لینک های مفید

- عضویت در خبرنامه
- کارگاه های آموزشی
- سرویس ترجمه تخصصی STRS
- فیلم های آموزشی
- بلاگ مرکز اطلاعات علمی
- سرویس های ویژه
مطالعه خرید نماینده موتر اتکولوری بنزینی با سوخت ترکیبی بنزین، اتانول و نیترز در نجوم

مهدی ملک محمدی، مجید رهنما، سامان آیدانی مهندی زاده، تواب کاظمی

تاریخ دریافت: 1379/09/11
تاریخ پذیرش: 1379/11/30

چکیده

استفاده از سوخت جایگزین بنزین و همچنین کاهش آلودگی خروجی در موتور اصلاح جرخافی از اهمیت بالایی برخوردار است. این مقاله بررسی می‌شود که ترکیب بنزین، اتانول و سوخت ترکیبی بنزین، اتانول و نیترز در نجوم که دارای مصرف خرید نماینده موتر اتکولوری بنزینی می‌باشد، از کاهش آلودگی خروجی، کاهش هزینه و ایمنی‌سازی موتور و کاهش آلودگی هوا بهره می‌برد.

مقدمه

آلودگی یکی از مسائل بسیار مهم جهانی و مورد توجه محققین در زمینه ویژه دانشجویان حوزه مهندسی می‌باشد. آلودگی‌ها به این معنی می‌باشد که توانایی و راهکار وجودی در محوطه محیطی باید به همان اندازه که آلودگی‌های سایر عوامل را به وجود برده، همچنین آلودگی‌های محیطی باید به همان اندازه که آلودگی‌های سایر عوامل را به وجود برده، همچنین آلودگی‌های محیطی باید به همان اندازه که آلودگی‌های سایر عوامل را به وجود برده، همچنین آلودگی‌های محیطی باید به همان اندازه که آلودگی‌های سایر عوامل را به وجود برده، همچنین آلودگی‌های محیطی باید به همان اندازه که آلودگی‌های سایر عوامل را به وجود برده.

بررسی‌ها نشان داده‌اند که در فعالیت‌های مختلف و به‌ویژه در صنایع و ایستگاه‌های نفتی، آلودگی‌های محیطی باید به همان اندازه که آلودگی‌های سایر عوامل را به وجود برده، همچنین آلودگی‌های محیطی باید به همان اندازه که آلودگی‌های سایر عوامل را به وجود برده، همچنین آلودگی‌های محیطی باید به همان اندازه که آلودگی‌های سایر عوامل را به وجود برده، همچنین آلودگی‌های محیطی باید به همان اندازه که آلودگی‌های سایر عوامل را به وجود برده، همچنین آلودگی‌های محیطی باید به همان اندازه که آلودگی‌های سایر عوامل را به وجود برده، همچنین آلودگی‌های محیطی باید به همان اندازه که آلودگی‌های سایر عوامل را به وجود برده.
جدول 1 - خواص سوخت‌های اتانول، متانول و بنزین (Elfassakhany, 2015)

<table>
<thead>
<tr>
<th>مشخصات</th>
<th>فرمول مولکولی</th>
<th>سوخت‌های بنزینی</th>
<th>سوخت‌های اتانول</th>
<th>سوخت‌های متانول</th>
</tr>
</thead>
<tbody>
<tr>
<td>قارچ‌پیوندی</td>
<td>CH3OH</td>
<td>C2H5OH</td>
<td>C4H10- C12H26</td>
<td></td>
</tr>
<tr>
<td>وزن مولکولی</td>
<td>32</td>
<td>46</td>
<td>95-120</td>
<td></td>
</tr>
<tr>
<td>محتوای آبنم (٪)</td>
<td>50%</td>
<td>34.8%</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>مقدار شعله انگلی (کیلوگرم در متر مکعب)</td>
<td>792</td>
<td>785</td>
<td>740</td>
<td></td>
</tr>
<tr>
<td>مقدار انرژی (کیلوگرم در متر مکعب)</td>
<td>465</td>
<td>425</td>
<td>228-470</td>
<td></td>
</tr>
<tr>
<td>انرژی شعله انگلی (کیلوگرم در متر مکعب)</td>
<td>6.87</td>
<td>9</td>
<td>14.8</td>
<td></td>
</tr>
<tr>
<td>انرژی حرارتی (کیلوگرم در متر مکعب)</td>
<td>1103</td>
<td>840</td>
<td>305</td>
<td></td>
</tr>
<tr>
<td>درجه جوش</td>
<td>64</td>
<td>78</td>
<td>38-204</td>
<td></td>
</tr>
</tbody>
</table>

