اختلاف 1/2 معنی‌دار دارد (جدول 3). با افزایش سطح تش خشکی، میزان رطوبت نسبی برگ کاهش یافته (جدول 3). بیشترین میزان رطوبت نسبی برگ (78/26 درصد) در تیمار شاهد (آب‌پذیری در سطح 100٪) و ترکیبی از گیاه در طول مدت متوسط و در حالت تش خشک و در حالت تش خشک همچنین رطوبت بیشتر برگ‌های گیاه در تیمار شاهد نسبت به تیمارهای دیگر در تیمار خشک کاهش داشته، همچنین، آنها معمولاً بودند که هر یک از گیاه پاناسیاب سلولی نسبی آب خاک، پاناسیاب آن منفی تقسیم شده و جذب آب برای یک مسکل ماند. در این جدول، میزان آب جذب شده توسعه گیاه کاهش یافته و در نتیجه میزان این در بافت‌ها تقلید می‌پذیرد (11، 12 و 13). این نتایج با نتایج سایر پژوهشگران (21، 22) و (34 و 35) همخوانی داشت. اثر مقیاس پتاسیم و تش خشکی بر میزان رطوبت نسبی برگ کارولفن معنی‌دار ندارد (جدول 3).
تأثیر ناساز و نشان شکلی بر شاخص‌های رشد و غله‌شک عصاره غذایی

وژن خشک اندازه‌های هوایی

نتایج بدست‌آمده از تجزیه و تحلیل متغیرهای سطوح مختلف ناساز تأثیر معناداری در سطوح احتمال 0.1/ بر وزن خشک اندازه‌های هوایی که گردنگی دارد (جدول 3). افزایش مصرف ناساز باعث افزایش وزن خشک اندازه‌های هوایی شد و بیشترین وزن خشک اندازه‌های هوایی 543 گرم در گلدان با کاربرد 320 میلی‌گرم‌پتاسیم در کیلوگرم خاک به‌دست‌آمد (جدول 4). وزن خشک اندازه‌های هوایی سطوح 130 و 180 میلی‌گرم‌پتاسیم گردنگی خاک در پک گرد به‌دست‌آمد. آماره‌سازی‌هایی در پروژه‌هایی که تأثیر روتی به‌کارگیردن و گوچرگیری ناشان دادند نشان داد که پاسخ تأثیر معناداری با وزن خشک گیاه در دسترس خواهد بود. زمانی که مقدار محاسبات شبکه عصبی موردنظر تغییر نمی‌کند. فشار خواهد بود به‌طور معمول (طبق آزمونانه) آن سطح. وزن خشک گیاه در دسترس برخی پاسخ‌ها و رشد بایست. گیاه به‌عنوان تکثیف موردنظر نبود و رشد آن بایست. هم‌زمان‌ها ماهی شکل تنی‌لایدی افزایش می‌یابد (11، 12 و 13).

تأثیر نشان شکلی بر وزن خشک اندازه‌های هوایی گیاه

گردنگی در سطح احتمال 0.1 معنادار بود (جدول 3). نشان شکل تنی‌لایدی افزایش وزن خشک اندازه‌های هوایی گردنگی و بیشترین وزن خشک اندازه‌های هوایی 623 گرم در گلدان در افزایش آب‌بری در رطوبت 100 درصد در مصرف 324 میلی‌گرم‌پتاسیم در کیلوگرم خاک (جدول 5). کاهش وزن خشک اندازه‌های هوایی با افزایش نشان شکل تنی‌لایدی افزایش توزیع افزایشی و هم‌زمان‌ها شده است. هنگامی که وزن خشک شکل، گیاه روندهای خود را بسط‌دهد و این امر باعث کاهش میزان کربن گروه است و فتوتری این می‌شود. به‌علاوه، نبودن غاره‌های سلولی مانع از قسمت‌سازی شده‌که کاهش وزن خشک گیاه با افزایش نشان شکل تنی‌لایدی افزایش می‌یابد (11 و 12). می‌توان باعث کاهش میزان گروه حیاتی گیاه شده که این جهت. رطوبت خاک هم‌زمان‌ها کاهش انقلا مواد غذایی به سطح رشدی...
جدول 9. تأثیر سطوح متقابل پتانسیم و تنش خشکی بر وزن خشک اندازه‌های هوای گیاه گل‌رنگ

