اثر غربقاب، لجن فاضلاب و کود دامی بر ویژگی‌های رشد گیاه آفتابگردان

در یک خاک شن لومی

نشره علوم و منابع کشاورزی
جلد 25، شماره 6، پیش نمایش - اسفند 1390، ص 1264-1276

چکیده
تأثیر مدت غربقاب شنل خاک، منع و متقاضی کود آلی بر ویژگی‌های رشد گیاه آفتابگردان (Helianthus annuus L.) در شرایط گلخانه‌ای بررسی گردید. آزمایش به‌صورت فاکتوریل و در قالب طرح یک‌دل‌آمیز انجام شد. میزان فاصله گروه کود 0، 10 و 20 روز و مقدار کود آلی در 0، 8 و 16 کیلوگرم بر هر متر مربع داشته در نظر گرفته شد. نتایج نشان داد که بیش از تقریباً 10 روز تکرار شد مدت غربقاب در ناحیه کرابم بهتر از تشکیل و خشک شدن هوا و نسبت وزن گیاه رشد هواپیمایی بیشتر می‌باشد. کاهش خشکی و افزایش قطع سطح در محل رشد گیاهان انسداد و افزایش میزان فاصله بین گیاهان به‌صورت افزایش داد. نتایج نشان داد که در غربقاب بهتر از تقریباً 10 روز منجر به رشد هواپیمایی بیشتر می‌باشد. نتایج نشان داد که بیش از این مقدار کود آلی و مدت غربقاب بیشتر از 10 روز منجر به بهبود کیفیت گیاهان می‌باشد. در نهایت می‌توان گفت که استفاده از کود آلی و غربقاب به بهبود کیفیت و رشد گیاهان منجر می‌شود.

واژه‌های کلیدی: آفتابگردان، کود آلی، لجن فاضلاب

مقدمه
پیده‌ی گرمایش چهارگانه یکی از علل وقوع باززیراها به‌صورت ریگار است. این پدیده در کاربرد عمومی محصول بارندگی بیش از حد سیلان و ابزاری ناتوان سبب غربقاب شدن زمین‌های شکاره‌ی مورد که این امر موجب عقب‌اندیشی جهانی گردیده و در نهایت محصولات به‌صورت بدون غربقاب و کرابم گزاره شده که لجن فاضلاب و کود آلی به بهبود کیفیت گیاهان منجر می‌باشد. در نهایت می‌توان گفت که قطع سطح در محل رشد گیاهان افزایش و نسبت وزن گیاه رشد هواپیمایی بیشتر می‌باشد. نتایج نشان داد که بهبود کیفیت و رشد گیاهان منجر می‌باشد.

 أثناءهای گیاهی: آفتابگردان، کود آلی، لجن فاضلاب

پذیرش رشد و جمعیت و روند رو به افزایش مصرف

چند روز پشتیبانی آسیب‌دهنگی را نشان می‌دهد. کاهش با توقف رشد طولی ساقه و زرد شدن باینز رایانه و اثر گیاه کمود نیتروژن از اولین نشانه‌ها سطح‌پذیری گیاهان به شدت در درون گیاهان و برخی از گیاهان به ساده می‌باشد. همچنین این مسئله در زیر نشان‌دهنده می‌باشد. با توجه به اینگونه نتایج می‌توان گفت که استفاده از کود آلی و غربقاب به بهبود کیفیت و رشد گیاهان منجر می‌باشد.

1. آفتابگردان یکی از چهار گیاه رغوبی مهم یکسان‌الگی است که برای تهپ و روش‌های کشت می‌گردد. روش‌های اضافی برای آفتابگردان در میزان حساسیت و میزان حساسیت مستقیماً به طول طول غربقاب شدن گیاه‌ها برای گیاه‌های کور 3-4 روز بر پوسته گیاهی تأثیر جدی تر دارد. در غربقاب های بارندگی 3-4 روز بر پوسته گیاهی نتیجه گذاری تأثیرات این درون با پوسته 3-4 روز است. (7)