نتایج مشخص شده که بنزین و اتانول نسبت به مکانیکی ترین سوخت‌های بنزینی هستند. در حدود 100٪ از دانشمندان به این نتایج معتقدند که کاهش اثرات آلودگی محیطی با استفاده از اپراتورهای برقی به وسیله این راه حل می‌تواند به‌وجود آید.

زیر مقاله ماشینه کتابخانه‌ی جلد 11، شماره 2، نسیم‌الدوم 1400 نشده است.
ازگرود کیفیت احتراق موثر را تغییر می‌دهد (Clifford et al., 2008). تریک حاوی کالایتی در حرارت گرم و ترکیب سیال‌های خروجی باعث افزایش درجات مقدار کالایتی می‌شود و در Anonymous (2012). تحقیقات نشان داده که تریک می‌تواند تعداد اکسیژن (O2) اکسید (Pritchard and Wai, 2015) از اکسید اکسیژن دیوکسید صرب (CO2) گردد. (Sajith et al., 2010) اگر عامل ماده جامد دو نمونه اکسید اکسیژن دیوکسید (CO2) گردد، مقدار انضمام آن مقدار در تراکم باعث خشک شدن مقدار ویژه موثر (Sathesh and Loganathan, 2017).
در این تحقیق دستگاهی طراحی و ساخته شده که مقادیر مولوی اکسید کربن خروجی آگاز را اندازه‌گیری و از نمایندگی نشان دهد و طوری برای نبردی شده که در صورت بالاتر بودن مقادیر مولوی اکسید کربن از مقدار تعیین شده ۸/۰ درصد نشان می‌دهد. این را به اکستریک گزیز از کالیسکست نمایش داده و مقادیر آزمایشی مونوتور کاهش یافته بهر ارسال هوا برای کالیسکست بر اساس زمان.نیست مخصوص انجام می‌شود. زیرا در صورت ارسال بیش از حد هوا کالیسکست داغ و خطر آسیب رسیدن به این قطعه افزایش می‌یابد. (ددا مطابق کالیسکست بین ۴۰۰ و ۴۵۰ درجه سانتی‌گراد است دما بالاتر از ۲۰۰ درجه سانتی‌گرد کالیسکست می‌شود که امکان تظیم زمان‌های بسیار کمتر از مقدار تعیین شده کتر شود ارسال هوا ضروری گردیده. ولی اگر این مقدار مواد اکسید کربن تولیدی با پایین‌تر از نشان داده از زمان ارسال بیش از حد کالیسکست جلوگیری شود و مجدداً ۹ تایه تزریق هوا صورت می‌گیرد. این عمل تا زمان‌های در دیگر تا مقدار مواد اکسید کربن به مرحله معین شده کاهش یافته در شکل (۱) طرح‌و‌اهو قطعات به کار رفته و روی اندازه‌گیری صدای مقدار می‌شود.

مخصوص دارای مخزن سوخت بی‌بازی، سیلیک منظم جزء بی‌بازی باک مخصوص با سوخت برق خروجی، که با پل سوخت برق و ورودی بی‌بازی نشان داده شده ام. دود تولیدی مونوتور (۱) در طبقه مالول خروجی (۲) وارد اکسید مواد و از این‌باره (۱) و ولع خروجی (۶) خارج شده. وارد شسته و قفل آب.

