بررسی تنشهای زنوتیپی و تجزیه به مؤلفه‌های اصلی برای صفای مورفولوژیک و فنولوزیک در تعدادی از زنوتیپ‌های خلر (Lathyrus sativus)

مقدمه

یک گیاه خندنی یک ساله متعلق به خانواده بکنولات و از طایفه ویسیه است. جنس Lathyrus محتوی 12 جنس و شامل 150 گونه

1. Viciinae

با توجه به این نتایج تجزیه به مؤلفه‌های اصلی، واژه‌های کلیدی: Lathyrus sativus L. زنوتیپ‌های خلر، تنشهای مورفولوژیک و فنولوزیک

تکامل

تنوع زنوتیپی 20 زنوتیپ خلر بر پایه صفای مورفولوژیک و فنولوزیک در سال زراعی 85-86 بررسی شد. بعد از انجام آزمون نرمالیتی، داده‌ها در قالب طرح پلوکه‌های کامل تصادفی با تکرار تجزیه آماری شنیده و برای مقایسه میانگین از آزمون داتکن استفاده گردید.

نتایج تجزیه واریانس نشان داد که بین زنوتیپ‌ها از لحاظ اغلب صفای مورد مطالعه اختلاف

بسیار معنی‌داری وجود داشت. ضرایب همبستگی نشان داد که عامل‌های اتصالی بیشتر

همبستگی فنوتیپی میبی و معنی‌دار در رابطه با صفای وزن کل غلاف و رنگ بونه هنگام برداشت داشت. عامل‌کرد پیلولوژیک بیشتر ضرایب همبستگی

فنوتیپی میبی و معنی‌دار را به صفات وزن بونه هنگام برداشت داشته و وزن غلاف، وزن بونه و تعداد کل غلاف در که داشت.

نتایج تجزیه نشان داد که صفای وزن کل

غلاف و وزن بونه به دلیل دارا بودن اثر مستقیم میبی و قابل توجه و همچنین بالا بودن اثر

بی‌مستقیم از طریق صفات دیگر میتواند به ترتیب به عنوان معیار گزینش در جهت اصلاح

برای افزایش عاملکرد اتصالی و پیلولوژیک در خلر مطرح گردید.

واژه‌های کلیدی: Lathyrus sativus L. زنوتیپ‌های خلر، تنشهای مورفولوژیک و فنولوزیک

تکامل چندمغز

E-mail: Karimzadeh_g@modares.ac.ir

تلفن: 021-22162547

نویسنده مستند: فاضل کریم‌زاده

www.SID.ir
مجله علم گیاهان زراعی ایران، ماهنامه ۱۳۹۰، شماره ۴۲

نیبات برای تلاش‌ها از زنوتیپ‌های که از هم پیش‌ترین
فاضل کناره‌نشین نشان دهنده، استفاده می‌گردد که فاصله
بین زنوتیپ‌ها برای تحصیل خوده‌ای تعیین می‌شود
(Heid Hafiz و به تری کیهان، ۱۹۹۴). برآورد ترکیب زنوتیپ‌های مورد بررسی و
تعیین پاتسالی زنوتیپ‌های خالی، کرومودی
زنوتیپ‌ها بر اساس صفات اندازه کالری شده نیز در راستای
اجاره برای اصول اصلاحی از زنوتیپ‌هایی برتر به عناوین
والدین استفاده گردند.