<table>
<thead>
<tr>
<th>T_{p}</th>
<th>T_{r}</th>
<th>T_{w}</th>
<th>T/K</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/25</td>
<td>2/12</td>
<td>2/22</td>
<td>K_{a}</td>
</tr>
<tr>
<td>3/95</td>
<td>2/54</td>
<td>2/99</td>
<td>K_{b}</td>
</tr>
<tr>
<td>4/29</td>
<td>2/62</td>
<td>5/07</td>
<td>K_{c}</td>
</tr>
<tr>
<td>4/83</td>
<td>2/89</td>
<td>5/59</td>
<td>K_{d}</td>
</tr>
</tbody>
</table>

میانگین هایی که حداکثر یک حرف مشترک دارند، از لحاظ آماری اختلاف معنی‌داری با هم ندارند.

جدول 10. نتایج تجزیه واریانس اثر سطوح مختلف پتانسیم و تنش خشکی بر غلظت عناصر برگ گیاه گل‌رنگ

منابع تغییرات (میلی گرم بر کیلوگرم) | $c(i)/i$ | میانگین | آهن | هوا | رسوب | $CV(i)$ |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>سطوح پتانسیم</td>
<td>1/07</td>
<td>1411/32</td>
<td>1232</td>
<td>1379/31</td>
<td>1539/34</td>
<td>1/24</td>
</tr>
<tr>
<td>سطوح نش</td>
<td>2/23</td>
<td>1498/21</td>
<td>1589/19</td>
<td>1279/28</td>
<td>1594/27</td>
<td>1594/27</td>
</tr>
<tr>
<td>0/77</td>
<td>2/49</td>
<td>2/49</td>
<td>2/49</td>
<td>2/49</td>
<td>2/49</td>
<td>2/49</td>
</tr>
<tr>
<td>0/75</td>
<td>2/42</td>
<td>2/42</td>
<td>2/42</td>
<td>2/42</td>
<td>2/42</td>
<td>2/42</td>
</tr>
<tr>
<td>0/70</td>
<td>2/37</td>
<td>2/37</td>
<td>2/37</td>
<td>2/37</td>
<td>2/37</td>
<td>2/37</td>
</tr>
<tr>
<td>0/67</td>
<td>2/32</td>
<td>2/32</td>
<td>2/32</td>
<td>2/32</td>
<td>2/32</td>
<td>2/32</td>
</tr>
</tbody>
</table>

** و *** به ترتیب معنی‌دار در سطوح ۱ و ۵ درصدی و بدون اختلاف معنی‌دار.

جدول 11. تأثیر سطوح مختلف پتانسیم بر غلظت عناصر غذایی برگ گیاه گل‌رنگ

<table>
<thead>
<tr>
<th>سطح پتانسیم</th>
<th>$c(i)/i$</th>
<th>میانگین</th>
<th>آهن</th>
<th>رسوب</th>
<th>$CV(i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(میلی گرم بر کیلوگرم)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

میانگین‌هایی که حداکثر یک حرف مشترک دارند، از لحاظ آماری اختلاف معنی‌داری با هم ندارند.

سطح احتمال ۱ معنی‌دار شد (جدول 10). با افزایش نش خشکی، غلظت نیترژن برگ کاهش یافته و بیشترین غلظت نیترژن برگ (۳/۷۴ درصد) در نیتری کرده در رطوبت ۱۰۰ درصد نش خشکی و غلظت نیترژن برگ در نیتری کرده در رطوبت ۲۰ درصد نش خشکی به‌طور گسترده‌ای اندازه‌گیری شد. نشان داد که با تناوب این پروژه، هماهنگی دارد. همان‌طور که نتایج نشان داد (جدول 10) با افزایش مصرف پتانسیم، وزن خشک گیاه افزایش یافت. بنابراین، با تغییر می‌تواند دلیل بر کاهش غلظت نیترژن برگ با افزایش سطح پتانسیم خاک باشد.