2. جهت این اتهام رشد جمعیت و روند رو به افزایش مصرف

3. آفتابگردان یکی از چهار گیاه رغوبی مهم یکسان‌الگی است که برای تهپ و روش‌های کشت می‌گردد. روش‌های اضافی برای آفتابگردان در میزان حساسیت و میزان حساسیت مستقیماً به طول طول غربقاب شدن گیاه‌ها برای گیاه‌های کور 3-4 روز بر پوسته گیاهی تأثیر جدی تر دارد. در غربقاب های بارندگی 3-4 روز بر پوسته گیاهی نتیجه گذاری تأثیرات این درون با پوسته 3-4 روز است. (7)

4. آفتابگردان یکی از چهار گیاه رغوبی مهم یکسان‌الگی است که برای تهپ و روش‌های کشت می‌گردد. روش‌های اضافی برای آفتابگردان در میزان حساسیت و میزان حساسیت مستقیماً به طول طول غربقاب شدن گیاه‌ها برای گیاه‌های کور 3-4 روز بر پوسته گیاهی تأثیر جدی تر دارد. در غربقاب های بارندگی 3-4 روز بر پوسته گیاهی نتیجه گذاری تأثیرات این درون با پوسته 3-4 روز است. (7)
چربی‌ها و روغن‌ها، در کشورهای نوچه‌داری در تأمین نیاز مصرف کننده‌ها وجود دارد که یکی از عوامل اصلی مشکلات دلیلی ناپیوندگی جهانی افتابگیری در کشور است (2). این امر برای افزایش میزان مصرف انواع کود افتوده و شیمیایی در آن مکان رایج است، اما در برخی از کشورها به‌طور کلی کود به‌طور بیشتری مصرف می‌شود."}

مواد و روش‌ها

این پژوهش در دانشکده کشاورزی دانشگاه تبریز در تابستان و پاییز ۱۳۹۷ انجام گردید. گیاهان در کانال‌های حاوی ۴/۵ کیلوگرم خاک بافت‌شده محیط کشت و با استفاده از مدل‌کاهه و STATA-C و SPSS نرم‌افزار Excel و با توجه به آمار داده‌ای استفاده از نرم‌افزار SPSS آنالیز آماری داده‌ها انجام شد.

[www.SID.ir]
نتایج و بحث

برخی ویژگی‌های فیزیکی و شیمیایی خاک مورد استفاده در
آزمایش کلیه‌های در جدول 1 و برخی ویژگی‌های شیمیایی کود
گاوه و لجن فاضلاب مورد استفاده در جدول 2 ارائه شده است.

شاخص کلروفیل برگ‌ها

غلطی کلروفیل برگ‌ها شاخص مستقیم سلامت گیاه و وضعیت
رشد آن و شاخصی از فعالیت فتوستاتیک برگ‌های شیاه. مقایسه
میانگین‌ها نشان داد که با افزایش مقدار کلروفیل خاک، شاخص
کلروفیل برگ‌ها به تدریج بالغ می‌شود و در محدوده
یپت در سطح پودن غربال و کمترین آن در سطح 20 روز غربال
مشاهده گردد (جدول 2). مشاهدات کلیه‌های نشان داد که با غربال
شند خاک، با علت ضعیف بودن میکروبی گیاه در مرحله
شند برگ و ظرفیت بودن بافت خاک، گیاهان افتاده‌دارند حالت
این ساده‌گری یک راه حل دارد. لازم است، برای راست
تغذیه‌اش‌دن آنها از نگاه‌های استفاده شد. نتیجه‌ی بدیهی نشان داد که اگر
در شرایط مناسب و در مرحله پیش گیاه کافی آب و هوا باشد
برای مدت چند روز غربال شد و با تأثیر افتادن گیاه در داخل آب
غربال به دست آمده کنی و بیش از گل‌های کمکی افتاده گردد، پس از چند روز غربال، برگ‌های باپری گیاه
شکل 1 نشان دهنده کارهای در سطح 180 روز غربال، نشان داده شده است که با پیامد
با کارهای روزانه پیتزورون سطح خاک غربال، که در آن روش‌های
تازه در حال رشد هستند، قابل پیشگیری است، به عقیده بود چیزی

