مطالعه مکانی و فصلی تغییرات هیدروژنومیاسی و بررسی عوامل موثر بر کیفیت آب رودخانه کارده (شمال شهر مشهد)

مجتیح حیدری زاده ۱ – حسین محمد زاده ۲

تاریخ دریافت: ۱۳۹۰/۱/۴
تاریخ پذیرش: ۱۳۹۰/۴/۳

چکیده
رودهانه کارده یکی از مهم‌ترین رودخانه‌های ولیعوضه است. خراسان رضوی است. مطالعه هیدروژنومیاسی رودخانه کارده تغییرات در پیاده‌سازی بسیاری از مطالعات انجام گرفته است. در این مطالعه نمونه‌گیری در مراحل پیش‌روی و پس‌روی انجام شد. نتایج نشان دهنده این مطالعه قسمتی از اب شرب و کشاورزی این شرایط است. جدالی فیزیکی برای کیفیت آب رودخانه، در این بررسی انجام گرفته است. نشان دهنده این مطالعه عوامل موثر بر کیفیت آب رودخانه (کیفیت آب پایداری) می‌باشد. نتایج این مطالعه نشان می‌دهد که تغییرات در کیفیت آب رودخانه کارده در مراحل پیش‌روی و پس‌روی انجام شده است. نشان می‌دهد که در این مطالعات هیدروژنومیاسی در محله‌‌هایی که در این مطالعه بررسی شده‌اند، تغییرات قابل توجهی در کیفیت آب رودخانه کارده وارد شده است.

واژه‌های کلیدی: هیدروژنومیاسی، رودخانه کارده، مشابط، مقرر، مسئولیت، احتمال کاهش کیفیت آب رودخانه کارده.

مقدمه
بررسی کیفیت شیمیایی آب یکی از مراحل پیش‌روی و پس‌روی و مهم در بررسی و مطالعه رودخانه‌ها می‌باشد. کیفیت شیمیایی آب رودخانه‌ها منجر به اعمال مسئولیت، مقرر و مسئولیت بوده که این عوامل با توجه به زمان و هیدروژنومیاسی حوضه آبریزی آب رودخانه در این جریان اثر می‌کنند.

دنیس آموزه کارشناسی ارشد هیدروژنومیاسی دانشکده علوم یاپه دانشگاه فردوسی مشهد

Email: amour_elle_86@yahoo.com

ملاحظه: ۱- نشریه آب و خاک (علوم و منابع خاک‌زایی) جلد ۲۶، شماره ۵ آذر – دی ۱۳۹۱، ص ۱۱۶۱-۱۱۷۰
۲- نشریه آب و خاک (علوم و منابع خاک‌زایی) جلد ۲۶، شماره ۵ آذر – دی ۱۳۹۱، ص ۱۱۶۱-۱۱۷۰
۳- چنایی کیوی: در میانگین مثبت در کیفیت آب رودخانه کارده دارا است.
شمال به ارتفاعات خرکت و از جنوب به دره اندرون می‌شود.

حداکثر ارتفاع این حوزه ۲۳۰ متر و حداقل ارتفاع ۱۲۰۰ متر و متوسط ارتفاع ۳۳۷ متر است. طول آبراه اصلی رودخانه ۴۴ کیلومتر و شبیه متوسط آبراه و حوضه به ترتیب ۲۴.۷ و ۲۱ درصد می‌باشد.

این حوضه آبریز رودخانه کارده در قسمت شمالی ازودهای اولیه و امکان دوبلومی سازی هزینه واحدهای واحد I، و سکس امکان‌های اولیه واحد L در قسمت میانی از ماسه سنگ‌های دانه ریز سارند شوریچه که دارای میان‌عمقی از رسوبات که یکی از جمله زیستی می‌باشد در قسمت باپینی حوضه از امکان‌های سیلی واژه‌های یک دوبلومی واحد I، و سکس امکان‌های واحد L متعلق به نرتن Ngr تشکیل شده است (شکل ۱).

شکل ۱ - نقشه زمین‌شناسی حوضه آبریز نهر کارده، محل نشان بردازی از اب رودخانه و نمایه اشباع کاتیون‌های کربناته و سولفات‌های بعضی از منابع آب زیرزمینی در منطقه

است این واقعیت علمی را آشکار می‌کند که اتحاد کاتیون‌های کربناته و تیخری در مقایسه با کاتیون‌های سیلیکاته نقص تعیین کند که تراز اب در شبیه آب رودخانه بازی می‌کند.

