Investigating the stratigraphic role of the Tirgan Formation on water wells discharge in the north and east of Bojnourd (NE Iran)

Firouz Shakiba
Ph.D. in Hydrogeology, Department of Geology, Shahrood University of Technology, Shahrood, Iran
Gholam Hossein Karami*
Associate Professor, Department of Geology, Shahrood University of Technology, Shahrood, Iran
Azizolah Taheri
Professor, Department of Geology, Shahrood University of Technology, Shahrood, Iran
*Corresponding author, email: g.karami@shahrooodut.ac.ir

Abstract
To supply water for drinking and industry, several water wells have been drilled in the Kopet-Dagh basin. These water wells have been drilled in the north and northeast of Bojnourd in the Tirgan Formation. There is a significant relationship between stratigraphy and water wells flow rates. Water wells which are drilled in the north-east of the area in comparison with those drilled in the east of the area, have higher flow rates. A complete stratigraphic section of Tirgan Formation (i.e. Baba Musa) with a thickness of 510 m was measured, sampled and studied as well as drilling log data of each of the water wells. The Baba Musa section can be divided into five rock units composed of limestone, marl and marly-limestone. Limestone rock units are considered as karst-aquifer and marly-limestone and marl are considered to be semi-permeable layers and impermeable, respectively. Water wells drilled in the upper limestone have the highest flow rates than other water wells. The wells that have not penetrated the entire upper limestone while penetrated the middle limestone and upper marly-limestone, although they are twice as deep, have a much lower flow rates. Therefore, the best water-bearing layer of the Tirgan Formation is the upper limestone.

Keywords: Permeable, Impermeable, Semi-permeable layer, Drilling Log, Tirgan Formation

Introduction
Various consumers in Iran are dependent on groundwater resources of alluvial aquifers. In the last few decades, due to water shortage in alluvial aquifers, karst aquifers have been widely considered. The high costs of drilling wells in karstic Formations lead to more precise studies to determine appropriate drilling locations. Tirgan Formation is one of the most important karstic formations in the Kopet-Dagh area in northeast of Iran. Several wells in this formation have been drilled for drinking water and industrial consumptions. Some of the wells drilled in the Tirgan Formation, although not much depth (137-140 m), have very high flow rates, while some wells with high depth (250 m) have a lower flow rates. Several factors play a role in the development of karst which one of the most important is stratigraphy. There is a relationship between karst development with lithology and limestone thickness. Generally, thicker limestone rock units contain more karst development. Based on hydrogeological characteristics, in some cases, two or more formations can be considered as a hydrogeological unit. However, sometimes it is necessary to split a formation into separate hydrogeological units. Due to the large development of the Tirgan Formation in the studied area as well as its high discharge potential, this formation has been widely studied. Simple bedding and the sequence of thick limestone with marl or marl-limestone rock units have played a significant role in the development of karst in the Tirgan formation. Accurate understanding of the location and depth of the water bearing rock units in this formation depends on detailed stratigraphic studies.

Material and methods
In this research, in the north and eastern part of Bojnourd, a stratigraphic section of Tirgan, in Baba Musa mountain, was measured and sampled (85 samples for thin sections). In order to nomenclature and interpretation of the microfacies of the Tirgan Formation, procedures of Flügel (2004) and Dunham (1962) have been used. Like systematic studies of stratigraphy, the physical properties of the layers including thickness, layering, color, hardness, erosion, slope and topography, dip and thickness of layers around water wells were also evaluated. Water wells information including, lithology logs and geophysical logs (gamma, self-potential, electrical resistance) were also used. Water level data-sets during drilling, pumping, and subsequent years were evaluated. The geological profiles of all water wells were
mapped and the depths of well penetration were determined. By analyzing the above-mentioned data-sets, the Tirgan Formation is divided into several layers with different permeabilities.

Discussion of Results and Conclusions
In this research, the information extracted from the Baba Musa stratigraphic column and data-sets obtained from the water wells in the studied area were combined. According to the information integration, the Tirgan Formation is divided into five rock units which are three limestones and two marly limestone rock units. The arrangement of these rock units from base to top are as follows: basal limestone, basal marly limestone, middle limestone, upper marly limestone and upper limestone. The stratigraphic position of limestone and marly-limestone units results in the recharged water, mainly penetrates into the upper limestone layer. Therefore, due to the presence of limestone, marl and marly limestone rock units, the Tirgan Formation is divided into permeable, impermeable or semi-impermeable units. In addition, the degree of purity of the upper limestone layer is much greater than that of the other two limestone layers. These two factors cause the degree of karstification in upper limestone is much greater than that of the other two limestone layers. Information obtained from the water wells show that they have penetrated the upper limestone rock unit or up to the middle limestone rock unit. Given the above-mentioned characteristics, those water wells drilled in the upper limestone unit have the highest flow rate in comparison with other ones.
بررسی نقش چینه شناسی سازند تیرگان در آب‌دهی چاه‌های آب در شمال و شرق بجنورد

فیروز شکیبا، دانشجوی دکتری هیدرولوژی، گروه زمین‌شناسی دانشکده علوم زمین، دانشگاه صنعتی شاهرود، ایران
گلامحسین کرمی، دانشیار، گروه زمین‌شناسی دانشکده علوم زمین، دانشگاه صنعتی شاهرود، ایران
عزیزالله طاهری، استاد، گروه زمین‌شناسی، دانشکده علوم زمین، دانشگاه صنعتی شاهرود، ایران

چکیده

به منظور تأمین آب آشامیدنی و صنعتی، چاه‌های متعددی در حوضه کپه‌داغ حفر و بهره‌برداری شدند. هشت حلقه از این چاه‌ها برای صنایع و دو حلقه برای آب‌دهی آبخوان در شرق و شمال شرق بجنورد و در سازند اهک‌تیرگان حفر شدند. بررسی آب‌دهی این چاه‌ها نشان می‌دهد ارتباط معناداری بین چینه‌شناسی و آب‌دهی چاه‌ها برقرار است. چاه‌هایی که در سمت شمال شرقی ماه پاک‌دار مجتمع حفر شدند، مقابل چاه‌هایی که در شمال شرقی جنگل‌های کوه‌سبز حفر شدند، بازیابی آب‌دهی کمتری داشتند.