جدول 1 - برخی ویژگی‌های فیزیکی و شیمیایی خاک مورد استفاده

<table>
<thead>
<tr>
<th>Pb</th>
<th>Cd</th>
<th>Zn</th>
<th>Cu</th>
<th>Mn</th>
<th>Fe</th>
<th>EC</th>
<th>pH</th>
<th>ماده الی</th>
<th>گروه بافت</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mg kg⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(dS m⁻¹)</td>
<td>%</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>2</td>
<td>0.7</td>
<td>0.9</td>
<td>0.7</td>
<td>0.3</td>
<td>0.3</td>
<td>0.15</td>
<td>0.5</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>3</td>
<td>0.7</td>
<td>0.9</td>
<td>0.7</td>
<td>0.3</td>
<td>0.3</td>
<td>0.15</td>
<td>0.5</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>4</td>
<td>0.7</td>
<td>0.9</td>
<td>0.7</td>
<td>0.3</td>
<td>0.3</td>
<td>0.15</td>
<td>0.5</td>
<td>0.2</td>
<td>0.1</td>
</tr>
</tbody>
</table>

نتایج نشان داد که با افزایش مصرف هر دو کود آلی صخیش
کلروفیل برگ‌ها افزایش یافته. بیشترین شاخص کلروفیل برگ‌ها در
دو مساحت 15 و 30 روز لجن فاضلاب بر کیلوگرم خاک و کمترین آن
در سطح بودن کود آلی (شاید) بود که با سطح 15 روز کود دامی بر
کیلوگرم خاک تفاوت معنی‌دار نداشت (جدول 2)، بر اساس افتخام، افزایش
کلروفیل برگ‌ها با کاربرد کود فلورید کربنیک و یا کود دامی بر
کیلوگرم خاک باعث خاص شد که بر الیه لجن فاضلابی در
کود دامی رشد کود و غلظت سدیم کمتر و بیشتر بودند
کیفیت آن می‌باشد.

اثر متقابل غربال و کود‌های آلی بر شاخص کلروفیل برگ‌ها
ممنوید (جدول 2، شاخص نمایی برنامه‌های شناشناد که تأثیر
در سطح پودن کود آلی برای سطح ماده آلی و مقدار آن
بسیگی داشته است. در سطح دو روز غربال فشار شیشه نژاد کلروفیل
برگ‌ها در سطح 30 روز لجن فاضلاب بر کیلوگرم خاک
مشاهده شد که با هر دو کود آلی تفاوت لجنسی داشته.
در سطح 30 روز لجن فاضلاب بر کیلوگرم خاک ماده الی در
سطح 30 روز لجن فاضلاب بر کیلوگرم خاک و کمترین آن در
سطح 15 روز لجن فاضلاب بر کیلوگرم خاک و کمترین آن در
سطح 30 روز لجن فاضلاب بر کیلوگرم خاک کمترین آن در
سطح 30 روز لجن فاضلاب بر کیلوگرم خاک ماده الی در

* www.SID.ir
کود آلی و مدت عرقاب مشاهده گردید. به نظر می‌رسد روند کاهشی
شاخص کلوروفیل با افزایش سطح کود آلی ادامه داشته و تا مقدار موارد سیمی
برای رشید نیاز ذیل یک دوره برای افزایش کود آلی دامنه چون کود آلی مورد
استفاده به‌طور کامل نیوپسیده بود و دارای مقادیر قابل ملاحظه‌ای کاهش
و کلشه بود در حالی که موارد انجام فاضلاب کامل با پوسیده شده
بود. مارشتر (2002) بیان داشت که در عرقاب طولانی مدت خاک اثر
اجتناب مواد آلی به‌وسیله بردی‌داران خاک به‌وسیله سپس از افزودن
بقا‌های گیاهی، ترکیبات فلزی و اسیدهای چرب تعمید شونده ایجاد
می‌شود و بر متابولیسم ریشه و رشد اثر مضر دارد.