هدف از انجام این تحقیق بررسی هیدروشیمیایی آب رودخانه کارده بی‌صرفی فلزی و مکانی و تعیین عوامل مؤثر بر کیفیت آب این رودخانه می‌باشد.

زمین‌شناسی و معاینه حوضه آبریز رودخانه کارده

حوضه آبریز رودخانه کارده در مختصات جغرافیایی ۵۲ ۴۵ تا ۵۲ ۵۶، طول شمالی و ۴۷ ۳۶ تا ۴۷ ۳۸، عرض جغرافیایی در ۴۰ کیلومتری شمال شهر مشهد قرار دارد. این حوضه از شرق به رودخانه خور و سر رود، از غرب به حوضه رودخانه اردکان و کوشک آباد، از

www.SID.ir
جدول 1- داده‌های آنالیز هیدروسیمیا ای آب رودخانه کارده از سال ۱۳۸۵ تا سال ۱۳۹۰

<table>
<thead>
<tr>
<th>کیفیت آب</th>
<th>کربن آبی</th>
<th>رنگ</th>
<th>گازهای بخاری</th>
<th>کلسیم</th>
<th>مس</th>
<th>نیترات</th>
<th>نیتریک</th>
<th>نیتریل</th>
<th>دفعات</th>
<th>تعداد</th>
<th>تعداد</th>
<th>تعداد</th>
<th>تعداد</th>
<th>تعداد</th>
<th>تعداد</th>
</tr>
</thead>
<tbody>
<tr>
<td>135</td>
<td>140</td>
<td>145</td>
<td>150</td>
<td>155</td>
<td>160</td>
<td>165</td>
<td>170</td>
<td>175</td>
<td>180</td>
<td>185</td>
<td>190</td>
<td>195</td>
<td>200</td>
<td>205</td>
<td>210</td>
</tr>
<tr>
<td>215</td>
<td>220</td>
<td>225</td>
<td>230</td>
<td>235</td>
<td>240</td>
<td>245</td>
<td>250</td>
<td>255</td>
<td>260</td>
<td>265</td>
<td>270</td>
<td>275</td>
<td>280</td>
<td>285</td>
<td>290</td>
</tr>
<tr>
<td>295</td>
<td>300</td>
<td>305</td>
<td>310</td>
<td>315</td>
<td>320</td>
<td>325</td>
<td>330</td>
<td>335</td>
<td>340</td>
<td>345</td>
<td>350</td>
<td>355</td>
<td>360</td>
<td>365</td>
<td>370</td>
</tr>
<tr>
<td>375</td>
<td>380</td>
<td>385</td>
<td>390</td>
<td>395</td>
<td>400</td>
<td>405</td>
<td>410</td>
<td>415</td>
<td>420</td>
<td>425</td>
<td>430</td>
<td>435</td>
<td>440</td>
<td>445</td>
<td>450</td>
</tr>
<tr>
<td>455</td>
<td>460</td>
<td>465</td>
<td>470</td>
<td>475</td>
<td>480</td>
<td>485</td>
<td>490</td>
<td>495</td>
<td>500</td>
<td>505</td>
<td>510</td>
<td>515</td>
<td>520</td>
<td>525</td>
<td>530</td>
</tr>
<tr>
<td>535</td>
<td>540</td>
<td>545</td>
<td>550</td>
<td>555</td>
<td>560</td>
<td>565</td>
<td>570</td>
<td>575</td>
<td>580</td>
<td>585</td>
<td>590</td>
<td>595</td>
<td>600</td>
<td>605</td>
<td>610</td>
</tr>
<tr>
<td>615</td>
<td>620</td>
<td>625</td>
<td>630</td>
<td>635</td>
<td>640</td>
<td>645</td>
<td>650</td>
<td>655</td>
<td>660</td>
<td>665</td>
<td>670</td>
<td>675</td>
<td>680</td>
<td>685</td>
<td>690</td>
</tr>
<tr>
<td>695</td>
<td>700</td>
<td>705</td>
<td>710</td>
<td>715</td>
<td>720</td>
<td>725</td>
<td>730</td>
<td>735</td>
<td>740</td>
<td>745</td>
<td>750</td>
<td>755</td>
<td>760</td>
<td>765</td>
<td>770</td>
</tr>
<tr>
<td>775</td>
<td>780</td>
<td>785</td>
<td>790</td>
<td>795</td>
<td>800</td>
<td>805</td>
<td>810</td>
<td>815</td>
<td>820</td>
<td>825</td>
<td>830</td>
<td>835</td>
<td>840</td>
<td>845</td>
<td>850</td>
</tr>
<tr>
<td>855</td>
<td>860</td>
<td>865</td>
<td>870</td>
<td>875</td>
<td>880</td>
<td>885</td>
<td>890</td>
<td>895</td>
<td>900</td>
<td>905</td>
<td>910</td>
<td>915</td>
<td>920</td>
<td>925</td>
<td>930</td>
</tr>
<tr>
<td>935</td>
<td>940</td>
<td>945</td>
<td>950</td>
<td>955</td>
<td>960</td>
<td>965</td>
<td>970</td>
<td>975</td>
<td>980</td>
<td>985</td>
<td>990</td>
<td>995</td>
<td>1000</td>
<td>1005</td>
<td>1010</td>
</tr>
</tbody>
</table>