![عکس 1](https://www.SID.ir)

شکل ۱ - تجهیزات استفاده شده در آزمایش‌ها، طرح وارز مدار الکتریکی دستگاه و شماتیک قطعات بر (۱) و روش اندازه‌گیری صدا (۲)

در شکل ۲ سامانه سنگش گاز مواد اکسید کربن و تزریق هوا به اگزوز بر روی مونوتور بنزین اکتانوری داده شده است. دود تولیدی مونوتور (۱) وارد اکسید مواد و از این‌باره (۱) و ولع خروجی (۶) خارج شده وارد شسته و قفل آب.

www.SID.ir
نتیجه‌گیری و بیان
در جدول ۲ جنبه‌های واریانس تیم‌بندی (R) در سطح (R)، اندازه‌گیری ذرات ذرات کربنی در سطح (R) معنی‌دار است.

جدول ۲- جنبه‌های واریانس آزمایش روش کاهش آلاینده موتور و صدا

<table>
<thead>
<tr>
<th>منابع تغییرات Sources of changes</th>
<th>درجه آزادی df</th>
<th>صدا Sound</th>
<th>CO</th>
<th>CO۲</th>
<th>دی اکسید کربن</th>
<th>هیدروکربن</th>
<th>اکسیژن</th>
<th>O۲</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>2</td>
<td>2721.386*</td>
<td>0.001**</td>
<td>1.263**</td>
<td>912.014**</td>
<td>6.689**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>4</td>
<td>2.138**</td>
<td>0.006**</td>
<td>1.298**</td>
<td>6288.739**</td>
<td>0.047**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>2</td>
<td>10.996**</td>
<td>0.003**</td>
<td>0.013**</td>
<td>1502.401**</td>
<td>0.013**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E×R</td>
<td>8</td>
<td>1.9990**</td>
<td>0.000**</td>
<td>0.155**</td>
<td>91.847**</td>
<td>0.092**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N×R</td>
<td>4</td>
<td>12.9310**</td>
<td>3.74×10^-5*</td>
<td>0.127**</td>
<td>100.574**</td>
<td>0.001**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N×E</td>
<td>8</td>
<td>1.331**</td>
<td>6×10^-5*</td>
<td>0.066**</td>
<td>76.393**</td>
<td>0.006**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E×N×R</td>
<td>16</td>
<td>0.415**</td>
<td>7.8×10^-5*</td>
<td>0.071**</td>
<td>35.496**</td>
<td>0.014**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>90</td>
<td>0.092</td>
<td>1.85×10^-3</td>
<td>0.003</td>
<td>2.328</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV(%)</td>
<td>-</td>
<td>5.54</td>
<td>0.139</td>
<td>2.51</td>
<td>1.34</td>
<td>2.84</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Significant at the 1% error level. ** Significant at the 5% error level and ns No Significant differences

در این تحقیق برای دور ۱۰۰۰، ۲۰۰۰ و ۳۰۰۰ دور بر دقیقه بهترین عنوان داری داشتند. E1 (۱۰ درصد اندازه‌گیری E0 سیستم صرف درصد E1) بین E1 و E0 با دقت برای پیش‌بینی S0 و R1 و R2 باید پیش‌بینی از دستگاه‌های E1 و E2 را داشته باشند.
در شکل ۳ نمودار مقایسه میانگین دانکن تاثیر سطوح مختلف آنتالو و نانو ذرات کربنی در دوره‌های مختلف بر روی تولید صدا اثر ثابت و در حذف دیسیل (db) تبدیل می‌شود. نشان دهنده می‌باشد که تولید صدا در تراکمی مختلف آنتالو و نانو ذرات کربنی تقریباً ثابت و در حدود دیسیل (db) تبدیل می‌شود.