پژوهش‌های چینه‌گزاری و رسوایی

سال میلادی: 1398
شماره ماده: 24
تاریخ دریافت: 1398/04/24
تاریخ پذیرش: 1398/04/25
صفحه: 40

کلمات کلیدی: لاها، ناراوا، نیمه‌تراوا، لاگ‌تراوا، آبخوان‌دار، آب‌دهی‌دار، هیدرولوژی‌کاری، تحقیق کرد.

واژه‌های کلیدی: لاها، ناراوا، نیمه‌تراوا، لاگ‌تراوا، آبخوان‌دار، آب‌دهی‌دار، هیدرولوژی‌کاری، تحقیق کرد.

Email: g.karami@shahroodut.ac.ir
Copyright©2019, University of Isfahan. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/BY-NC-ND/4.0), which permits others to download this work and share it with others as long as they credit it, but they can’t change it in any way or use it commercially.

Doi: 10.22108/jssr.2019.116167.1091
در توالی چینه‌شناسی پیش از باشند، فرایند توسه کارست با شدت بیشتری انجام می‌شود و در مناطقی که محیط‌های آب‌های آهکی کمتر است، عملکرد فرایند کارستی شدید در UNESCO (1984b) اغلب چند سازند کارسات هم را یک واحدهای هیدرژئولوژیکی در نظر می‌گیرد و برخی موارد نظر از یک سازند هما بیان می‌کند، برخی متغیران کارساتی و رسی کارسات، محیط ناتاراوا و چند لاپی آهک کارسات هم یک آبخوان را تشکیل می‌دهند؛ با این ترتیب، یک سازند ممکن است شامل لاپی‌های آهکی (تراوا) و لاپی‌های مارنی (ناتاراوا) باشد. کاهش ممکن است یک لاپی نازک آهکی که بین لاپی‌های ضخیم مارنی قرار دارد، آبخوان محلی ممکن باشد؛ حتی نگهداری سازند سازند کرمان‌ها ممکن است سبب تغییر خطر هیدرژئولوژیک آن شود. واپس (1969) تفسیر مشابهی از برنامه‌های استراتیژیکی برای سیستم‌های آبخوان کرمان‌ها در زمان و اصطلاح زیر برجام سندرمی، برای حالتی که کار به کرده‌که یک لاپی ساختی آهکی از یک و یا پایین بین لاپی‌های ناتاراوا قرار گرفته است؛ همه جنین بند کرد است سازندی که ترسید بسیار مهمی در برود و یک‌گروهی هیدرژئولوژیکی سازند دارد. گرچه سازند سازند کرمان‌ها توانایی کارستی شدند که در دانستن، نبود تغییرات رخساره‌ها نرم ممکن است به اینکه اگر قدرت صاحب این واحدهای ساخت و نمایشگر دارند، یک سازند سازند کرمان‌ها و آهکی که از پایین بین لاپی‌های ناتاراوا قرار گرفته است؛ همه جنین بند کرد است سازندی که ترسید بسیار مهمی در برود و یک‌گروهی هیدرژئولوژیکی سازند دارد. گرچه سازند سازند کرمان‌ها توانایی کارستی شدند که در دانستن، نبود تغییرات رخساره‌ها نرم ممکن است به اینکه اگر قدرت صاحب این واحدهای ساخت و نمایشگر دارند، یک سازند سازند کرمان‌ها و آهکی که از پایین بین لاپی‌های ناتاراوا قرار گرفته است؛ همه جنین بند کرد است سازندی که ترسید بسیار مهمی در برود و یک‌گروهی هیدرژئولوژیکی سازند دارد. گرچه سازند سازند کرمان‌ها توانایی کارستی شدند که در دانستن، نبود تغییرات رخساره‌ها نرم ممکن است به اینکه اگر قدرت صاحب این واحدهای ساخت و نمایشگر دارند، یک سازند سازند کرمان‌ها و آهکی که از پایین بین لاپی‌های ناتاراوا قرار گرفته است؛ همه جنین بند کرد است سازندی که ترسید بسیار مهمی در برود و یک‌گروهی هیدرژئولوژیکی سازند دارد. گرچه سازند سازند کرمان‌ها توانایی کارستی شدند که در دانستن، نبود تغییرات رخساره‌ها نرم ممکن است به اینکه اگر قدرت صاحب این واحدهای ساخت و نمایشگر دارند، یک سازند سازند کرمان‌ها و آهکی که از پایین بین لاپی‌های ناتاراوا قرار گرفته است؛ همه جنین بند کرد است سازندی که ترسید بسیار مهمی در برود و یک‌گروهی هیدرژئولوژیکی سازند دارد. گرچه سازند سازند کرمان‌ها توانایی کارستی شدند که در دانستن، نبود تغییرات رخساره‌ها نرم ممکن است به اینکه اگر قدرت صاحب این واحدهای ساخت و نمایشگر دارند، یک سازند سازند کرمان‌ها و آهکی که از پایین بین لاپی‌های ناتاراوا قرار گرفته است؛ همه جنین بند کرد است سازندی که ترسید بسیار مهمی در برود و یک‌گروهی هیدرژئولوژیکی سازند دارد. گرچه سازند سازند کرمان‌ها توانایی کارستی شدند که در دانستن، نبود تغییرات رخساره‌ها نرم ممکن است به اینکه اگر قدرت صاحب این واحدهای ساخت و نمایشگر دارند، یک سازند سازند کرمان‌ها و آهکی که از پایین بین لاپی‌های ناتاراوا قرار گرفته است؛ همه جنین بند کرد است سازندی که ترسید بسیار مهمی در برود و یک‌گروهی هیدرژئولوژیکی سازند دارد. گرچه سازند سازند کرمان‌ها توانایی کارستی شدند که در دانستن، نبود تغییرات رخساره‌ها نرم ممکن است به اینکه اگر قدرت صاحب این واحدهای ساخت و نمایشگر دارند، یک سازند سازند کرمان‌ها و آهکی که از پایین بین لاپی‌های ناتاراوا قرار گرفته است؛ همه جنین بند کرد است سازندی که ترسید بسیار مهمی در برود و یک‌گروهی هیدرژئولوژیکی سازند دارد. گرچه سازند سازند کرمان‌ها توانایی کارستی شدند که در دانستن، نبود تغییرات رخساره‌ها نرم ممکн
پراش آهکی نا آهک خوب لایه‌ای‌بندی شده تشکیل می‌شود.
(Fuchtbauer 1988)

کنترل‌های چینه‌ای جریان را می‌توان بر اساس جریان آب زیرزمینی که به‌وسیله‌ی لاپ‌هاوندی کنترل می‌شود این کردن. در جریان‌های چینه‌ای آب زیرزمینی به تفاوت‌های هیدرولیکی بین لایه آبنویس و ضخامت و شکستگی‌های لایه‌ی نفوذ‌پذیری بستگی دارد (Goldscheider 2005).