مواد و روش‌ها

در این تحقیق ترکیب مورفولوژیک و فتوپتیزیک
1۰۰ زنوتیپ خالی (نمونه‌گیری در مبحث 1۵)
زنوتیپ جمع آوری شده از اندازه‌های مشاهده، شکرکد،
قرون، اشبوع و ارديبل) با مشخصات ذکر شده در
جدول 1 مورد بررسی قرار گرفته. برای آن منظور
بذرهای زنوتیپ‌های خالی یک مورد مطالعه به طور همزمان,
در مزرعه تحقیقاتی دانشگاه کشاورزی دانشگاه تبریت
مدلس واقع در اتوای تهران کرج با مختصات ۵۱°۰۵
طول شرقی و ۴۳°۴۳ عرض شمالی کشت شد. بر پایه
آمار ایستگاه هواشناسی حداکثر دما درجه
سلسیوس، حداقل دما ۲/۲ درجه سلسیوس، میانگین
رطوبت ۲۵ درصد، میانگین بارندگی سالانه ۷۴۲/۸
میلی‌متر، وزن ابتدا و ابتدا میزان نهایی خشکت، بافت
کاری و شکاف (درصد) و ۴۵ درصد در شاک
در این تحقیق در قالب pH:۷/۲ و pH:۱۲ رد
ظرف بلکه‌های کامل تصویری با ۳ تکرار اجرا شد. به
متغیرهای واریانس زمین برای کشت بهره خلا، علاوه بر
صفحه پایه، عملیات تکمیلی شکم نیمه‌عمیق،
دیسک، تستیفای اجادات، نشر و کتیب‌سازی صورت دیدریفت
در از دیجی‌های ماه ۱۳۸۶ بذر پایین به صورت خشکه
کاری اجام شد. هر واحد آزمایشی مشخص از ۴ رور
کشت به فاصله ۴۰ سانتی‌متر از یکدیگر و به طول ۲
متر بود. برای منظور جوی و پیش‌بازی به فاصله ۸0
سانتی‌متر ایجاد و در طرفین پشت‌ها کشت اجام شد.

(۱. International Center for Agriculture Research in
Dryland Area

کامیانه‌ها، همانند کشت دیم و آبی خرید اختصاص
می‌باید (۱۹۹۹) هزار نتیجه ارزیابی از انواعی را
این گیاه از سخت‌کن و خشک (فارسی) گیمه (کردی)
می‌تواند باشد (۱۹۹۰) در سطح کشور باشد.
آمری‌های که تحت تغییر از جمله تجزیه‌خوشه و تجزیه
به مؤلفه‌ای اصلی، نش می‌کنند در بررسی ترکیب
انتخاب و الیاف، تعبیه نحوه تکامل گیاهان زراعی و
بررسی اثر مختلف زنوتیپ و محیط دارند. در اصلاح و

1. International Center for Agriculture Research in
Dryland Area

www.SID.ir
جدول 1- مشخصات و مقایسه میانگین‌های (± Se) زنوتیپهای خلور مورد استفاده در این تحقیق (n=2) خریداری