شکل ۵ آنتالو و نانو ذرات کربنی بر صدا

Fig.3. The triple effects of round, ethanol and carbon nanoparticles on the noise produced in the engine.

www.SID.ir
این گزارش نتایج اثر سطوح مختلف انالوئ و نانوزدای کربن بر صدا در دوره‌های مختلف مواد اپکسید کربن در شکل ۵ اثرات سگانه دور، انالوئ و نانوزدای کربن بر صدا در دوره‌های مختلف انالوئ و نانوزدای کربن است. همان‌طور که در نمودار دیده می‌شود، از نظر تولید مواد اپکسید کربن کمترین و از نظر E3 و E4، جنگلی و E10 باینژن مناسب تر است. مقادیر را به‌طور اختصاصی به داده‌های در شکل ۳ را با شکل ۴ مقایسه می‌نماییم. Fig. 4. Comparing the mean graph of the effect of different levels of ethanol and carbon nanoparticles on sound in different engine rpm by Duncan's slicing method.

این گزارش نتایج اثر سطوح مختلف انالوئ و نانوزدای کربن بر صدا در دوره‌های مختلف انالوئ و نانوزدای کربن در شکل ۵ اثرات سگانه دور، انالوئ و نانوزدای کربن بر صدا در دوره‌های مختلف انالوئ و نانوزدای کربن است. همان‌طور که در نمودار دیده می‌شود، از نظر تولید مواد اپکسید کربن کمترین و از نظر E3 و E4، جنگلی و E10 باینژن مناسب تر است. مقادیر را به‌طور اختصاصی به داده‌های در شکل ۳ را با شکل ۴ مقایسه می‌نماییم. Fig. 4. Comparing the mean graph of the effect of different levels of ethanol and carbon nanoparticles on sound in different engine rpm by Duncan's slicing method.

این گزارش نتایج اثر سطوح مختلف انالوئ و نانوزدای کربن بر صدا در دوره‌های مختلف انالوئ و نانوزدای کربن در شکل ۵ اثرات سگانه دور، انالوئ و نانوزدای کربن بر صدا در دوره‌های مختلف انالوئ و نانوزدای کربن است. همان‌طور که در نمودار دیده می‌شود، از نظر تولید مواد اپکسید کربن کمترین و از نظر E3 و E4، جنگلی و E10 باینژن مناسب تر است. مقادیر را به‌طور اختصاصی به داده‌های در شکل ۳ را با شکل ۴ مقایسه می‌نماییم. Fig. 4. Comparing the mean graph of the effect of different levels of ethanol and carbon nanoparticles on sound in different engine rpm by Duncan's slicing method.

این گزارش نتایج اثر سطوح مختلف انالوئ و نانوزدای کربن بر صدا در دوره‌های مختلف انالوئ و نانوزدای کربن در شکل ۵ اثرات سگانه دور، انالوئ و نانوزدای کربن بر صدا در دوره‌های مختلف انالوئ و نانوزدای کربن است. همان‌طور که در نمودار دیده می‌شود، از نظر تولید مواد اپکسید کربن کمترین و از نظر E3 و E4، جنگلی و E10 باینژن مناسب تر است. مقادیر را به‌طور اختصاصی به داده‌های در شکل ۳ را با شکل ۴ مقایسه می‌نماییم. Fig. 4. Comparing the mean graph of the effect of different levels of ethanol and carbon nanoparticles on sound in different engine rpm by Duncan's slicing method.
اثرات سگانه دور، انالو و نانو کربن بر دی اکسی‌کربن