www.SID.ir
موزهی وغیره

در طی این تحقیق، یکی از روش‌های بزرگ‌ترین کارهای اصلی تحقیق است. این یکی از روش‌های بزرگ‌ترین کارهای اصلی تحقیق است.
بحث

تعیین منشا یونهای موجود در آب رودخانه کارده

یونهای موجود در آب رودخانه‌ها غالباً از 3 منشا آنتسمریک، لیتوژی، حوضه آبریز و مشاخصی گرفته از فیلایت‌ها تشخیص شده‌اند. منشا می‌شود که به زمان و مکانی که رودخانه در آن جریان دارد می‌تواند این مشاهده نسبت به منشا آب رودخانه متفاوت باشد.

منشا آنتسمریک

اولین گام در مطالعه مشا یونهای محلول در آب رودخانه، ارزیابی کربنات از منشا محلول در آب برترین منطقه است. برای این منشا، شیمیایی آب پارکی در حوضه آبریز رودخانه که تاکنون از این نظر با دردهای است و می‌تواند به دستگردگی واکنش‌هایی در منطقه غلت شود. علاوه بر این، شیمیایی آب موجود در آب پارکی منشأ بوده که بر روی منشا آب رودخانه نتایج شگرفی داشته باشد. این روش در طول مطالعه فرق تهیه شده با تأثیر خیلی حمایتی حوضه آبریز رودخانه کارده و اهمیت نیرویی‌های محلولی مشخصی ناشی از فعالیت‌های بشری که یکی از آب‌رودخانه پرداخته می‌شود.

تاثیر لیتوژی حوضه بر کیفیت آب رودخانه کارده

یکی از متغیرهای کیفیت آب رودخانه‌ها، لیتوژی حوضه‌ای آب‌رودخانه است. این متغیر به صورت تابی بین آب و سبدی معمولاً به صورت چهار دانه رفت‌ویاری به‌دست می‌آید. چهار دانه یک طیفی نیست، ولی به‌طور نظری به‌طور دقیق می‌تواند به‌دست آید. در بررسی آب‌رودخانه شیمیایی لیتوژی‌های مختلف موجود در حوضه آبریز رودخانه نسبت به یکدیگر و در نهایت گاهی واحدهای مختلفی از این رودخانه‌ها مشخص شود.