جدول ۳- مقایسه میانگین‌های شاخص کلوروفیل، سطح برگ، ارتفاع و قطر ساقه تحت اثر عرقاب و کودهای آلی

<table>
<thead>
<tr>
<th>شاخص</th>
<th>سطح برگ (cm)</th>
<th>ارتفاع گیاه (cm)</th>
<th>قطر ساقه در محل طوله (cm)</th>
<th>مدت زمان عرقاب (روز)</th>
</tr>
</thead>
<tbody>
<tr>
<td>کود آلی</td>
<td>132 c</td>
<td>14/95/a</td>
<td>0/84 c</td>
<td>37/1a</td>
</tr>
<tr>
<td>0/5a</td>
<td>136 b</td>
<td>14/33 ab</td>
<td>0/98a</td>
<td>19/1bc</td>
</tr>
<tr>
<td>1/96a</td>
<td>136 b</td>
<td>15/0 a</td>
<td>0/98b</td>
<td>35/1cd</td>
</tr>
<tr>
<td>0/11 bc</td>
<td>136 a</td>
<td>15/95 ab</td>
<td></td>
<td>37/1 d</td>
</tr>
</tbody>
</table>

منبع و مقدار کود آلی

<table>
<thead>
<tr>
<th>شاخص</th>
<th>مقدار کود آلی (15g/kg)</th>
<th>کود آلی (30g/kg)</th>
<th>مقدار کود آلی (15g/kg)</th>
<th>کود آلی (30g/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاخص</td>
<td>کود آلی (15g/kg)</td>
<td>کود آلی (30g/kg)</td>
<td>کود آلی (15g/kg)</td>
<td>کود آلی (30g/kg)</td>
</tr>
<tr>
<td>0/84c</td>
<td>37/1a</td>
<td>37/1b</td>
<td>37/1c</td>
<td>37/1d</td>
</tr>
<tr>
<td>0/98a</td>
<td>19/1bc</td>
<td>19/1bc</td>
<td>19/1bc</td>
<td>19/1bc</td>
</tr>
<tr>
<td>0/11 bc</td>
<td>35/1cd</td>
<td>35/1cd</td>
<td>35/1cd</td>
<td>35/1cd</td>
</tr>
<tr>
<td>0/13a</td>
<td>37/1d</td>
<td>37/1d</td>
<td>37/1d</td>
<td>37/1d</td>
</tr>
<tr>
<td>0/16a</td>
<td>19/1bc</td>
<td>19/1bc</td>
<td>19/1bc</td>
<td>19/1bc</td>
</tr>
</tbody>
</table>

در هر ستون، میانگین‌های دارای حروف مشترک، با آزمون ناکران در سطح احتمال یک درصد نتایج معنی‌دار دارند.

کود آلی و مدت عرقاب مشاهده گردید. به نظر می‌رسد روند کاهشی
شاخص کلوروفیل با افزایش سطح کود آلی ادامه داشته و تا مقدار موارد سیمی
برای رشید نیاز ذیل یک دوره برای افزایش کود آلی دامنه چون کود آلی مورد
استفاده به‌طور کامل نیوپسیده بود و دارای مقادیر قابل ملاحظه‌ای کاهش
و کلشه بود در حالی که موارد انجام فاضلاب کامل با پوسیده شده
بود. مارشتر (2002) بیان داشت که در عرقاب طولانی مدت خاک اثر
اجتناب مواد آلی به‌وسیله بردی‌داران خاک به‌وسیله سپس از افزودن
بقا‌های گیاهی، ترکیبات فلزی و اسیدهای چرب تعمید شونده ایجاد
می‌شود و بر متابولیسم ریشه و رشد اثر مضر دارد.

جدول ۳- مقایسه میانگین‌های شاخص کلوروفیل، سطح برگ، ارتفاع و قطر ساقه تحت اثر عرقاب و کودهای آلی

<table>
<thead>
<tr>
<th>شاخص</th>
<th>سطح برگ (cm)</th>
<th>ارتفاع گیاه (cm)</th>
<th>قطر ساقه در محل طوله (cm)</th>
<th>مدت زمان عرقاب (روز)</th>
</tr>
</thead>
<tbody>
<tr>
<td>کود آلی</td>
<td>132 c</td>
<td>14/95/a</td>
<td>0/84 c</td>
<td>37/1a</td>
</tr>
<tr>
<td>0/5a</td>
<td>136 b</td>
<td>14/33 ab</td>
<td>0/98a</td>
<td>19/1bc</td>
</tr>
<tr>
<td>1/96a</td>
<td>136 b</td>
<td>15/0 a</td>
<td>0/98b</td>
<td>35/1cd</td>
</tr>
<tr>
<td>0/11 bc</td>
<td>136 a</td>
<td>15/95 ab</td>
<td></td>
<td>37/1 d</td>
</tr>
</tbody>
</table>