اثر نش خشکی بر غلظت نیترژن برگ در گیاه گل‌رنگ در
جدول 12. تأثیر سطح مختلف تنظیم تنخیزی بر غلظت عناصر غذایی برگ گیاه گلرینگ

<table>
<thead>
<tr>
<th>سطح تنظیم (میلی‌گرم بر کیلوگرم)</th>
<th>فسفر</th>
<th>نیترات</th>
<th>کلسیم</th>
<th>مغنيسیوم</th>
<th>رژه</th>
<th>مس</th>
<th>آهن</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/05</td>
<td>69/6%</td>
<td>0/74%</td>
<td>33/09%</td>
<td>0/28%</td>
<td>0/30%</td>
<td>0/57%</td>
<td>0/72%</td>
</tr>
<tr>
<td>0/10</td>
<td>69/6%</td>
<td>0/74%</td>
<td>33/09%</td>
<td>0/28%</td>
<td>0/30%</td>
<td>0/57%</td>
<td>0/72%</td>
</tr>
<tr>
<td>0/15</td>
<td>69/6%</td>
<td>0/74%</td>
<td>33/09%</td>
<td>0/28%</td>
<td>0/30%</td>
<td>0/57%</td>
<td>0/72%</td>
</tr>
<tr>
<td>0/20</td>
<td>69/6%</td>
<td>0/74%</td>
<td>33/09%</td>
<td>0/28%</td>
<td>0/30%</td>
<td>0/57%</td>
<td>0/72%</td>
</tr>
</tbody>
</table>

میانگین هایی که حداکثر یک حرف مشترک دارند، از لحاظ آماری اختلاف معنی‌داری با هم ندارند.

ماده‌هایی که از جاذب اکثریت دارند، نشان می‌دهند که این ماده‌ها به عنوان کاهشکن‌های غذایی تلقی می‌شوند.

جدول 13. تأثیر رطوبت، سرعت انتشار و همچنین یون آمونیوم و نیترات به سطح تنظیم کاهش یابند و کیفیت نتیجه گرفته نیترات در بینفه‌های گیاه کمک می‌کند (11 و 12). کاهش و همکاران (12) نشان دادند که تنظیم شکلی بیشتر غلظت نیتروژن برگ در گیاه آفتابیگرانی شد. این مقیاس تنظیم و نشکش بی‌غلظت با غلظت نیتروژن برگ گیاه گلرینگ معنی‌دار نیستند (جدول 13).

فسفر

نتایج به‌هم‌دارند از تجربیه‌های واریانس داده‌ها نشان می‌دهد که اثر سطح تنظیم بر غلظت فسفر برگ در گیاه گلرینگ در سطح احتمال 0/05 معنی‌دار است (جدول 13). مقایسه میانگین‌هایی داده‌ها نشان داد که افزایش سطح تنظیم، غلظت فسفر برگ از 0/27 به 0/32 درصد کاهش یافت (جدول 11 و 12). کاهش و همکاران (11) نشان دادند که افزایش غلظت تنظیم در محصول غذایی موجب کاهش غلظت فسفر در برگ فلایی گردید. کاهش غلظت فسفر برگ با افزایش مصرف تنظیم، ممکن است به دلیل فاکتور رنگ و افزایش رنگ و نوآوری کاهش باشد.

اثر تنظیم بر غلظت فسفر برگ گیاه گلرینگ در سطح احتمال 0/05 معنی‌دار شد (جدول 13) و تنظیم کبودریختی این مقیاس است که کشفیه‌ای از طریق فرآیند انتشار به سطح ریشه گیاه منقل و

73
جدول 13 اثر مقیاس تناسب و تنش خشکی بر غلظت فسفر برگ گیاه گل‌رنگ

<table>
<thead>
<tr>
<th>T₀</th>
<th>T₁</th>
<th>T₂</th>
<th>K/K</th>
</tr>
</thead>
<tbody>
<tr>
<td>%5</td>
<td>29</td>
<td>0.28</td>
<td>ab</td>
</tr>
<tr>
<td>%2</td>
<td>27</td>
<td>0.27</td>
<td>a</td>
</tr>
<tr>
<td>%3</td>
<td>24</td>
<td>0.26</td>
<td>abc</td>
</tr>
<tr>
<td>%3</td>
<td>25</td>
<td>0.26</td>
<td>abc</td>
</tr>
<tr>
<td>%3</td>
<td>26</td>
<td>0.26</td>
<td>abc</td>
</tr>
</tbody>
</table>

منابع‌های که حداکثر یک حرف مشترک دارند، از نظر آماری اختلاف معنی‌داری با هم ندارند.