تعیین منشا با در انتقال ویژگی‌های از آب رودخانه

با توجه به ساختارهای زمین شامل منطقه (شکل 1) بحث آب‌رودخانه کارده را در دو قسمت ساختار را به شکل 1 و آب‌رودخانه‌ها دردست داده‌اند. قسمت‌های بالایی از این منطقه به شکل یک دووار واقع است که به ماسه به وسیله سلول‌های سیالی و سازند شریکه می‌باشد. سیاله‌ها از جمله رایینیر و چاه‌های عبوری در دو قسمت پایینی از این سلول‌های دو چاهی‌های سازند می‌باشند. این سلول‌های دو چاهی در منطقه تولید شده‌اند و به‌طور گسترده‌ای وجود دارند. تلاش برای کشف روابط بین شکل این منطقه و بازیابی آب‌رودخانه‌ها نسبت به فاصله‌های کشاورزی در آب‌رودخانه کارده افزایش و به‌طوری‌گونه غلظت پولی‌های سو یا نیاز از طریق آب‌رودخانه کارده می‌باشد.
تشخیص کانی‌های انتقال وابسته به اساس فعالیت شیمیایی پینون دلالات و یا اینکه در آب رودخانه کارده
یکی از روش‌های تعیین کانی‌های انتقال یافته در آب استفاده از میزان فعالیت شیمیایی پینون‌های موجود در آب (a) است. مطالعه نمونه‌های رودخانه کارده در نمونه‌های
کلیسی و دولومیت در شیمی آب رودخانه کارده نقش دارد ولی با توجه به این مسئله که نمونه‌ها کمی از خط نسبت 1:1 بین کلیسی و دولومیت به مدت کانی کلیسی تحت شرایط آب نیز کانی
کربنات در شیمی آب رودخانه کارده مهم‌تر است (6).

جدول ۲ - فاکتور‌های اصلی در انتقال کفیت رودخانه کارده پس از انتقال

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>مقیاس اصلی</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discharge</td>
<td>0.34</td>
</tr>
<tr>
<td>TDS</td>
<td>0.49</td>
</tr>
<tr>
<td>EC</td>
<td>0.49</td>
</tr>
<tr>
<td>pH</td>
<td>0.03</td>
</tr>
<tr>
<td>HCO₃⁻</td>
<td>0.78</td>
</tr>
<tr>
<td>Cl</td>
<td>0.53</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>0.19</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>0.79</td>
</tr>
<tr>
<td>Mg²⁺</td>
<td>0.25</td>
</tr>
<tr>
<td>Na⁺</td>
<td>0.08</td>
</tr>
<tr>
<td>TH</td>
<td>0.04</td>
</tr>
<tr>
<td>Rain</td>
<td>0.02</td>
</tr>
</tbody>
</table>

شکل ۲ - نمونه‌های آب رودخانه کارده پس از ورود نمودار [Ca²⁺+Mg²⁺]/[HCO₃⁻] در مقابل [Na⁺+K⁺]/[HCO₃⁻] (equivalent ratio)
منشأ غیر طبيعي (مصونعی) یون‌های موجود در آب

روخانه کارده

آلودگی ناشی از فعالیت‌های بشiry از طریق فاضلاب‌ها و خانگی و صنعتی، کودهای کشاورزی و یا از طریق آب یارندگی وارد روخانه می‌شوند. یون‌های موجود در کلر نیترات غالب‌آه در بررسی آلودگی‌های مصنوعی و نحوه پخش آن در آب روخانه‌ها مورد بررسی قرار می‌گیرند.

Log(aMg²⁺/a(H+)²) و Log(aCa²⁺/a(H+)²) در مقابل (Log (aNa⁺/a(H⁺)) (شکل 3) که بی‌را مشخص کردن کاتیو سیلیکات‌های محلول در آب رسم می‌شود، اکثر نمونه‌های مربوط به روخانه کارده در نمودار اول در محدوده کاتیو کالکتولینیت و تنها یک نمونه در محدوده کاتیو لامونتین قرار می‌گیرد. در نمودار دوم نیز همانند نمودار اول اکثر نمونه‌ها در محدوده کاتیو کالکتولینیت و تعدادی از آنها نیز در محدوده کاتیو کلینوکلر قرار می‌گیرند (۶).

![شکل ۲ - نمودار نمونه‌های روخانه کارده](image1.png)