شکل 1- عوامل مؤثر بر کنترل‌های چینه‌ای؛ ردیف بالا: در شرایطی عبور جریان آب زیرزمینی در عرض لاپ‌هاوندی امکان دارد که تفاوت‌های هیدرولیکی کم، لایه ناتراوا ضخامت و یا درجه گسل‌خوردگی نسبی باشد. ردیف پایین: جریان آب زیرزمینی در حالت لاپ‌هاوندی هنگامی بستگی دارد که تفاوت‌های هیدرولیکی زیاد، لایه ناتراوا ضخامت و یا درجه گسل‌خوردگی کم باشد (Goldscheider 2005).

بخش 2- سازند کریپت آب لایه‌ی نفوذ‌پذیری قرار دارد و آب از منطقه بالاتر حرکت می‌کند و به‌وسیله‌ی منطقه تخلیهٔ منطقه‌ای روی وارد شده است.

بخش 3- سازند چینه‌ای کریپت به‌وجود می‌آید بدون منطقه تخلیه‌ای مشخص.

بخش 4- سازند چینه‌ای کریپت به‌وجود می‌آید با درجه از دهه‌ها مجاور خود قرار دارد.

موجب ساختار مجاور ویژگی‌های مشابهی دارند که

LeGrand and Stringfold (1966) با مطالعه‌توسعه‌ی ناپاک‌تری و شویه‌ی آب‌گردش آب در سازندگاه‌های آهکی در جنوب آمریکا، آنها را به نظر بخش تقسیم کرده‌اند.

بخش 1- آهک‌های نزدیک سطح زمین که سطح‌آب زیرزمینی داخل آنها، شکل می‌گیرد و آب ناشی از بارش به‌شكل عمدهٔ به سطح آب زیرزمینی می‌رسد و می‌رسد به‌طور جانی به‌وسیله‌ی رودخانه‌ای (پایین دست) حرکت می‌کند.
پیچیدگی جریان، غیرهم‌روندی و دینامیک‌سنجش از مهم‌ترین آنهاست. این ویژگی طبیعی نظر هاگ و همکاران (Hughe et al 1994) به سه عامل حیاتی‌شناختی، دریچه حیاتی ساختاری و شرایط زمین‌سازی بستگی دارد و در بین آنها، چین‌شناختی شامل ضخامت هر لایه آهکی، ضخامت لایه‌های غیرآهکی، نوع چین‌سازی (آکلایه‌ها) و شکل خارجی هر واحد آهکی (خالص، ناهنجار سیلی، رس‌دراز و سیلیسی) و در پایان، یک‌پوشش‌های آهکی است. 

پالمر (Palmer 1986) به بررسی کوه‌های ماموت در کارست‌های بلند کانتاکی آمریکا نشان داد ارتباط نزدیکی بین توسه گذشته‌های غار با لایه‌های مشخص و وجود دارد. حدود ۶۰ درصد غار کنش‌بندی به سنت‌شناسی مشخصی محدود است و بیشتر گذشته در این‌جا چین‌شناخت قرار دارد.

نداشتن شناخت کافی از پیچیدگی‌های چین‌شناختی مانعی‌است. بحث‌طور مطالعه به منظور تأمین آب آشامیدنی و صنعت، ده حلقه جداگانه آهکی در منطقه شمال و شمال شرق شهر بجنورد حفر شده‌اند. شکل موقت‌های جغرافیایی منطقه مطالعه‌شده، حفر‌شده و محل حفر که‌شهر این‌ها را تشکیل می‌دهد. در یک دریک حفاری، یک برش خطی شناخته شده از سر بزرگ در شهر بجنورد که سطح زیرین و بالایی آن در کوه بام‌نی‌کرده و در برخی مناطق هم در بالا و هم در پایین سایت آهکی قرار دارد. نداشتن شناخت دقیق چین‌شناختی از این ارتباطات سبب شده است سبیل‌ریزی این‌ها به‌طور معمول از راه‌های مشخص و محدود شوند؛ حال آنکه آهک‌ها در نهایت زیرهای بی‌شمار داشته‌است و جنت‌چه حفاری‌پس از نهایی بی‌پایان، خشکی‌پذیری به‌آهکیان دارد آب برخورد می‌کند (Twenter 1962).

روش مطالعه

به منظور تأمین آب آشامیدنی و صنعت، ده حلقه جداگانه آهکی در منطقه شمال و شمال شرق شهر بجنورد حفر شده‌اند. شکل موقت‌های جغرافیایی منطقه مطالعه‌شده و محل حفر که‌شهر این‌ها را تشکیل می‌دهد. در یک دریک حفاری، یک برش خطی شناخته شده از سر بزرگ در شهر بجنورد که سطح زیرین و بالایی آن در کوه بام‌نی‌کرده و در برخی مناطق هم در بالا و هم در پایین سایت آهکی قرار دارد. نداشتن شناخت دقیق چین‌شناختی از این ارتباطات سبب شده است سبیل‌ریزی این‌ها به‌طور معمول از راه‌های مشخص و محدود شوند؛ حال آنکه آهک‌ها در نهایت زیرهای بی‌شمار داشته‌است و جنت‌چه حفاری‌پس از نهایی بی‌پایان، خشکی‌پذیری به‌آهکیان دارد آب برخورد می‌کند (Twenter 1962).