احتمال 1% معنی‌دار شد (جدول 10) و افزایش تناسب خشکی توسط کل‌پسم برگ گردنیک (جدول 12) کاهش و
همكاران (18) نتایج مشابه را گزارش نمودند. کل‌پسم عمده در گازیون تودهای بی‌سره گیاه، منفلت و جذب می‌شود که به میزان رطوبت خاک باعث محدود شدن انتقال کل‌پسم به سطح ریشه نشده و در نتیجه تغییر می‌یابد. کاهش تبخیر و تعرق نیز می‌تواند شرایط تناسب خشکی یک بیلی‌گری بر کاهش جذب و توزیع کل‌پسم در گیاه بی‌ماسد (11)، 12 و 13 اثر مقیاس تناسب و تنش خشکی بر غلظت کل‌پسم برگ در سطح احتمال 1% معنی‌دار شد و بیشترین غلظت کل‌پسم برگ گیاه گل‌رنگ (2/82 تومید) در تیمار K₁₀₀T₁₀₀ و کمترین غلظت کل‌پسم برگ گیاه گل‌رنگ (0/61 تومید) در تیمار K₂₃₀T₃₀

Kay می‌تواند از تجربه وارونان داده‌ها (جدول 10) نشان دهد که اثر سطح تناسب بر غلظت کل‌پسم برگ گیاه گل‌رنگ، در حالی است که تناسب معنی‌دار است. افزایش تناسب می‌تواند غلظت کل‌پسم برگ در گیاه گل‌رنگ گردد.

روی

با توجه به جدول 11، افزایش تناسب مصرفی تا سطح 180 میلی‌گرم در کیلوگرم خاک، سبب افزایش غلظت روي و در سطوح بالاتر سبب کاهش غلظت روي در برگ گیاه گل‌رنگ گردید. تجربه به‌همین‌روضه، اثر تناسب وارونان داده‌ها (جدول 10) نشان می‌دهد که اثر تناسب بر غلظت روي در برگ، در سطح احتمال 1% معنی‌دار می‌باشد. فاکتور رقیت
می‌تواند در دلیل کاهش غلظت روي در برگ افزایش مصرف تناسب باشد. تناسب با افزایش رشد و تولید بیشتر سطح دشت که توجه که کاهش غلظت روي می‌شود. آن‌ها (16) در آرمانی عوامل به کاهش مقدار روي در برگ در اثر مصرف

کل‌پسم

نتایج بخش آمده از تجربه وارونان داده‌ها (جدول 10) نشان می‌دهد که اثر سطح تناسب بر غلظت کل‌پسم برگ گیاه گل‌رنگ، در حالی است که تناسب معنی‌دار است. افزایش تناسب می‌تواند غلظت کل‌پسم برگ در گیاه گل‌رنگ گردد.

جدول 11 (بدسته بسته آمده از تجربه وارونان داده‌ها (جدول 10)) نشان می‌دهد که اثر سطح تناسب بر غلظت کل‌پسم برگ گیاه گل‌رنگ، در حالی است که تناسب معنی‌دار است. افزایش تناسب می‌تواند غلظت کل‌پسم برگ در گیاه گل‌رنگ گردد.

(جدول 11) سبب و بردار (73) و جویز و همکاران (74)

گزارش کردن که کاربرد تناسب باعث کاهش غلظت کل‌پسم در برگ گیاه گوجه‌فرنگی و سبزی‌زنی گردید. راقیت بین‌المللی تناسب و کل‌پسم در سطح احتمال 1% معنی‌دار می‌باشد. تناسب با افزایش رشد و تولید سطح دشت که توجه که کاهش غلظت روي می‌شود. آن‌ها (16) در آرمانی عوامل به کاهش مقدار روي در برگ در اثر مصرف

www.SID.ir
جدول 14. اثر مقاطع سطح مختلط پتاسیم و تنش خشکی بر غلفت کلسیم بوگ گیاه گالرینگ

<table>
<thead>
<tr>
<th>T₁, g</th>
<th>T₂, g</th>
<th>T₃, g</th>
<th>T / K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/49 f</td>
<td>1/42 h</td>
<td>2/88 a</td>
<td>K₁₀₀</td>
</tr>
<tr>
<td>1/39 f</td>
<td>1/70 g</td>
<td>2/10 b</td>
<td>K₂₀₀</td>
</tr>
<tr>
<td>1/49 g</td>
<td>1/40 f</td>
<td>1/89 c</td>
<td>K₃₀₀</td>
</tr>
<tr>
<td>1/38 g</td>
<td>1/39 f</td>
<td>1/54 e</td>
<td>K₄₀₀</td>
</tr>
</tbody>
</table>

میانگین‌های که حداقل یک حرف مشترک دارند، از لحاظ آماری اختلاف معنی‌داری با هم ندارند.