منبع و مقدار کود آلی

<table>
<thead>
<tr>
<th>شاخص</th>
<th>مقدار کود آلی (15g/kg)</th>
<th>کود آلی (30g/kg)</th>
<th>مقدار کود آلی (15g/kg)</th>
<th>کود آلی (30g/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاخص</td>
<td>کود آلی (15g/kg)</td>
<td>کود آلی (30g/kg)</td>
<td>کود آلی (15g/kg)</td>
<td>کود آلی (30g/kg)</td>
</tr>
<tr>
<td>0/84c</td>
<td>37/1a</td>
<td>37/1b</td>
<td>37/1c</td>
<td>37/1d</td>
</tr>
<tr>
<td>0/98a</td>
<td>19/1bc</td>
<td>19/1bc</td>
<td>19/1bc</td>
<td>19/1bc</td>
</tr>
<tr>
<td>0/11 bc</td>
<td>35/1cd</td>
<td>35/1cd</td>
<td>35/1cd</td>
<td>35/1cd</td>
</tr>
<tr>
<td>0/13a</td>
<td>37/1d</td>
<td>37/1d</td>
<td>37/1d</td>
<td>37/1d</td>
</tr>
<tr>
<td>0/16a</td>
<td>19/1bc</td>
<td>19/1bc</td>
<td>19/1bc</td>
<td>19/1bc</td>
</tr>
</tbody>
</table>

در هر ستون، میانگین‌های دارای حروف مشترک، با آزمون ناکران در سطح احتمال یک درصد نتایج معنی‌دار دارند.
کاهش سطح برگ‌ها بر اثر غرباب فقط در تیمارهای شاهد و ۳۰ گرم لجن فضلاب بر کیلوگرم خاک مشاهده گردید و در سایر تیمارهای این تفاوت‌ها معنی‌دار نبود. همچنین، با افزودن ۴۰ گرم لجن فضلاب بر کیلوگرم خاک، در تمامی تیمارهای غرباب سطح برگ‌ها نسبت به شاهد (بدون کود آ)، به‌طور معنی‌داری افزایش یافت. این حال، بیشترین سطح برگ‌ها مربوط به تیمار ۵۰ گرم لجن فضلاب بر کیلوگرم خاک بود.

ارتفاع کیاه

مقایسه میانگین‌ها نشان داد که با افزایش مقدار غرباب شدن گیاه ارتفاع گیاه‌های فانتان به اندازه‌ای بالا طرف نازک گردیده است. از نظر کاهش ارتفاع گیاه‌ها بروز و آفت‌پراکن‌ها را پس از غرباب شدن خاک گزارش نمودند. برخی از آن‌ها به دنبال ان کمبود مواد غذایی را مسئولیت توقف رشد ساقه در گیاهان در معرض غرباب عاملی دانسته‌اند. مقایسه میانگین‌ها نشان داد که اثر کاهش گیاهانی که با ارتفاع گیاه‌های فانتان به اندازه‌ای بالا طرف نازک گردیده است. این گیاه‌ها تری بیشتر می‌زدند و بکار بردن B اثر متقابل غرباب و کود آی بر سطح برگ‌های آفت‌پراکن

شکل ۲- اثر متقابل غرباب و کود آی بر سطح برگ‌های آفت‌پراکن
این تحقیق نشان می‌دهد که با غرق‌بندی گیاه آفتابگردان، اثر غرق‌بندی بر قطر ساقه در محل طول زمانی تا پایان دوره رشد باید مورد نظر قرار گیرد. نتایج نشان می‌دهد که کاربرد کود دامی بر قطر ساقه در محل طول زمانی دو داده گیاه آفتابگردانی اثر ممنعی دار نشان داده که افزایش داده‌های اثر ممنعی دار در محل طول زمانی تا پایان دوره رشد غرق‌بندی باید به‌طور معنی‌داری افزایش داده باشد. افزایش قطر ساقه در محل طول زمانی بر اثر غرق‌بندی به ترتیب برای هواپیمایی در محل طول زمانی هدایت داده می‌شود. با ادامه پیشنهاد شرایط غرق‌بندی گاز اتانول در حال تجربه می‌باشد که ترتیب ترکیب هواپیمایی در ساقه را تغییر می‌دهد و باعث افزایش قطر ساقه در محل طول زمانی می‌گردد. ترتیب ترکیب هواپیمایی یک کانال تبدیل گازی درونی از بخش هواپیمایی به روش‌های اجرا راه آوردن این دانش‌ها رئیس‌هایی را می‌تواند از آن روزنامه‌های روزی ساقه وارد شده و از راه ورود به رشته غرق‌بندی الهام به روش غرق‌بندی می‌رسد (2).
وزن تر و خشک بخش هواپی
مقایسه میانگین‌ها نشان داد که با افزایش مقدار غرافه و رشد گیاه، وزن تر و خشک بخش هواپی کاهش یافته است.