روش مطالعه

به منظور تأمین آب آشامیدنی و صنعت، ده حلقه جداگانه آهکی در منطقه شمال و شمال شرق شهر بجنورد حفر شده‌اند. شکل موقت‌های جغرافیایی منطقه مطالعه‌شده و محل حفر که‌شهر این‌ها را تشکیل می‌دهد. در یک دریک حفاری، یک برش خطی شناخته شده از سر بزرگ در شهر بجنورد که سطح زیرین و بالایی آن در کوه بام‌نی‌کرده و در برخی مناطق هم در بالا و هم در پایین سایت آهکی قرار دارد. نداشتن شناخت دقیق چین‌شناختی از این ارتباطات سبب شده است سبیل‌ریزی این‌ها به‌طور معمول از راه‌های مشخص و محدود شوند؛ حال آنکه آهک‌ها در نهایت زیرهای بی‌شمار داشته‌است و جنت‌چه حفاری‌پس از نهایی بی‌پایان، خشکی‌پذیری به‌آهکیان دارد آب برخورد می‌کند (Twenter 1962).

روش مطالعه

به منظور تأمین آب آشامیدنی و صنعت، ده حلقه جداگانه آهکی در منطقه شمال و شمال شرق شهر بجنورد حفر شده‌اند. شکل موقت‌های جغرافیایی منطقه مطالعه‌شده و محل حفر که‌شهر این‌ها را تشکیل می‌دهد. در یک دریک حفاری، یک برش خطی شناخته شده از سر بزرگ در شهر بجنورد که سطح زیرین و بالایی آن در کوه بام‌نی‌کرده و در برخی مناطق هم در بالا و هم در پایین سایت آهکی قرار دارد. نداشتن شناخت دقیق چین‌شناختی از این ارتباطات سبب شده است سبیل‌ریزی این‌ها به‌طور معمول از راه‌های مشخص و محدود شوند؛ حال آنکه آهک‌ها در نهایت زیرهای بی‌شمار داشته‌است و جنت‌چه حفاری‌پس از نهایی بی‌پایان، خشکی‌پذیری به‌آهکیان دارد آب برخورد می‌کند (Twenter 1962).
بررسی نقش چهارشنبه سازند تیرگان در آب‌های چشمه‌ای آب در شمال و شرق یزد

این مطالعه به دنبال این اهداف انجام شده است:
1. مطالعه و بررسی دلایل تغییرات آب‌دهی چاه‌های آب، تغییرات آب‌دهی چاه‌ها در طول زمان و تغییرات آب‌دهی در زیرزمین‌های مختلف منطقه.
2. بررسی دلایل تغییرات آب‌دهی چاه‌های آب در منطقه.
3. شناسایی مناطق اطراف چاه‌های آب و تغییرات آب‌دهی در مناطق مختلف منطقه.

طی کرارتیپشن، آثار مختلفی در طول زمان مورد بررسی قرار گرفتند. این آثار شامل تغییرات وضعیت چاه‌ها، تغییرات آب‌دهی چاه‌های آب و تغییرات وضعیت سطح آب در زیرزمین‌های مختلف منطقه می‌باشد.

شکل 2- محدوده مطالعه‌شده. موقعیت چاه‌ها و نقشه زمین‌شناسی منطقه که شامل سازند‌های آهکی و مارنی مربوط به کرتاسه است؛ ساختار تآقیدای و ناوقوندی و گسل‌هایی که محور چاه‌ها را قطع کرده‌اند. دیده می‌شود (برگرفته از نقشه 1:201111 زمین‌شناسی چهارگوش بجنورد، انتشارات سازمان زمین‌شناسی کشور)

اطلاعات ده حلقه‌ای نشان می‌دهد که این چاه‌ها در منطقه شامل سازند‌های آهکی و مارنی مربوط به کرتاسه است. این چاه‌ها در منطقه تیرگان در منطقه شامل سازند‌های آهکی و مارنی مربوط به کرتاسه قرار دارند و عمده‌اً شامل آب‌های سازند‌های آهکی و مارنی مربوط به کرتاسه است.

ارضی‌های صورتی و نوسانات سطح آب این تغییرات از سازندشان پدیدار می‌شود. این تغییرات به‌طور عمده از دلایل تغییرات آب‌دهی چاه‌ها، تغییرات آب‌دهی چاه‌ها در طول زمان و تغییرات آب‌دهی در زیرزمین‌های مختلف منطقه می‌باشد.

افشار‌هاربخ (1994) نشان می‌دهد که تغییرات آب‌دهی چاه‌ها در منطقه تیرگان به دلایل زیر ایجاد می‌شود:
1. تغییرات زمین‌شناسی و تغییرات در وضعیت سطح آب.
2. تغییرات در ساختار زمین و تغییرات در وضعیت سطح آب.
3. تغییرات در وضعیت آب‌دهی و تغییرات در وضعیت سطح آب.
4. تغییرات در وضعیت آب‌دهی و تغییرات در وضعیت سطح آب.

از این پیامدها، نتیجه‌گیری می‌شود که تغییرات آب‌دهی چاه‌ها در منطقه تیرگان به دلایل زیر ایجاد می‌شود:
1. تغییرات زمین‌شناسی و تغییرات در وضعیت سطح آب.
2. تغییرات در ساختار زمین و تغییرات در وضعیت سطح آب.
3. تغییرات در وضعیت آب‌دهی و تغییرات در وضعیت سطح آب.
4. تغییرات در وضعیت آب‌دهی و تغییرات در وضعیت سطح آب.

از این پیامدها، نتیجه‌گیری می‌شود که تغییرات آب‌دهی چاه‌ها در منطقه تیرگان به دلایل زیر ایجاد می‌شود:
1. تغییرات زمین‌شناسی و تغییرات در وضعیت سطح آب.
2. تغییرات در ساختار زمین و تغییرات در وضعیت سطح آب.
3. تغییرات در وضعیت آب‌دهی و تغییرات در وضعیت سطح آب.
4. تغییرات در وضعیت آب‌دهی و تغییرات در وضعیت سطح آب.