<table>
<thead>
<tr>
<th>Genotype codes</th>
<th>Local collection locations</th>
<th>عملکرد اکتشافی (زون کل دانه) (kg ha⁻¹)</th>
<th>عملکرد بیولوژیک (kg ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>Syria, ICARDA</td>
<td>108/0 ± 33/4 ab</td>
<td>204/0 ± 33/4 abcd</td>
</tr>
<tr>
<td>G2</td>
<td>Ethiopia, ICARDA</td>
<td>50/0 ± 13/0 abcd</td>
<td>153/0 ± 23/7 bde</td>
</tr>
<tr>
<td>G3</td>
<td>Ethiopia, ICARDA</td>
<td>50/0 ± 13/0 abcd</td>
<td>153/0 ± 23/7 bde</td>
</tr>
<tr>
<td>G4</td>
<td>Ethiopia, ICARDA</td>
<td>50/0 ± 13/0 abcd</td>
<td>153/0 ± 23/7 bde</td>
</tr>
<tr>
<td>G5</td>
<td>Ethiopia, ICARDA</td>
<td>50/0 ± 13/0 abcd</td>
<td>153/0 ± 23/7 bde</td>
</tr>
<tr>
<td>G6</td>
<td>Ethiopia, ICARDA</td>
<td>50/0 ± 13/0 abcd</td>
<td>153/0 ± 23/7 bde</td>
</tr>
<tr>
<td>G7</td>
<td>Ethiopia, ICARDA</td>
<td>50/0 ± 13/0 abcd</td>
<td>153/0 ± 23/7 bde</td>
</tr>
<tr>
<td>G8</td>
<td>Ethiopia, ICARDA</td>
<td>50/0 ± 13/0 abcd</td>
<td>153/0 ± 23/7 bde</td>
</tr>
<tr>
<td>G9</td>
<td>Ethiopia, ICARDA</td>
<td>50/0 ± 13/0 abcd</td>
<td>153/0 ± 23/7 bde</td>
</tr>
<tr>
<td>G10</td>
<td>Ethiopia, ICARDA</td>
<td>50/0 ± 13/0 abcd</td>
<td>153/0 ± 23/7 bde</td>
</tr>
<tr>
<td>G11</td>
<td>Ethiopia, ICARDA</td>
<td>50/0 ± 13/0 abcd</td>
<td>153/0 ± 23/7 bde</td>
</tr>
<tr>
<td>G12</td>
<td>Ethiopia, ICARDA</td>
<td>50/0 ± 13/0 abcd</td>
<td>153/0 ± 23/7 bde</td>
</tr>
<tr>
<td>G13</td>
<td>Ethiopia, ICARDA</td>
<td>50/0 ± 13/0 abcd</td>
<td>153/0 ± 23/7 bde</td>
</tr>
<tr>
<td>G14</td>
<td>Ethiopia, ICARDA</td>
<td>50/0 ± 13/0 abcd</td>
<td>153/0 ± 23/7 bde</td>
</tr>
<tr>
<td>G15</td>
<td>Ethiopia, ICARDA</td>
<td>50/0 ± 13/0 abcd</td>
<td>153/0 ± 23/7 bde</td>
</tr>
<tr>
<td>G16</td>
<td>Ardebil, Ardebil, Iran</td>
<td>50/0 ± 13/0 abcd</td>
<td>153/0 ± 23/7 bde</td>
</tr>
<tr>
<td>G17</td>
<td>Oshnaviyeh, West Azerbijan, Iran</td>
<td>50/0 ± 13/0 abcd</td>
<td>153/0 ± 23/7 bde</td>
</tr>
<tr>
<td>G18</td>
<td>Qazvin, Qazvin, Iran</td>
<td>50/0 ± 13/0 abcd</td>
<td>153/0 ± 23/7 bde</td>
</tr>
<tr>
<td>G19</td>
<td>Shahre Kord, Chaharmahal Bakhtiari, Iran</td>
<td>50/0 ± 13/0 abcd</td>
<td>153/0 ± 23/7 bde</td>
</tr>
<tr>
<td>G20</td>
<td>Mashhad, Khorasan Razavi, Iran</td>
<td>50/0 ± 13/0 abcd</td>
<td>153/0 ± 23/7 bde</td>
</tr>
</tbody>
</table>

در هشت سن میانگین‌های که حاصل دارای تک خریداری با هم مقایسه و در یک گروه قرار می‌گیرند.
آداب‌گیری شامل تعداد بوتیه در واحد سطح در زمان برداشت علفه. وژن تر (گرم)، تعداد بوتیه در واحد سطح در زمان برداشت دانه، و زن کل بوتیه شکن در مرحله برداشت دانه (گرم)، تعداد غلاف در بوتیه، و زن کل غلاف‌های شکن (گرم)، وزن غلاف (گرم)، تعداد کل غلاف در واحد سطح، وزن کل دانه (گرم)، وزن صدای دانه (گرم)، وزن پوسته کل غلاف‌ها در واحد سطح (گرم)، عملکرد بیولوژیک (گرم در مترمیتر)، عملکرد اقتصادی (گرم در مترمیتر) و شاخص برداشت (درصد) بود.