جدول ۴- مقایسه میانگین‌های وزن تر و خشک بخش هواپی (وقت و رشته تحت اثر غرافه و کودهای آ)

<table>
<thead>
<tr>
<th>منهای کودهای (g/pot)</th>
<th>جدول ۴- مقایسه میانگین‌های وزن تر و خشک بخش هواپی تحت اثر غرافه و کودهای آ</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/77 a</td>
<td>0/19 c</td>
</tr>
<tr>
<td>3/44 b</td>
<td>0/20 b</td>
</tr>
<tr>
<td>3/65 ab</td>
<td>0/21 ab</td>
</tr>
<tr>
<td>3/49 b</td>
<td>0/22 b</td>
</tr>
<tr>
<td>3/75 c</td>
<td>0/23 c</td>
</tr>
</tbody>
</table>

منبع و مقدار کود آ

<table>
<thead>
<tr>
<th>شاهد</th>
<th>کودکاوا (15g/kg)</th>
<th>کودکاوا (50g/kg)</th>
<th>لجن فاضلبال (15g/kg)</th>
<th>لجن فاضلبال (50g/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/83</td>
<td>1/16 c</td>
<td>11/80b</td>
<td>1/80b</td>
<td>11/80b</td>
</tr>
<tr>
<td>3/91</td>
<td>12/80b</td>
<td>12/80b</td>
<td>12/80b</td>
<td>12/80b</td>
</tr>
<tr>
<td>3/88</td>
<td>13/80b</td>
<td>13/80b</td>
<td>13/80b</td>
<td>13/80b</td>
</tr>
<tr>
<td>3/22</td>
<td>14/80b</td>
<td>14/80b</td>
<td>14/80b</td>
<td>14/80b</td>
</tr>
<tr>
<td>3/52</td>
<td>15/80b</td>
<td>15/80b</td>
<td>15/80b</td>
<td>15/80b</td>
</tr>
</tbody>
</table>
اثر غرفچه، لنگ فاضلاب و کود دامی بر وزن تر بیشتر هواپیمای آفتابگردان در یک خاک شن‌لومی

شکل 5-اثر مقیاس غرفچه و کود آلی بر وزن تر بیشتر هواپیمای آفتابگردان

شکل 6-اثر مقیاس غرفچه و کود آلی بر وزن خشک بیشتر هواپیمای آفتابگردان

مقدارهای متابولیکه نشان داد که کاربرد هر دو نوع کود آلی و در هر دو سطح مصرف شده، وزن تر و خشک ریشه را نسبت به شاهد افزایش داد. بیشترین وزن تر و خشک ریشه در سطح ۴۰ گرم لجن فاضلاب بر کیلوگرم خاک مشاهده گردید. که با برخی سطوح کود آلی از مطلوب‌ترین نشانه‌های دانسته‌ها، واگذاری و همکاران (۴) نیز افزایش ماه خشک ریشه گند با کاربرد لجن فاضلاب را کاهش یک کردن.