از این پیامدها، نتیجه‌گیری می‌شود که تغییرات آب‌دهی چاه‌ها در منطقه تیرگان به دلایل زیر ایجاد می‌شود:
1. تغییرات زمین‌شناسی و تغییرات در وضعیت سطح آب.
2. تغییرات در ساختار زمین و تغییرات در وضعیت سطح آب.
3. تغییرات در وضعیت آب‌دهی و تغییرات در وضعیت سطح آب.
4. تغییرات در وضعیت آب‌دهی و تغییرات در وضعیت سطح آب.

از این پیامدها، نتیجه‌گیری می‌شود که تغییرات آب‌دهی چاه‌ها در منطقه تیرگان به دلایل زیر ایجاد می‌شود:
1. تغییرات زمین‌شناسی و تغییرات در وضعیت سطح آب.
2. تغییرات در ساختار زمین و تغییرات در وضعیت سطح آب.
3. تغییرات در وضعیت آب‌دهی و تغییرات در وضعیت سطح آب.
4. تغییرات در وضعیت آب‌دهی و تغییرات در وضعیت سطح آب.

از این پیامدها، نتیجه‌گیری می‌شود که تغییرات آب‌دهی چاه‌ها در منطقه تیرگان به دلایل زیر ایجاد می‌شود:
1. تغییرات زمین‌شناسی و تغییرات در وضعیت سطح آب.
2. تغییرات در ساختار زمین و تغییرات در وضعیت سطح آب.
3. تغییرات در وضعیت آب‌دهی و تغییرات در وضعیت سطح آب.
4. تغییرات در وضعیت آب‌دهی و تغییرات در وضعیت سطح آب.

از این پیامدها، نتیجه‌گیری می‌شود که تغییرات آب‌دهی چاه‌ها در منطقه تیرگان به دلایل زیر ایجاد می‌شود:
1. تغییرات زمین‌شناسی و تغییرات در وضعیت سطح آب.
2. تغییرات در ساختار زمین و تغییرات در وضعیت سطح آب.
3. تغییرات در وضعیت آب‌دهی و تغییرات در وضعیت سطح آب.
4. تغییرات در وضعیت آب‌دهی و تغییرات در وضعیت سطح آب.

از این پیامدها، نتیجه‌گیری می‌شود که تغییرات آب‌دهی چاه‌ها در منطقه تیرگان به دلایل زیر ایجاد می‌شود:
1. تغییرات زمین‌شناسی و تغییرات در وضعیت سطح آب.
2. تغییرات در ساختار زمین و تغییرات در وضعیت سطح آب.
3. تغییرات در وضعیت آب‌دهی و تغییرات در وضعیت سطح آب.
4. تغییرات در وضعیت آب‌دهی و تغییرات در وضعیت سطح آب.

از این پیامدها، نتیجه‌گیری می‌شود که تغییرات آب‌دهی چاه‌ها در منطقه تیرگان به دلایل زیر ایجاد می‌شود:
1. تغییرات زمین‌شناسی و تغییرات در وضعیت سطح آب.
2. تغییرات در ساختار زمین و تغییرات در وضعیت سطح آب.
3. تغییرات در وضعیت آب‌دهی و تغییرات در وضعیت سطح آب.
4. تغییرات در وضعیت آب‌دهی و تغییرات در وضعیت سطح آب.
چهارگوش‌بجنورد، سازند تیرگان در منطقه مطالعه‌شده سازند تیرگان یکی از سازندهای مهم آهکی در زون ساختاری که‌داد است. برش‌گویی سازند تیرگان در کوه تیرگان واقع در 39 کیلومتری جنوب غربی در کرج مطالعه‌شده است. برش‌گویی سازند تیرگان در منطقه مطالعه‌شده تا درج رژیم‌های قاره‌ای و دشواری‌های باارش می‌باشند.

گسترده سازند تیرگان در منطقه مطالعه‌سازند تیرگان در منطقه مطالعه‌شده در خور توجه است و ارتفاعات منطقه عمداً از این سازند شکل گرفته‌اند. ساختار صفحه‌شکل‌بندی‌یا باعث تأثیر ناودیسی ناودیسی را به‌شکل عرضی فضایی کرده‌اند. در مطالعه حاضر، برای به‌پذیرش حدود ۵۱۰ متر اندام‌گیری و نمونه‌برداری شد و در زمان، سازند تیرگان را می‌توان به‌همراه واحده سازند تیرگان و آهکی-مارنی تکمیل‌بندی کرد (شکل ۴).

مرجع این سازند در جنوب غربی روسیه جوزک (شرق که‌داد) قرار دارد (Aghanabati 2004). سازند تیرگان از سنگ‌آهک‌های سیلیکات‌های باریدی و ریست‌آواری با میان‌سازند تیرگان ناحیه از سنگ‌آهک‌های آزی و شیل آلیک تشکیل‌شده است. بر اساس نقشه‌نگاری‌های ۱۵۰۰۰۰۰ چهارگوش‌بجنورد، سازند تیرگان گسترده و بسیار در منطقه مطالعه‌شده‌دارند. شکل ۳ تصویر ماهواره‌ای بخش کوه‌بایوموسی را نشان می‌دهد. سبب‌زمان زیاد با‌های و بویژه تراکم و دسته‌بندی سنگ‌آهک‌ها شباهت‌شده است این سازند از واحدهای چهار‌گوش پایین‌ترین سنگ‌آهک‌های مرکزی شرکت‌دهند و به‌سمت شرق و جنوب شرقی و شرق به‌سمت شرق و جنوب شرقی و شرق‌ماندگی‌یا باشند.