قبل از انجام تجزیه واریانس، آزمون نرمال بودن داده‌ها انجام شد. بدون ترکیب تجزیه واریانس بر مبنای داده‌های نرمال شده (برای اندازه‌گیری که نیاز به تغییر داشتن) و داده‌های اصلی انجام گرفت مقاله میانگین‌های داده‌های (Rayan & Joiner, 2001) اصلی با استفاده از آزمون دانک در سطح احتمال 5 درصد انجام گرفت. ضریب همبستگی بین صفات محاسبه شد و تجزیه علیت بر روی صفاتی که همبستگی Path معنی‌دار با مدلکرد با استفاده از نرم‌افزار SPSS انجام شد. تجزیه خوشه‌برای گروه بندی زونتوبی‌ها به کار رفت (Fraley & Raftery, 2002) و بررسی میانگین‌ها مشابه‌سازی و مسیر گام‌های مورد مطالعه (UPGMA) توسط نرم‌افزار NTYSY استفاده شد. نتایج به معنی‌داری اصلی نیز بر اساس میانگین‌های داده‌های اصلی (Jolliffe, 1986) چنین انجام یافته تجزیه ماتریس همبستگی بین آنها محاسبه گردید و بر اساس آن تجزیه به معنی‌داری اصلی انجام شد.

نتایج و بحث

تجزیه واریانس و مقایسه میانگین‌ها

نتایج تجزیه واریانس (جدول 3) نشان داد که تفاوت

1. Euclidean Distance
2. Unweighted Pair Group Method with Arithmetic Mean (UPGMA)
جدول 2- تجزیه و ارایاس و دانه تغییرات صفات مورفولوژیک فنولوژیک، اجزای عملکرد، بیشترین و کمترین مقدار دانه تغییرات

<table>
<thead>
<tr>
<th>نام دانه</th>
<th>MS</th>
<th>CV%</th>
<th>مربعات زوینتی</th>
<th>حاشیه</th>
</tr>
</thead>
<tbody>
<tr>
<td>G20</td>
<td>G15</td>
<td>0.00</td>
<td>20.00 10000- 10000.00</td>
<td>13.85</td>
</tr>
<tr>
<td>G3</td>
<td>G19</td>
<td>0.00</td>
<td>20.00 10000- 10000.00</td>
<td>9.80</td>
</tr>
<tr>
<td>G16</td>
<td>G20</td>
<td>0.00</td>
<td>20.00 10000- 10000.00</td>
<td>8.65</td>
</tr>
<tr>
<td>G10</td>
<td>G19</td>
<td>0.00</td>
<td>20.00 10000- 10000.00</td>
<td>3.44</td>
</tr>
<tr>
<td>G16</td>
<td>G20</td>
<td>0.00</td>
<td>20.00 10000- 10000.00</td>
<td>1.14</td>
</tr>
<tr>
<td>G12</td>
<td>G20</td>
<td>0.00</td>
<td>20.00 10000- 10000.00</td>
<td>0.00</td>
</tr>
<tr>
<td>G12</td>
<td>G9</td>
<td>0.00</td>
<td>20.00 10000- 10000.00</td>
<td>1.19</td>
</tr>
<tr>
<td>G12</td>
<td>G16</td>
<td>0.00</td>
<td>20.00 10000- 10000.00</td>
<td>1.22</td>
</tr>
<tr>
<td>G11</td>
<td>G20</td>
<td>0.00</td>
<td>20.00 10000- 10000.00</td>
<td>1.87</td>
</tr>
<tr>
<td>G5</td>
<td>G20</td>
<td>0.00</td>
<td>20.00 10000- 10000.00</td>
<td>0.00</td>
</tr>
<tr>
<td>G5</td>
<td>G20</td>
<td>0.00</td>
<td>20.00 10000- 10000.00</td>
<td>1.00</td>
</tr>
<tr>
<td>G6</td>
<td>G14</td>
<td>0.00</td>
<td>20.00 10000- 10000.00</td>
<td>0.05</td>
</tr>
<tr>
<td>G4, G10, G11</td>
<td>G20</td>
<td>0.00</td>
<td>20.00 10000- 10000.00</td>
<td>1.87</td>
</tr>
<tr>
<td>G11</td>
<td>G19</td>
<td>0.00</td>
<td>20.00 10000- 10000.00</td>
<td>0.82</td>
</tr>
<tr>
<td>G11</td>
<td>G19</td>
<td>0.00</td>
<td>20.00 10000- 10000.00</td>
<td>0.22</td>
</tr>
<tr>
<td>G11</td>
<td>G20</td>
<td>0.00</td>
<td>20.00 10000- 10000.00</td>
<td>0.16</td>
</tr>
<tr>
<td>G11</td>
<td>G20</td>
<td>0.00</td>
<td>20.00 10000- 10000.00</td>
<td>0.18</td>
</tr>
<tr>
<td>G11</td>
<td>G20</td>
<td>0.00</td>
<td>20.00 10000- 10000.00</td>
<td>0.13</td>
</tr>
<tr>
<td>G11</td>
<td>G16</td>
<td>0.00</td>
<td>20.00 10000- 10000.00</td>
<td>0.17</td>
</tr>
<tr>
<td>G11</td>
<td>G16</td>
<td>0.00</td>
<td>20.00 10000- 10000.00</td>
<td>0.29</td>
</tr>
<tr>
<td>G11</td>
<td>G16</td>
<td>0.00</td>
<td>20.00 10000- 10000.00</td>
<td>0.28</td>
</tr>
<tr>
<td>G11</td>
<td>G20</td>
<td>0.00</td>
<td>20.00 10000- 10000.00</td>
<td>0.17</td>
</tr>
<tr>
<td>G11</td>
<td>G20</td>
<td>0.00</td>
<td>20.00 10000- 10000.00</td>
<td>0.15</td>
</tr>
<tr>
<td>G11</td>
<td>G20</td>
<td>0.00</td>
<td>20.00 10000- 10000.00</td>
<td>0.14</td>
</tr>
<tr>
<td>G11</td>
<td>G20</td>
<td>0.00</td>
<td>20.00 10000- 10000.00</td>
<td>0.15</td>
</tr>
<tr>
<td>G11</td>
<td>G20</td>
<td>0.00</td>
<td>20.00 10000- 10000.00</td>
<td>0.16</td>
</tr>
<tr>
<td>G11</td>
<td>G20</td>
<td>0.00</td>
<td>20.00 10000- 10000.00</td>
<td>0.15</td>
</tr>
<tr>
<td>G11</td>
<td>G20</td>
<td>0.00</td>
<td>20.00 10000- 10000.00</td>
<td>0.16</td>
</tr>
</tbody>
</table>