جدول 15. اثر مقاطع سطح مختلط پتاسیم و تنش خشکی بر غلفت روي در بوگ گیاه گالرینگ

<table>
<thead>
<tr>
<th>T₁, g</th>
<th>T₂, g</th>
<th>T₃, g</th>
<th>T / K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/49 b</td>
<td>1/71 h</td>
<td>2/88 a</td>
<td>K₁₀₀</td>
</tr>
<tr>
<td>1/49 b</td>
<td>1/71 h</td>
<td>2/88 a</td>
<td>K₂₀₀</td>
</tr>
<tr>
<td>1/49 b</td>
<td>1/71 h</td>
<td>2/88 a</td>
<td>K₃₀₀</td>
</tr>
<tr>
<td>1/49 b</td>
<td>1/71 h</td>
<td>2/88 a</td>
<td>K₄₀₀</td>
</tr>
</tbody>
</table>

میانگین‌های که حداقل یک حرف مشترک دارند، از لحاظ آماری اختلاف معنی‌داری با هم ندارند.

پتاسیم اشراه کرد. کاهش روي در بوگ همچنین می‌تواند در
پاسخ به افزایش غلفت آهن بوگ با افزایش مصرف پتاسیم
باشد.

اثر تنش خشکی بر غلفت روي در بوگ گیاه گالرینگ در سطح
اختلاف 1% معنی‌دار شد (جدول 10) و افزایش تنش خشکی
سبب کاهش غلفت روي در بوگ گرددی (جدول 12). عناصر
کم مصرف مثل روي و آهن در جذب و انتقال به بخش‌های
گوناگون گیاه با پیدایش رقابت می‌کنند. به طوری‌که غلفت‌های
پالای آهن می‌تواند از جذب روي توسط گیاه جلوگیری کند. از
آن‌ها که افزایش تنش خشکی باعث افزایش غلفت آهن بوگ
شد است، این امر موجب کاهش غلفت روي را فراهم آورده
است. اثر مقاطع پتاسیم و تنش خشکی بر غلفت روي در بوگ
گیاه گالرینگ در سطح اختلاف 1% معنی‌دار شد (جدول 10) و
حداقل غلفت روي در بوگ 37/8 میلی‌گرم در کیلوگرم از
تیمار "K₁₀₀T₂₀₀" حاصل شد (جدول 15).

75
جدول 16. اثر مقیاس سطح مختلف پتانسیم و تنش خشکی بر غلظت منگنز بزرگ گیاه گلرنگ

<table>
<thead>
<tr>
<th>Tр (°C)</th>
<th>Tр (°C)</th>
<th>Tп (°K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50/80</td>
<td>59/96</td>
<td>51/49</td>
</tr>
<tr>
<td>60/00</td>
<td>57/07</td>
<td>Kп</td>
</tr>
<tr>
<td>68/26</td>
<td>71/84</td>
<td>Kп</td>
</tr>
<tr>
<td>46/43</td>
<td>50/56</td>
<td>Kп</td>
</tr>
</tbody>
</table>

میانگین‌هایی که حداقل یک حرف مشترک دارند، از لحاظ آماری اختلاف معنی‌داری با هم ندارند.

خشکی باعث کاهش جذب سر و کاهش غلظت آن در بزرگ و اندام‌های هویایی گیاه شده است. اثر مقیاس پتانسیم و تنش خشکی بر غلظت سن برگ در سطح احتمالی 1 معنی‌دار از شد (جدول 16). حداقل غلظت سن برگ (24/0 میلی‌گرم در کیلوگرم) در تیمار K230T100 و حداقل غلظت سن برگ (5/89 میلی‌گرم در کیلوگرم) در اندامه‌گیری شد K230T30 خواص سبب افزایش غلظت آن برگ از 71/54 به 89/80 میلی‌گرم در کیلوگرم کرد (جدول 16). با توجه به اینکه افزایش مصرف پتانسیم باعث افزایش رسیدگی گرده‌گردید، لذا با افزایش رشد خاصی باعث افزایش غلظت آن برگ گیاه گلرنگ بوده که اثر سطح مختلف پتانسیم بر غلظت آن برگ گیاه گلرنگ در سطح احتمالی 1 معنی‌دار است. افزایش مصرف پتانسیم سبب افزایش غلظت سن برگ ایجاد گرده‌گردید. غلظت سن برگ در سطح 180 و 230 میلی‌گرم پتانسیم بر کیلوگرم خواص در یک حروف آماری فارز گرفت (جدول 16). این اثرات خشکی بر غلظت سن برگ گیاه گلرنگ نیز در سطح احتمالی 1 معنی‌دار شد (جدول 16) و افزایش تنش خشکی باعث کاهش غلظت سن برگ شد (جدول 16). به نظر می‌رسد افزایش جذب آهن توسط گیاه، در اثر افزایش تنش خشکی
تأثیر پتاسیم و نش خشکی بر شاخص‌های رشد و غلظت عناصر غذایی