در شکل ۷ اثرات سگانه دور، انالو و نانو کربن بر دی اکسی‌کربن در حد‌های مصرف انالو و نانو کربن در شکل ۷ اثرات سگانه دور، انالو و نانو کربن بر دی اکسی‌کربن در حد‌های مصرف انالو و نانو کربن در شکل ۷ اثرات سگانه دور، انالو و نانو کربن بر دی اکسی‌کربن در حد‌های مصرف انالو و نانو کربن در شکل ۷ اثرات سگانه دور، انالو و نانو کربن بر دی اکسی‌کربن در حد‌های مصرف انالو و نانو کربن در شکل ۷ اثرات سگانه دور، انالو و نانو کربن بر دی اکسی‌کربن در حد‌های مصرف انالو و نانو کربن در شکل ۷ اثرات سگانه دور، انالو و نانو کربن بر دی اکسی‌کربن در حد‌های مصرف انالو و نانو کربن در شکل ۷ اثرات سگانه دور، انالو و نانو کربن بر دی اکسی‌کربن در حد‌های مصرف انالو و نانو کربن در شکل ۷ اثرات سگانه دور، انالو و نانو کربن بر دی اکسی‌کربن در حد‌های مصرف انالو و نانو کربن در شکل ۷ اثرات سگانه دور، انالو و نانو کربن بر دی اکسی‌کربن در حد‌های مصرف انالو و نانو کربن در شکل ۷ اثرات سگانه دور، انالو و نانو کربن بر دی اکسی‌کربن در حد‌های مصرف انالو و نانو کربن در شکل ۷ اثرات سگانه دور، انالو و نانو کربن بر دی اکسی‌کربن در حد‌های مصرف انالو و نانو کربن در شکل ۷ اثرات سگانه دور، انالو و نانو کربن بر دی اکسی‌کربن در حد‌های مصرف انالو و نانو کربن در شکل ۷ اثرات سگانه دور، انالو و نانو کربن بر دی اکسی‌کربن در حد‌های مصرف انالو و نانو کربن در شکل ۷ اثرات سگانه دور، انالو و نانو کربن بر دی اکسی‌کربن در حد‌های مصرف انالو و نانو کربن در شکل ۷ اثرات سگانه دور، انالو و نانو کربن بر دی اکسی‌کربن در حد‌های مصرف انالو و نانو کربن در شکل ۷ اثرات سگانه دور، انالو و نانو کربن بر دی اکسی‌کربن در حد‌های مصرف انالو و نانو کربن در شکل ۷ اثرات سگانه دور، انالو و نانو کربن بر دی اکسی‌کربن در حد‌های مصرف انالو و نانو کربن در شکل ۷ اثرات سگانه دور، انالو و نانو کربن بر دی اکسی‌کربن در حد‌های مصرف انالو و نانو کربن در شکل ۷ اثرات سگانه دور، انالو و نانو کربن بر دی اکسی‌کربن در حد‌های مصرف انالو و نانو کربن در شکل ۷ اثرات سگانه دور، انالو و نانو کربن بر دی اکسی‌کربن در حد‌های مصرف انالو و نانو کربن در شکل ۷ اث
Fig. 6. The effect of different levels of ethanol and carbon nanoparticles in different engine speed on carbon monoxide exhaust from the engine.
نسبت به E0 است که قبلتر به آن اشاره شد.

دی اکسید کربن افزایش می یابد. نکته دیگری که در شکل ۹ به‌خوبی مشاهده است تغییر زیاد در دی اکسید کربن، و موتو اکسید کربن در E10 مشاهده شود.

شکل ۹ – اثرات سخت‌گاهه دور، اتانول و نانو کربن بر روی دی اکسید کربن خروجی از موتو

Fig.7. Triple effects, ethanol and Nano carbon on carbon dioxide output from the engine

شکل ۸ – اثر سطوح مختلف اتانول و نانو ذرات کربن در دوره‌های مختلف موتو بر میانگین مقادیر دی اکسید کربن خروجی از اگرژ به روش دنکان

Fig.8. The effect of different levels of ethanol and carbon nanoparticles in different engine speed on carbon dioxide exhaust from the engine by Duncan's slicing method
الف) در شکل ۳، میزان سوخت‌های هیدروکربنی در هر یک از نمونه‌ها به قطعات با فرمول مولکولی C_{\text{Ethanol}}H_{\text{CO}}CO_{\text{H}}HC مشخص شده است. همچنین کاهش در مقدار C_{\text{Ethanol}}H_{\text{CO}}CO_{\text{H}}HC هیدروکربنی نسبت به کنترل مشاهده شده است.