* اختلاف معنی دار به ترتیب در سطح احتمال 5% و 1%.

* G تصویر مناسب بر روی شرایط آب و هوایی با بیشتر

* G بودن تعادل زوینتی یا بررسی شده در ترکیبی به داشت.

* ICARDA

* مناسبتر بودن برای گزینش زوینتی‌های بیشتر

* مسائل توجه به همگن صفات می‌باشد.

* Farshadfar, 1998

* دسته‌بندی به اطلاعات در مورد رابطه بین صفات و ارتباط آنها با عملکرد استفاده شد. عملکرد اقتصادی بیشترین

* www.SID.ir
تجزیه سطح مورفولوژیک

تجزیه شرایط همبستگی صفات مختلف به تصمیم‌گیری در مورد اهمیت نسبی این صفات و ارزش آنها به عنوان مبادره‌ای انتخاب کمک می‌کند (Agrama, 1996).

<table>
<thead>
<tr>
<th>اتصالی</th>
<th>بیولوژیک</th>
<th>عمکر در زنوتیپ‌های خلر مورد مطالعه</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(g)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>سطح</th>
<th>عمکر (g)</th>
<th>وزن سنده‌اند</th>
<th>عمکر (g)</th>
<th>وزن سنده‌اند</th>
</tr>
</thead>
<tbody>
<tr>
<td>طول بذر</td>
<td>500</td>
<td>0.6</td>
<td>0.25</td>
<td>0.6</td>
</tr>
<tr>
<td>زمان سبزیش</td>
<td>24</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>اندازه گل‌دهی</td>
<td>0.5</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>اندازه گل‌دهی</td>
<td>0.5</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>اندازه گل‌دهی</td>
<td>0.5</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>