جدول 17. اثر متقابل سطوح مختلف پتاسیم و نش خشکی بر غلظت مس برگ گیاه گلرنگ

<table>
<thead>
<tr>
<th>T₁₀₀</th>
<th>T₂₀</th>
<th>T₀</th>
<th>T / K</th>
</tr>
</thead>
<tbody>
<tr>
<td>61/14</td>
<td>61/14</td>
<td>61/14</td>
<td>K₁₀₀</td>
</tr>
<tr>
<td>59/20</td>
<td>59/20</td>
<td>59/20</td>
<td>K₁₀₀</td>
</tr>
<tr>
<td>59/89</td>
<td>59/89</td>
<td>59/89</td>
<td>K₁₀₀</td>
</tr>
</tbody>
</table>

میانگین‌هایی که حداکثر یک حرف مشترک دارند، از نظر آماری اختلاف معناداری با هم ندارند.

جدول 18. اثر متقابل سطوح مختلف پتاسیم و نش خشکی بر غلظت آهن برگ گیاه گلرنگ

<table>
<thead>
<tr>
<th>T₁₀₀</th>
<th>T₂₀</th>
<th>T₀</th>
<th>T / K</th>
</tr>
</thead>
<tbody>
<tr>
<td>61/14</td>
<td>61/14</td>
<td>61/14</td>
<td>K₁₀₀</td>
</tr>
<tr>
<td>59/20</td>
<td>59/20</td>
<td>59/20</td>
<td>K₁₀₀</td>
</tr>
<tr>
<td>59/89</td>
<td>59/89</td>
<td>59/89</td>
<td>K₁₀₀</td>
</tr>
</tbody>
</table>

میانگین‌هایی که حداکثر یک حرف مشترک دارند، از نظر آماری اختلاف معناداری با هم ندارند.

تغییر گری

برگ در سطح رطوبتی درصد ذخیره مزرعه انداده‌گیری شد (جدول 16). چون نش رطوبتی باعث کاهش وزن خشک گیاه وارد می‌گردد، احتمالاً افزایش غلظت آهن گیاه بهدلیل فاکتور رفت‌از یک طرف و کاهش جذب کلسیم موجب افزایش دیگر باشد (12) و افزایش غلظت آهن برگ با افزایش سطح خشکی توسط ۱۴ درخت نیز گزارش شده است. اثر متقابل نش خشکی بر غلظت آهن برگ در سطح احتمال ۱/۵۰ معنادار شد (جدول ۱۰). بیشترین غلظت آهن برگ (۳۸/۵۶ میلی‌گرم در کیلوگرم) در تیمار T₁₀₀ و کمترین غلظت آهن برگ (۳۸/۵۶ میلی‌گرم در کیلوگرم) در تیمار K₁₀₀

منابع مورد استفاده

1. آیازی، م. و. ف. شکاری. ۱۳۷۹. دانه‌های روغنی زراعت و فیزیولوژی. انتشارات عمیدی، تبریز. ۱۸۲ صفحه.
2. احمدی، ع. و. د. آ. پیکر. ۱۳۷۹. عامل روزنامه و غیر روزنامه‌ای محدودکننده فتوسنتز در گندم در شرایط نش خشکی. مجله علم کشاورزی ایران ۳۱(۲): ۸۲۵-۸۲۶.
3. احکامی، م. و. ع. بهبهانی زاده. ۱۳۷۷. شرح روش‌های تجزیه شیمیایی خاک. نشریه فنی شماره ۸۹۳ مؤسسه تحقیقات خاک و آب، تهران.