شکل ۳- تصویر ماهواره‌ای بخش کوه‌بایوموسی در شرق شهر بجنورد؛ واحدهای سنگی یک-پایین به‌ترتیب از پایین به بالا: A- ۱ ا حد سنگی آهک پایینی، B- ۲ ا حد سنگی آهک – مارنی-پایینی، C- ۳ ا حد سنگی آهک سانتری-پایینی، D- ۴ ا حد سنگی آهک میانی، E- ۵ ا حد سنگی آهک بالایی.
بررسی نقش چینه‌شناگی سازنده برکار در آب‌های جاده‌ای آب در شمال و شرق بجنورد

شکل 4 - بررسی چینه‌شناگی مقطع اندازه‌گیری شده پاباموسی و واحد‌های سنگی تفکیک‌کننده

واحد سنگی آهک پایینی (A= L-Lmst) شامل حدود 115 متر آهک الی‌ی و آهک ماسه‌ای در قاعده فرمژرگ و

 به‌سمت بالا خاک‌تراز تیره است. پر اساس نمونه‌برداری انجام شده، این ضخامت از آهک‌های ضخیم‌نمایه عمداً
گرینستون (البید، باپوکلاست، انتراکلاست گرینستون) است. در مقاطع نازک تهیتوشده، وجود ذرات رز کوارتز در متن آهک نشان می‌دهد، دریای محل تشکیل سازند تیرگان از رسوبات آواری خشک‌کش تأثیری نداشته است (شکل 5). شماره‌های 1 و 2. 

(ب) = L M-Lmst

حدود 90 متر و شامل لایه‌های مارنی زیتونی زنگ‌رنشن با میان‌رنه‌های نازک آهکی - مارنی و بر اساس مطالعه مقاطع نازک شامل مادستون و باپوکلاست است (شکل 5).
بررسی نقش چینه‌شناسی سازند تیرگان در آب‌دهی چاه‌های آب در شمال و شرق یزد.

قرار دارد و مانع نفوذ جریان به لایه پایین آهک‌های

وی maneuvers یا میان‌راه‌های آهک صورت که از نظر چینه‌شناسی زیر سازند مارنی

سرچشمه قرار دارد و بر اساس نمونه‌های مقطع نازک شامل گرینستون (انترآکلاست، باوکلاست، پلوئید گرینستون) است

(D= Up M-Lmst) حدود 85 متر شامل لایه مارنی، مارنی آهکی و میان‌راه‌های آهک.

نوارآهک است و بر اساس نمونه‌برداری شامل وکستون و پکس تکستون (انترآکلاست پکس تکستون) است

(شکل 4، شماره‌های 7 و 8) بر اساس چینه‌شناسی و محل قرارگیری این لایه، نور در لایه دارای تراوایی کم‌را بار

ماکن. این واحد سنگی در بالای واحد سنگی آهک میانی

و واحد سنگی آهکی - مارنی بالایی (حدود 170 متر آهک ضخیم

نوارآهک است که از نظر چینه‌شناسی زیر سازند مارنی

سرچشمه قرار دارد و بر اساس نمونه‌های مقطع نازک شامل گرینستون (انترآکلاست، باوکلاست، پلوئید گرینستون) است

(شکل 6، شماره‌های 9 و 10).

شکل 6- مقاطع نازک تهیه شده از واحد‌های سنگی سازند تیرگان در مقطع پایاموسی: 7- (انترآکلاست، باوکلاست پکس تکستون)، 8- (باوکلاست پکس تکستون)، نمونه‌های برداشت شده از واحد سنگی - مارنی بالایی سنگی سازند تیرگان، واحد سنگی (D) حاوی فسیل‌های بندیک

ارتوتیون و باوکلاست و خمیره و زیستگاه می‌باشد که با انرژی شکاف‌های ویژه از لایه‌های مبارز، پکس تکستون، پلوئید گرینستون، نمونه‌های برداشت شده از واحد سنگی آهک ضخیم لایه بالایی (E) می‌باشد که با انرژی شکاف‌های ویژه و بندیک

از راه‌های مختلف آهک.

این واحد سنگی ضخیم‌الاوه و ازنظر ساختاری در معرض انحلال قرار گرفته است. ساختار تاکیدی پایداری در منطقه

انظر هیدرولوژیکی این لایه مهم‌ترین واحد سنگی

سازند تیرگان را در منطقه تکامل می‌دهد. در پیش‌تر منطقه،

www.SID.ir
به سبب نفوذناپذیری، نقص منابع جریان را دارد، بنابراین، توسیع انحلال در این واحد سنگی بیشتر است. شکل 7 به منظور تطابق ستون چینه‌شناسی چاه‌ها حفرشده در منطقه با ستون چینه‌شناسی مقطع بابامویی ترسم شده است.

بی‌شک‌کلیست که در محور نافدرا آورده‌ایم، سازند سرچشمه فرسایش شدیدی بافته و از بین رفته است و واحدهای سنگی آهک بالایی (E) سازند تیرگان در معرض جریان‌های نفوذی ناشی از بارندگی قرار گرفته‌اند. زیر لایه آهک بالایی، واحد سنگی آهکی-مارنی بالایی (B) سازند تیرگان قرار دارد که

![شکل 7- لایه‌شناسی حلقه‌های سطحی (از ها حلقه) جاه که بر اساس لایه‌شناسی زئوفیزیکی و گزارش‌های خداری دیافرگن]

ترسم و اصلاح شده است. تطابق ستون چینه‌شناسی چاه‌ها بر اساس اندزه‌گیری موقعیت محل حفر چاه از سطح بالایی سازند تیرگان و اصلاح شیب توبوگرافی و شب لایه‌بندی به‌توجهی می‌کنند قسمت‌های منطقه‌ای از منطقه انجام شده و در نهایت، با مقطع بابامویی، موسی اطمینان داده شده است.

از بین ده حلقه جاه، هشت حلقه اطلاعات کامل لایه‌بندی و گزارش حرفه‌ای داده‌اند. باتوجه به شکل 7 مشخص می‌شود که جاه‌های حفرشده در بعضی آهک بالایی به عمق ۱۳۷ متر دارند که به عنوان واحد سنگی آهک بالایی تفسیر کردند و جاه‌های نفوذناپذیره‌اند، با توجه به اینکه جاه مارنی بالایی به عمق ۲۵۰ متر دارند به دلیل چهارهای نفوذناپذیره‌اند از جهت جاه‌های مارنی بالایی به عمق ۲۵۰ متر دارند به دلیل چهارهای نفوذناپذیره‌اند از جهت جاه‌های مارنی بالایی به عمق ۲۵۰ متر دارند به دلیل چهارهای نفوذناپذیره‌اند از جهت جاه‌های مارنی بالایی به عمق ۲۵۰ متر دارند به دلیل چهارهای نفوذناپذیره‌اند
بررسی میزان آب‌دهی و تغییرات آن طی ۲۰ سال نشان می‌دهد سه حلقه‌چاه W06، W07 و W08 بیشترین آب‌دهی و کمترین تغییرات را می‌تواند در دو مرحله چاه در این دوره را تشخیص دهد. این دو حلقه‌چاه در واحد سنجی اکثر بالایی حفر شده‌اند. اگرچه چاه‌های دیگر نیز در بررسی‌های پیشین ذکر شده اما دارند، آب‌دهی آنها به‌مراتب نا همخوانی از ۵۰ درصد کمتر است (جدول ۱).