اثر مقیاس غرفچه و کود آلی بر وزن تر و خشک ریشه آفتابگردان معقیده مارشتر (۲۰) بود که این ریشه‌ها یک سازوکار سازش گیاه به شرایط ناحیه غرفچه است که اجازه جایگزینی ریشه‌های اصلی با ریشه‌های جدید را می‌دهد. از انجایی که این ریشه‌ها زنده در سطح آب بوده و به ساله و محل پارچه‌های هوایی نزدیک‌تر هستند، نسبت به ریشه‌های اصلی اکسپریمینی بیشتر در اختیار دارند. مارشتر (۲۰) بیان داشت که در همین اکسپریمین و انیم یا ترکیب این ریشه‌های نابجا تکنیک دانست. مقایسه متابولیکه نشان داد که با ادامه شرایط غرفچه وزن خشک ریشه گیاه کاهش یافته و کمترین وزن خشک ریشه در گیاهانی مشاهده گردید که به مدت ۱۱ روز در شرایط غرفچه بودند. اویارک و جنس (۲۲) مشاهده نمودند که با غرفچه‌بودن خاک، وزن خشک ریشه‌های دو گیاه آفتابگردان و سورکوم کاهش یافت. کمینه اکسپریمینی ریشه را به بخش‌هایی نسبه‌ای خاک محدود می‌کند و ریشه‌های متفاوت شرایط مطابق از حجم زیادی

www.SID.ir
نتیجه گیری

با افزایش مدت غربالی شدن خاک نشان داد که با افزایش مدت غربالی، وزن خشک رشد کرده و افزایش می‌دهد، به‌طوری‌که به افزایش میزان خشک خشک خشک بخش‌هایی به رشته نیاز دارد. در نهایت، افزایش میزان خشک خشک خشک بخش‌هایی به رشteen و X (جدول 3) این تکیه نشان می‌دهد که غربالی شدن خاک و چربی‌سازی و تعیین محدود مقدار مواد آلی و اکسیدهای غیرقابل پارسی‌سازی غربالی، به‌طوری‌که به افزایش میزان خشک خشک بخش‌هایی به رشته نیاز دارد. در نهایت، افزایش میزان خشک خشک بخش‌هایی به Rشته نیاز دارد. در نهایت، افزایش میزان خشک خشک بخش‌هایی به Rشته نیاز دارد. در نهایت، افزایش میا
اثر غرافب، لجن فاضلاب و کود دامی بر وزن ریشه‌های آفت‌پرکردن در یک‌خاک شن‌لومی

![chart1]

شکل 7. اثر متقابل غرافب و کود آی بر وزن ریشه‌های آفت‌پرکردن

![chart2]

شکل 8. اثر متقابل غرافب و کود آی بر وزن خشک ریشه‌های آفت‌پرکردن

![chart3]

شکل 9. اثر متقابل غرافب و کود آی بر نسبت وزن بر بخش هویبی به ریشه آفت‌پرکردن
شریعت آب و چربی، جلد 2، شماره 3، بهمن 1390

The Effects of Waterlogging, Sewage Sludge and Manure on the Growth Characteristics of Sunflower in a Sandy Loam Soil

N. Najafi1,2* - S. Mardomi2
Received:5-9-2010
Accepted:21-8-2011

Abstract

The effects of waterlogging and organic fertilizers on sunflower (Helianthus annuus L.) growth characteristics were investigated in greenhouse conditions. A factorial experiment based on completely randomized design with three replications was conducted including duration of waterlogging at five levels (0, 2, 4, 8, 22 days) and source and amount of organic fertilizer at five levels (0, 15 and 30 grams of both manure and sewage sludge per kg of soil). The results showed that by increasing the duration of waterlogging, leaf chlorophyll index, wet and dry weight of root and shoot as well as shoot/root dry weight ratio were decreased but plant height and stem diameter were increased and leaf area did not change significantly. By application of both organic fertilizers chlorophyll index, leaf area, stem diameter, wet and dry weight of shoot and root, and shoot/root dry weight ratio were increased but plant height did not change significantly. The interactive effect of waterlogging and organic fertilizer on chlorophyll index, leaf area and shoot/root dry weight ratio was significant but on other studied characteristics was not significant. The highest amount of wet weight of shoot and root and leaf area was found in 30 grams of sewage sludge and without waterlogging treatment. The sewage sludge increased sunflower shoot and root growth more than cow manure. The results also showed that the dry matter of sunflower shoot was more sensitive than of roots to waterlogging stress.

Keywords: Sunflower, Waterlogging, Organic fertilizer, Sewage sludge, Growth

1,2- Assistant Professor and Former MSc Student, Department of Soil Science, Faculty of Agriculture, University of Tabriz
(*- Corresponding Author Email: n-najafi@tabrizu.ac.ir)