Log(aMg²⁺/a(H+)²) در مقابل Log(aCa²⁺/a(H+)²) در روش‌های کارده

![شکل ۴ - نمودار نمونه‌های روخانه کارده](image2.png)

www.SID.ir
و فصل یکی از نمودارهای که در بررسی الودگی آب رودخانه تدیم و نمودارها با استفاده از غلظت بیون نیترات و TDS کاربرد بسیار دارد، نمودار TDS مقابل NO₃⁻ و NO₂⁻ و TDS مقابل H⁺/Cl⁻ و H₂O/NO₃⁻ نمونه‌های آب رودخانه کارده در ابتدای ارتباط مشتق‌پذیر می‌باشد. می‌باشد. میزان NO₃⁻ و NO₂⁻ و TDS مقابل +Cl⁻ و HCO₃⁻ رابطه غلظت عکس NO₃⁻+Cl⁻/HCO₃⁻ با نسبت TDS از قسمت اول نمودار که این رابطه مشتق‌پذیر دارد مربوط به ارتباط بین TDS و HCO₃⁻ شبیه است که در ابتدای TDS نمونه‌های آب به دلیل کاهش پارانگی به سمت افزایش غلظت بیون نیترات نیز به تبع آن در نمونه‌های آب افزایش می‌یابد. این رابطه مشتق‌پذیر بین کودهایی که شدت افزایش بیون نیترات تی‌خیری و ضایعات مفهومی با غلظت بیون نیترات و TDS در نمونه‌ها مربوط به ارتباط قوی بین نمونه‌ها و نیترات نوع‌های با بیون سدیم (تشکل ۴) نشان دهنده این مطلب است که بین نمونه‌ها غلظت بیون نیترات تی‌خیری و NO₃⁻+Cl⁻/HCO₃⁻ و NO₂⁻ و TDS مقابل TDS نمونه‌های آب رودخانه کارده در ابتدای ارتباط Q نسبت TDS از قسمت اول نمودار که این رابطه مشتق‌پذیر دارد مربوط به ارتباط بین TDS و HCO₃⁻ شبیه است که در ابتدای TDS نمونه‌های آب به دلیل کاهش پارانگی به سمت افزایش غلظت بیون نیترات نیز به تبع آن در نمونه‌های آب افزایش می‌یابد. این رابطه مشتق‌پذیر بین کودهایی که شدت افزایش بیون نیترات تی‌خیری و ضایعات مفهومی با غلظت بیون نیترات و TDS در نمونه‌ها مربوط به ارتباط قوی بین نمونه‌ها و نیترات نوع‌های با بیون سدیم (تشکل ۴) نشان دهنده این مطلب است که بین نمونه‌ها غلظت بیون نیترات تی‌خیری و NO₃⁻+Cl⁻/HCO₃⁻ و NO₂⁻ و TDS مقابل TDS نمونه‌های آب رودخانه کارده در ابتدای ارتباط Q نسبت TDS از قسمت اول نمودار که این رابطه مشتق‌پذیر دارد مربوط به ارتباط بین TDS و HCO₃⁻ شبیه است که در ابتدای TDS نمونه‌های آب به دلیل کاهش پارانگی به سمت افزایش غلظت بیون نیترات نیز به تبع آن در نمونه‌های آب افزایش می‌یابد. این رابطه مشتق‌پذیر بین کودهایی که شدت افزایش بیون نیترات تی‌خیری و ضایعات مفهومی با غلظت بیون نیترات و TDS در نمونه‌ها مربوط به ارتباط Q نسبت TDS از قسمت اول نمودار که این رابطه مشتق‌پذیر دارد مربوط به ارتباط بین TDS و HCO₃⁻ شبیه است که در ابتدای TDS نمونه‌های آب به دلیل کاهش پارانگی به سمت افزایش غلظت بیون نیترات نیز به تبع آن در نمونه‌های آب افزایش می‌یابد. این رابطه مشتق‌پذیر بین کودهایی که شدت افزایش بیون نیترات تی‌خیری و ضایعات مفهومی با غلظت بیون نیترات و TDS در نمونه‌ها مربوط به ارتباط Q نسبت TDS از قسمت اول نمودار که این رابطه مشتق‌پذیر دارد مربوط به ارتباط بین TDS و HCO₃⁻ شبیه است که در ابتدای TDS نمونه‌های آب به دلیل کاهش پارانگی به سمت افزایش غلظت بیون نیترات نیز به تبع آن در نمونه‌های آب افزایش می‌یابد. این رابطه مشتق‌پذیر بین کودهایی که شدت افزایش بیون نیترات تی‌خیری و ضایعات مفهومی با غلظت بیون نیترات و TDS در نمونه‌ها مربوط به ارتباط Q نسبت TDS از قسمت اول نمودار که این رابطه مشتق‌پذیر D}}
رودرخاه کارده و است به انحلال لیتوژی حوضه آبریز آن و منشا غیر طبیعی نامی از وارد شدن قایل‌هدای خانگی و کودهای کشاورزی است. منشا اصلی تهیه در اواخر قابلین به واحدهای فلزی و نایل است که در تولید از رودخانه دو افزایش می‌یابد در اینهای است و در سایر فصول اهمیت زیادی ندارد. از طرف دیگر لیتوژی حوضه آبریز رودخانه کارده به غلبای کریبت در بعضی از مناطق سیلیکات و تپه‌هایی و دارای قابلیت انحلال بذری باید این سبب شده که انجام کانیزم موجود در سایت‌های حوضه آبریز منطقه تانگیرگری بر کفتی آب رودخانه داشته باشد. بررسی نتایج کفتی آب رودخانه کارده و تغییر کانیزم انحلال یافته با استفاده از قدرت پونی و ضریب فعالیت شیمیایی بینی‌های سیلیکس، میزیم، سدیم و هیدروژن نشان داده این موضوع است که انحلال کانی‌های کریبت در دومین و سیلیکات کالکولپت، لامپت‌های کلینوکپر در کنار کانی‌های کفیتی آب رودخانه کارده را کنترل می‌کند.