ب) شکل ۴ نشان می‌دهد که در پرداختن نمونه‌ها به صورت با فرمول مولکولی C_{\text{Ethanol}}H_{\text{CO}}CO_{\text{H}}HC، کاهش در مقدار C_{\text{Ethanol}}H_{\text{CO}}CO_{\text{H}}HC و H_{\text{CO}}CO_{\text{H}}HC مشاهده شده است. همچنین کاهش در مقدار C_{\text{Ethanol}}H_{\text{CO}}CO_{\text{H}}HC هیدروکربنی نسبت به کنترل مشاهده شده است.

پ) شکل ۵ نشان می‌دهد که در پرداختن نمونه‌ها به صورت با فرمول مولکولی C_{\text{Ethanol}}H_{\text{CO}}CO_{\text{H}}HC، کاهش در مقدار C_{\text{Ethanol}}H_{\text{CO}}CO_{\text{H}}HC و H_{\text{CO}}CO_{\text{H}}HC مشاهده شده است. همچنین کاهش در مقدار C_{\text{Ethanol}}H_{\text{CO}}CO_{\text{H}}HC هیدروکربنی نسبت به کنترل مشاهده شده است.

Q) شکل ۶ نشان می‌دهد که در پرداختن نمونه‌ها به صورت با فرمول مولکولی C_{\text{Ethanol}}H_{\text{CO}}CO_{\text{H}}HC، کاهش در مقدار C_{\text{Ethanol}}H_{\text{CO}}CO_{\text{H}}HC و H_{\text{CO}}CO_{\text{H}}HC مشاهده شده است. همچنین کاهش در مقدار C_{\text{Ethanol}}H_{\text{CO}}CO_{\text{H}}HC هیدروکربنی نسبت به کنترل مشاهده شده است.

اثرات سه‌گانه دور. اتانول و نانو کریم بر هیدروکربنی نسخه

شکل ۹: تغییرات مولکولی هیدروکربنی در نهایت متفاوتین با سوخت ترکیبی بی‌پنزین(۹۰) معنی‌دار است.
به‌طور کل این است که در میان‌باید علت نسبت استیمکومتری بالا، ضربان کاره‌ای آلایندی های CO و HC افزایش می‌یابد. انتشار گازهای آلایندی CO و HC در مخلوط‌های غنی زیادتر است و با کاهش نسبت استیمکومتری مقدار گازهای مذکور کم می‌شود (Mansha et al., 2012; Sonthalia et al., 2015; Egúsquiza et al., 2009).

از دیدگاه اثرات سه‌گانه دور، اتانول و نانو کربن بر روده‌های اکسیژن خروجی از موتور (Sonthalia et al., 2015; Mansha et al., 2012; Egúsquiza et al., 2009; Thakur et al., 2017)

Fig.10. Diagram of triple effects, ethanol and Nano-carbon on unleaded hydrocarbons from motor output

Fig.11. The effect of different levels of ethanol and carbon nanoparticles in different engine speed on HC exhaust from the engine by Duncan's slicing method
Fig. 12. Triple effects, ethanol and Nano-carbon on unleaded oxygen from engine output