به ترتیب اختلاف معنی‌دار در سطح احتمال 0.1 و 0.05 درصد.
همگانی را با صفت همبسترگی داشتند. اعمال شد. با توجه به نتایج همبسترگی (جدول ۳) ۱۷ صفت دارای همبسترگی معنی‌دار با عملکرد پیونزیک و ۱۵ صفت دارای همبسترگی معنی‌دار با عملکرد اقتصادی بودند. به دلیل اینکه داده ها ۸ صفت با بالاترین همبسترگی با عملکرد در تجزیه‌ی علی‌ساخته‌های چی. بیشترین همبسترگی بین ولنج و عملکرد اقتصادی (۰/۹۸) و کمترین همبسترگی بین آغاز علی‌ساخته‌های و عملکرد اقتصادی (۰/۴۹۸) محسوب شد. نتایج تجزیه ضریب سبی، جهت بررسی اثرهای مستقیم و غیرمستقیم صفات به عملکرد اقتصادی در جدول ۴ نشان داده شد که بیشترین اثر مستقیم به ترتیب ولنج بیک (۰/۲۷) و ولنج خشک بیک (۰/۱۹) می‌باشد. ولنج خشک ولنج ولنج ولنج خشک ولنج با عملکرد پیونزیک شرط ثابت شد. ولنج بیک ولنج به دلیل وجود اثر مستقیم ولنج و بیشتری قابل توجه و همبسترگی بالاترین اثر مستقیم از طریق صفات دیگر می‌باشد ولنج معنی‌دار در جهت اصلح برای اقیانس عملکرد پیونزیک در خل خورد گردد (جدول ۵).

جدول ۴- باروری اثرات مستقیم و غیر مستقیم صفات بر عملکرد اقتصادی (۱) در زنوتی‌های خل مورد مطالعه

<table>
<thead>
<tr>
<th>صفات مستقیل</th>
<th>اثر مستقیم</th>
<th>اثر غیر مستقیم از طریق سایر صفات</th>
<th>X۱۲</th>
<th>X۱۳</th>
<th>X۱۴</th>
<th>X۱۵</th>
<th>X۱۶</th>
<th>X۱۷</th>
<th>X۱۸</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن بیک</td>
<td>۰/۲۷</td>
<td>۰/۲۷</td>
<td>-۰/۲۷</td>
<td>-۰/۲۷</td>
<td>-۰/۲۷</td>
<td>-۰/۲۷</td>
<td>-۰/۲۷</td>
<td>-۰/۲۷</td>
<td>-۰/۲۷</td>
</tr>
</tbody>
</table>

جدول ۵- باروری اثرات مستقیم و غیر مستقیم صفات بر عملکرد پیونزیک (۲) در زنوتی‌های خل مورد بررسی

<table>
<thead>
<tr>
<th>صفات مستقیل</th>
<th>اثر مستقیم</th>
<th>اثر غیر مستقیم از طریق سایر صفات</th>
<th>X۴</th>
<th>X۳</th>
<th>X۱۹</th>
<th>X۲۰</th>
<th>X۲۱</th>
<th>X۲۲</th>
<th>X۲۳</th>
<th>X۲۴</th>
</tr>
</thead>
</table>

www.SID.ir
تجزیه به مؤلفه‌های اصلی

از تجزیه به مؤلفه‌های اصلی جهت کاهش تعداد متغیرهای اولیه توصیف و تشخیص منطقی بودن یک چاپ و تیپین سهم صفات در تعداد کل استفاده شده است. (Pearson, 1901). این تجزیه به کمک اسکاتلندی 6 مؤلفه اصلی به ترتیب مشخص صفت در زنبور عسل خر دانش شد. 6 مؤلفه را مشخص کردند که مجموعاً 90 درصد از تعداد موجودی نهایی را توجه کنند (جدول 7). برای تهیه ضرایب متریک مؤلفه، این تعداد از مؤلفه‌ها که رشته مشخص می‌گردد. مجموع مقادیر دیگر با در این اکثریت داده‌ها (243) است و مقادیر بیشتر باید به مؤلفه اصلی سهم واریانس جدول 6- همبستگی و ضریب تیپین برابر شش مؤلفه اصلی حاصل از تجزیه به مؤلفه‌های اصلی