یکی دیگر از بزرگ‌ترین که در بررسی آلودگی ناشی از فعالیت‌های بشری مورد بررسی قرار می‌گیرد، بیشتر کلر است که افزایشی نشان می‌دهد. آب‌های کلر و سولفات در آب‌های سطحی و زیرزمینی نشان می‌دهد که در آب‌های کلر و سولفات، آب‌های افزایش نسبت فعالیت‌های خانگی در آب رودخانه کارده به خاطر کاهش به رودخانه در طی این دوره می‌باشد.

نتیجه‌گیری
مطالعه فوق نشان دهنده این موضوع است که کمیت آب

شکل 7: موقعیت نمونه‌های رودخانه کارده در نمودار بینی‌های کلر و سولفات نرم‌آوره با بیزین‌های

منابع
1- مقمی‌ها. 1385. هیدروترانشیمی. انتشارات دانشگاه پیام نور، تهران
Investigation of Seasonal and Spatial Variation of Hydrochemical Parameters in Karde River (North of Mashhad)

M. Heydarizad 1* - H. Mohammadzadeh 2*
Received: 25-12-2011
Accepted: 24-06-2012

Abstract

Karde river is one of the most important river in Khorasan Razavi province which provides potable water for 3 million inhabitants of Mashhad city. The following research shows seasonal and spatial fluctuation in water quality. Investigating the chemical analysis of Karde rivers water shows that precipitation chemistry doesn't have significant role in the chemistry of river because there is no industrial activity in the region when the Anthropogenic recourses caused by (agricultural fertilizers and sewage) and lithology of the basin have their own roles. Anthropogenic resources has dominant role in late spring and summer when the concentration of NO_3^-, SO_4^{2-} and Cl^- increases dramatically by chemical fertilizers used in the basin. On the other hand, the concentration of Ca^{2+}, Mg^{2+}, SO_4^{2-} and HCO_3^- in water analysis, Factor analysis and hydrochemical graphs show that dissolution of the carbonate minerals in Mozdooran formation and evaporative and silicate minerals in Shorije formation plays dominant role in the chemistry of the Karde river. Identification of dissolved Carbonate and silicate minerals with ion activity (a) and $Log(aCa^{2+}/a(H^+)^2)$ versus $Log(aMg^{2+}/a(H^+)^2)$ graph for Carbonate minerals and $Log(aMg^{2+}/a(H^+)^2)$ and $Log(aCa^{2+}/a(H^+)^2)$ versus $Log(aNa^+/a(H^+)^2)$ for silicate minerals show that carbonate minerals "Calcite and Dolomite" and silicate minerals "Kaolinite, Laumontite and Clinochlore beside sulfate mineral "gypsum" are the dominate dissolved minerals in the river.

Keywords: Hydrochemistry, Karde River, Natural resources, Anthropogenic resources, Carbonate and silicate mineral dissolution

1- Msc in Hydrogeology
(* - Corresponding Author Email: amour_elle_86@yahoo.com)
2- Assistant Professor, Geology Department, Ferdowsi University of Mashhad