Fig. 13. The effect of different levels of ethanol and carbon nanoparticles in different engine speed on O₂ exhaust from the engine by Duncan's slicing method
با توجه به شکل ۱۴ در ۱۰۰۰ دور بر دقیقه به اضافه نمودن اتانول به سوخت مقدار اکسید کربن خروجی کاهش یافته و اثر قابل توجهی ندارد که این است که دیلی اذن ذکر کرده است که دیلی اندازه ارتفاعه بهم‌رسانی می‌انجامد. همچنین در دور میان باری R2 به دلیل اینکه مخلوط غنی‌بیانش با افزایش مقدار اتانول به سوخت باعث افزایش اکسید کربن در خروجی می‌شود. این روند در تحقیقات دیگر نیز گزارش شده است (Sasongko et al., 2017). دیلی دیگر این که افزایش اندازه باعث بهبود کارایی خروجی آلامین و احترام بهتر می‌شود را در ترکیب اتانول نیز می‌توان یافت. مطالب جدول ۱ نسبت استاتیستیکی اتانول ۹ است یعنی برای سوخت کامل یک واحد اتانول به ۱ واحد اکسید کربن در صورتی که نسبت استاتیستیکی بین ۱/۸ و ۱/۶ است برای سوخت کامل یک واحد اندازه یا به عنوان با بکار رفتن یا ۱۴/۸ واحد اکسید کربن باعث باعث می‌شود اکسید کربن خروجی من گرفته که با مصرف اتانول در موثر باعث سموم سوخت اکسید کربن برای سوخت نیز است و اتیچه اکسید کربن در هوا در می‌رود و موثر وارد می‌شود کمتر مصرف می‌شود. مقدار از این ترکیب (H2O) اضافه یا به‌طور همزمان (H2) ترکیب و (CO) اکسید (O2) اضافه یا به‌طور همزمان (CO2) ترکیب (CO2) ترکیب و (CO) اکسید (C) و می‌تواند بر سطح و همچنین بر کربن (C) سایر کمک‌هایگری می‌شود.

نتایج آزمایش‌ها بر مقدار میان اکسید کربن خروجی از اکزوز

توسط دستگاه سناره شده اثر ترکیب‌ها به خروجی دود اکزوز در مقدار میان اکسید کربن خروجی در سه دور ۱۰۰۰۰ و ۲۰۰۰ دور در دقیقه و میزان دود پرسرسی بتانگ، این آزمایش در سه زمان ۵ دقیقه بهصورت بیوتست انجام شد و دستگاه طوری برای اثرات یافته که در

شکل ۱۴ - اثر ترکیب‌ها به دود خروجی اکزوز و مقدار میان اکسید کربن خروجی

Fig.14. The effect of air inlet to exhaust smoke and the amount of carbon monoxide output

هم در تولید CO داشته‌باشند بر روی مقدار میان اکسید کربن خروجی پرسی گردید که نتیجه‌اش در شکل ۱۵ مشاهده می‌شود. با توجه به شکل انتظار از سیستم میان اکسید کربن به اکزوز قبل از کاتالیست نسبت به

www.SID.ir
نتیجه گیری

نتایج این تحقیق نشان داد که با مصرف سوخت ترکیب‌های مختلف مسیرنی در نمونه کربن اکسید کربن و هیدروکربن افزایش می‌یابد. با اضافه نمونه ۴۰ بی‌پیام نانو ذرات کربن، مقدار ذرات قبلاً دیده نموده شده بوده و بدون هیچ افزودنی دیگر به بین نیز مقدار تولید گاز مسیرنی کربن در خروجی افزور کاهش یافته، توصیه می‌شود که مطالعات می‌شود در زمینه استفاده از نانوکربین‌ها با مقدار مختلف بر مبنای افزایش کربن در خروجی افزور کاهش یافته، توصیه می‌شود که مطالعات می‌شود در زمینه استفاده از نانوکربین‌ها با مقدار مختلف بر مبنای افزایش کربن در خروجی افزور کاهش یافته، توصیه می‌شود که

شکل ۱۵: مقایسه تولید مسیرنی کربن تیمارهای مختلف نسبت به سیستم تزریق هوا در دور ۱۰۰۰۰ نمونه گیری (MANOVA)
References

Studying some Pollutant Emissions of an Injection Gasoline Engine Using Mixed Fuel of Ethanol, Gasoline and Carbon Nanoparticles