<table>
<thead>
<tr>
<th>صفت</th>
<th>S^2</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>طول بدن</td>
<td>0.21</td>
<td>0.32</td>
<td>0.28</td>
<td>0.25</td>
<td>0.39</td>
<td>0.29</td>
<td>0.31</td>
</tr>
<tr>
<td>وزن برند</td>
<td>0.15</td>
<td>0.24</td>
<td>0.14</td>
<td>0.13</td>
<td>0.2</td>
<td>0.15</td>
<td>0.16</td>
</tr>
<tr>
<td>ارتفاع در زمان</td>
<td>0.14</td>
<td>0.22</td>
<td>0.15</td>
<td>0.13</td>
<td>0.2</td>
<td>0.15</td>
<td>0.16</td>
</tr>
<tr>
<td>برند</td>
<td>0.09</td>
<td>0.18</td>
<td>0.14</td>
<td>0.12</td>
<td>0.19</td>
<td>0.16</td>
<td>0.17</td>
</tr>
<tr>
<td>ارتفاع برند</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>ورود شکر</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

روی صفات مورفولوژیک، تنولوژیک و اجرای عملکرد زنبور عسل

www.SID.ir
ضریب تیبین برای شیت مؤلفه اصلی (جدول ۴) نشان می‌دهد که مؤلفه اول همیشه مثبت بالایی با هر دو عملاک اقتصادی (۰/۸۳۵ و ۴/۰۹۶) داشت، در حالی که مؤلفه دوم همیشه با آنها نشان نمیدهد (به ترتیب ۰/۳۴۷ و ۰/۳۳۰). بنابراین، هر گونه فاصله در مؤلفه اول موجب افزایش در هر دو عملاک اقتصادی و پیلوزیک می‌شود.

تجزیه خوشایی

برای استبدال به حداکثر حفظ سطح خوشه در انتخاب بهترین والدین در هر تلاقی با زنترنت‌هایی که از نظر زنترنت‌هایی که ایام مریم می‌تواند از طریق بررسی فاصله زنترنت‌های وسیع بین زنرتن‌های گزارش صفات متوازن‌بودن با استفاده از روش تجزیه خوشه‌ای به‌دست آید. هنگام استفاده از صفات متوازن‌بودن که در نتیجه دسته‌بندی در دسته‌بندی وارد از هرثره‌های اصلی به عنوان والدین در انتخاب تلاقی‌ها مورد استفاده قرار می‌گیرد تا یک گروه فنوتیپی را نشنال داده. وظیفه گروه اول اعضا ۱۶ زنرتن (۱G1-G16) و گروه دوم ۳ زنرتن (۱G17-G19) و گروه سوم ۲۰ G20 می‌باشد. G20 زنرتن‌هایی که در یک گروه قرار می‌گیرند از نظر زنرتن‌ها بیشتر بوده و در هر گروه موجود در گروه ۳ که در سمت راست نمودار (شکل ۱) قرار گرفته است دارای عملاک علوفه و بدر زنرتن‌های بیشتر نسبت به زنرتن‌های بیشتر دارای عملاک گسترده نسبت به زنرتن‌های دارای عملاک گست
شکل ۱ دسته‌بندی زنوتیپ‌های خلر بر اساس دو مؤلفه اول و دوم تجزیه به مؤلفه‌های اصلی روي صفات مورفولوژیک، فنولوژیک و اجزای عملکرد خلر

شکل ۲ دندوگرام مربوط به کلیه صفات مورفولوژیک، فنولوژیک و اجزای عملکرد در زنوتیپ‌های خلر مورد مطالعه با استفاده از فاصله الکلیدسی (UPGMA) (Euclidean Distance) و روش انتقال متوسط گروه‌ها (Ward's Method) گروه‌سازی می‌تواند نتایجی با نتایج زیاد و حداکثر هتروژنیسیویت نماید. کلاستر ۱ و ۲ بیشترین فاصله را از یکدیگر دارند (۲/۲/۳) یعنی با تلاقی زنوتیپ‌هایی که در این دو گروه
REFERENCES