جدول ۱- میزان و تغییرات آبنوسی چاه‌های حفرشده در سازمان تیرگان طی ۲۰ سال

<table>
<thead>
<tr>
<th>شماره چاه</th>
<th>عمق (متر)</th>
<th>کاهش آبنوسی طی مدت ۲۰ سال (آبنوسی طی سال ۱۳۷۲-۱۳۷۵)</th>
<th>درصد کاهش آبنوسی طی مدت ۲۰ سال (درصد کاهش آبنوسی طی سال ۱۳۷۲-۱۳۷۵)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W01</td>
<td>۲۵۰</td>
<td>۲۵</td>
<td>۲۵</td>
</tr>
<tr>
<td>W02</td>
<td>۲۰۱</td>
<td>۲۵</td>
<td>۲۵</td>
</tr>
<tr>
<td>W03</td>
<td>۲۰۱</td>
<td>۳۰</td>
<td>۲۰</td>
</tr>
<tr>
<td>W04</td>
<td>۱۵۰</td>
<td>۷۰</td>
<td>۶۰</td>
</tr>
<tr>
<td>W05</td>
<td>۱۵۰</td>
<td>۷۰</td>
<td>۶۰</td>
</tr>
<tr>
<td>W06</td>
<td>۱۵۰</td>
<td>۷۰</td>
<td>۶۰</td>
</tr>
<tr>
<td>W07</td>
<td>۱۲۰</td>
<td>۷۰</td>
<td>۶۰</td>
</tr>
<tr>
<td>W08</td>
<td>۱۳۹</td>
<td>۷۰</td>
<td>۶۰</td>
</tr>
<tr>
<td>W09</td>
<td>۱۴۰</td>
<td>۷۰</td>
<td>۶۰</td>
</tr>
<tr>
<td>W10</td>
<td>۱۳۴</td>
<td>۷۰</td>
<td>۶۰</td>
</tr>
</tbody>
</table>

است: از سویی به علت کاهش، زیادی واحد سگی، حفره تقیبی به موازات این باید بتواند که یک با در کاهش‌های آبنوسی و تغییرات آن طی ۲۰ سال نشان عمده داشته است (شکل ۸ A).

چاه‌های قرار و گرخان

چهار حلقه W03، W04 و W05 در منطقه قرار و W06 و W07 در منطقه گرخان و در حلقه‌چاه W03 و W04 به شرکت ژن‌سنجی و در حلقه‌چاه W05 و W04 به شرکت آب و فاضلاب روسیه مربوط است. چاه W06 ۱۵۰ متر عمق دارد و چاه‌های W03، W05 و W06 به ترتیب ۲۰۱۲ و ۲۰۱۳ و ۲۰۱۴ می‌باشند.

چاه‌های منطقه‌ای W01 و W02

در این محل، دو حلقه‌چاه W01 با عمق ۲۵۰ و ۲۰۱ متر در آهنگ‌های بیشتری حفری شده‌اند. طبق گزارش حفاری، لاک زمین‌شناختی شامل آهن، آهن سیلی، آهن سیلی‌رنگ، آهن و سیلیست مایه است. بر اساس گزارش حفاری، مناطق دارای دو شکاف از عمق حدود ۱۲۰ تا ۱۴۰ متر (شکل A) و ۱۴۰ تا ۱۷۵ متر سه شکاف از عمق حدود ۱۴۰ تا ۱۷۵ متر (شکل B) و ۱۷۵ تا ۱۸۵ متر سه شکاف از عمق حدود ۱۸۵ تا ۲۱۰ متر (شکل C) وجود دارد. این حلقه‌ها با کمک بررسی‌های آژانس اکتشافاتی آهنگ‌های و روش‌های جدید استفاده شده‌اند. به علت ضعف لاک‌های آهنگ‌های منطقه‌ی W01 و W02
چاه‌های منطقه تجف‌آباد یک

در منطقه تجف‌آباد، دو چاه حفاری‌شده است و چون میزان آب‌های حرفه‌ای در این منطقه بسیار کم است، هر چهار متر از سطح زمین، آب‌های حرفه‌ای و سیل‌گیری حاصل نمی‌شود. به همین دلیل، در طول آن‌ها، سه چاه حفاری‌شده و سه چاه حفاری‌شده که در این منطقه وجود نداده‌اند. اگرچه این چاه‌ها علاوه بر علت علم و تحقیقات انجام شده و سویچ‌های حرارتی و سویچ‌های حرارتیی نیز در این منطقه وجود ندارند، اما در این منطقه چاه‌های تجف‌آباد به عنوان چاه‌های حرفه‌ای و علمی و تحقیقاتی مورد نظر بوده‌اند.

 paternal: پایه‌های آب‌زیستی، داده‌های پیش‌رو، سنگ‌های نمونه‌های برداشت‌شده و زمین‌شناسی و هیدرژئولوژی و آب‌های خوراکی نشان‌دهنده‌های تغییرات آب در سطح زمین است. یکی از این‌ها می‌تواند به‌صورت طبیعی یا انسانی در زمین‌شناسی و ساختمان‌های زمین‌شناسی، ساختمان‌های زمین‌شناسی و ساختمان‌های زمین‌شناسی بررسی شود. به همین دلیل، در این منطقه چاه‌های تجف‌آباد به عنوان چاه‌های حرفه‌ای و علمی و تحقیقاتی مورد نظر بوده‌اند.
بررسی نقش چینه‌شناسی سازند تیرگان در آب‌دهی‌های آب در شمال و شرق یزد

تیرگان که شامل نشان‌دهندهٔ از مارن و اهک است، در توسعة کارست، ساب و احتمالاً درون سازند تیرگان نقش اساسی داشته است. زیرا، احتمالاً مارنی به سبب سنگ‌شناسی، نقش بی‌نا تا ناکارآمدی را داشته‌اند و به‌ویژه در احتمال سنگی اهک پایین‌تر مانع توسعت‌یافتهٔ کارست شده‌اند.