M. Malek mohammadi1, M. Rahnama2*, S. Abdanan mehdizadeh3, N. Kazemi2

Received: 02-12-2018
Accepted: 13-02-2019

Introduction
Due to the rapid growth in the urban population, the numbers of cars also have increased which resulted in an increase of pollution level in the urban areas of the developing countries. The pollutants emerging from combustion engines may include: carbon monoxide (CO), unburned hydrocarbons (UBHC), oxide of nitrogen (NOx), oxides of sulfur (SOx), particulate matter (PM), soot, hydrogen, oxygen, traces of aldehydes, alcohols, ketons, phenols, acid, lead aerosol, etc., along with normal combustion products i.e. carbon dioxide (CO2) and water vapors. In order to overcome the problems associated with the bio-fuel, the chemical substances like fuel additives derived from organic, inorganic metals were used. Fuel additives generally improve the combustion efficiency and reduce the pollution. Metallic based compounds, such as manganese, iron, copper, barium, calcium and platinum, etc., which have been used as a combustion catalyst for hydrocarbon fuels. Recent advances in nanoscience and nanotechnology enables production, control and characterization of nanoscale energetic materials. Nano materials are more effective than bulk materials because of its higher surface area. Another important advantage of nanoparticle is its size, because there is no chance for fuel injector and filter clogging as in the case of micron sized particles. Gan and Qiao, (2011) investigated the burning characteristics of fuel droplets containing nano and micron sized aluminum (Al) particles by varying its size, surfactant concentration and type of base fluid. Tyagi et al. (2008) conducted a study to improve the ignition properties of diesel fuel and investigated the influence of size and quantity of Al and Al2O3 nanoparticles in a diesel fuel. It was inferred that it shortens the ignition delay and increased the ignition probability of fuel. Finally, it was concluded that, the increase in heat and mass transfer properties of the fuel has the potential of reducing the evaporation time of droplets. In the present investigation, the effect of mixture of ethanol with gasoline and carbon nanotubes on emission characteristics was evaluated using Jatropha biodiesel in a compression in a spark ignition engine.

Materials and Methods
In this study, a mixture of ethanol with gasoline (at five levels, 0, 10, 20, 30 and 40%) as a renewable fuel and carbon nanoparticles (at three levels of 0, 20 and 80 ppm) as catalyst were used in spark ignition engine (in 1000, 2000 and 3000 rpm). Engine pollutants such as sound, carbon monoxide, unburnt hydrocarbons, carbon dioxide and oxygen output were measured. Furthermore, a device was designed and manufactured to measure and display the amount of carbon monoxide in the exhaust outlet; moreover, if the amount of carbon increased air compressor was activated to reduce carbon monoxide in the exhaust outlet.

Results and Discussion
The results showed that with increasing ethanol consumption, the amount of carbon monoxide and unburned hydrocarbons were reduced. Furthermore, the amount of produced oxygen and carbon dioxide increased. Also adding carbon nanoparticles to fuel caused the engine sound level decreased. According to the observation, carbon monoxide decreased while using an electronic device compare to the engine without a carbon monoxide controlling system. This depicts that implementation of carbon monoxide can be control and reduce which is very useful while engine is working under the close environments.

Conclusions
The use of alternative fuel, gasoline as well as the reduction of exhaust emissions in the spark ignition engine is of great importance. Therefore, in the present study five levels of ethanol (0, 10, 20, 30 and 40%) and three levels of carbon nanoparticles (0, 20 and 80 ppm) were mixed with gasoline and used in spark ignition engine at three rotation speed (in 1000, 2000 and 3000 rpm). According to the results, there is a reduction in carbon monoxide and unburned hydrocarbons and increasing carbon dioxide emission by using ethanol, because of its fuel bound O2. Furthermore, 3.8% dB 54% reduction in sound and CO, respectively at 3000 rpm with E10 were observed.

Keywords: Carbon nanotubes, Ethanol, Pollutant, Sound, Spark ignition engine

1- MSc Student, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
2- Assistant Professor, Agricultural Sciences and Natural Resources University of Khuzestan, Iran
(*- Corresponding Author Email: rahnamam2002@asnrukh.ac.ir)
لینک های مفید

عضویت در خبرنامه
گزارش‌های آموزشی
سرویس ترجمه تخصصی
فیلم‌های آموزشی
پلاگ مرکز اطلاعات علمی
سرویس‌های ویژه