سرچشمه‌های فراغتی و در بهبود مناطق کوه‌های از احتمال منطقهٔ مطالعه‌شده، سازند سرچشمه به‌علت فرسایش از بین رفتن و این واحدهای سنگی اهکی در معرض بارندگی مستقیم قرار گرفته است. از زیر به‌عنوان خلاصه‌ای، بسیاری بهتر از ساب و احتمالاً سنگی اهکی درون سازند تیرگان در معرض انحلال واقع شده است. توالی چینه‌شناسی سازند

[شکل ۱] - بررسی های چینه‌شناسی سازند تیرگان در محل حفر چاه‌ها و دیگر فرآیندهای چاه‌ها نسبت به سطح بالایی سازند تیرگان:

A. جاهاهای منطقه‌ای زیاد: جاهاهای مرتفع با وابستگی به عمق‌های پایین‌تری از سطح بالایی حفر شده‌اند.

B. جاهاهای کم‌عمق‌تر: جاهاهای تاریک از لایه‌های اهکی و مارنی حفر شده‌اند.

C. جاهاهای محصور: جاها در منطقه‌ای تنها از لایه‌های اهکی و مارنی حفر شده‌اند.

D. جاهاهای توده‌ای: جاها در لایه‌های اهکی ضخیم‌تری از لایه‌های مارنی حفر شده‌اند.

www.SID.ir
بحث و نتیجه

اطلاعات حاصل از ستون چینه‌شناسی بالاباموسی، اطلاعات جاهای منطقه شامل گونه‌های خفی و آب‌دهی‌های چاه‌ها در کار یکدیگر قرار گرفتند و پنج واحد سنگی (سه واحد سنگی آهکی شامل و یک واحد سنگی (C) و دو واحد سنگی آهکی پایینی (A)) وارد کرد. ساختار و ناودنی که با ساختار و ناودنی که با...
گسل‌هایی عرضی قطع شده، نیروی زیادی را در روند بادش‌نموده و به‌هم‌اریختن تکونی‌های مشاهده نمی‌شود. اطلاعات تحلیل‌شده از جهات متفاوت و منطبق آنها با سطوح چین‌های نشان‌دهنده کمال برداشت‌شده از مقطع بابا‌موسی نشان می‌دهد چاوده‌های اغلب در جا و سختی آهک بالایی و حداقل‌ترین حد سختی آهک مانیان حفاری‌های شدیدان. موقعیت واحدهای سنگی آهک والی و واحدهای سنگی آهکی-ماتانی به‌شکلی که لایه‌های مانیان در نشان‌های نیمه‌تراوا و گاهی ناتوان بوده‌اند در رفت‌وآمد و گامه‌های تاراوا ظاهر و باعث توسه‌های فرمانی کارسدن است. در واحدهای آهک بالایی (E) زیر ساندر شریمه قرار گرفته است. اما پلزان ساندر شریمه در این فرمالیست از نظر جریان‌های بارندگی قرار گرفته است از زوگی، واحد سنگی آهک بالایی (D) نیز از قرار داده که ترکیبی مانند لایه‌های تفوش‌پذیری عمل کرده است. خلاصه‌بر موارد بادش‌نامی چون این واحد سنگی در جریان خلوص سیستمی داشته، کارسدن توسه‌ها را تشكیل داده است. یک‌دیگر این واحدهای بافتگی‌های آب‌دهی زیادی چاوده‌ها در این واحد مشاهده می‌شود. در اینجا به‌چهارهایی که به واحد سنگی آهک بالایی توسه‌کن زمین‌کارشده است. اگرچه عمر پیش‌تری این‌ها، ابتدا نمادی نقره‌کن‌زدیسته‌که به واحد سنگی آهک بالایی توسه‌کن زمین‌کارشده است. اگرچه عمر پیش‌تری این‌ها، ابتدا نمادی نقره‌کن‌زدیسته‌که به واحد سنگی آهک بالایی توسه‌کن زمین‌کارشده است. اگرچه عمر پیش‌تری این‌ها، ابتدا نمادی نقره‌کن‌زدیسته‌که به واحد سنگی آهک بالایی توسه‌کن زمین‌کارشده است. اگرچه عمر پیش‌تری این‌ها، ابتدا نمادی نقره‌کن‌زدیسته‌که به واحد سنگی آهک بالایی توسه‌کن زمین‌کارشده است. اگرچه عمر پیش‌تری این‌ها، ابتدا نمادی نقره‌کن‌زدیسته‌که به واحد سنگی آهک بالایی توسه‌کن زمین‌کارشده است. اگرچه عمر پیش‌تری این‌ها، ابتدا نمادی نقره‌کن‌زدیسته‌که به واحد سنگی آهک بالایی توسه‌کن زمین‌کارشده است. اگرچه عمر پیش‌تری این‌ها، ابتدا نمادی نقره‌کن‌زدیسته‌که به واحد سنگی آهک بالایی توسه‌کن زمین‌کارشده است. اگرچه عمر پیش‌تری این‌ها، ابتدا نمادی نقره‌کن‌زدیسته‌که به واحد سنگی آهک بالایی توسه‌کن زمین‌کارشده است. اگرچه عمر پیش‌تری این‌ها، ابتدا نمادی نقره‌کن‌زدیسته‌که به واحد سنگی آهک بالایی توسه‌کن زمین‌کارشده است. اگرچه عمر پیش‌تری این‌ها، ابتدا نمادی نقره‌کن‌زدیسته‌که به واحد سنگی آهک بالایی توسه‌کن زمین‌کارشده است. اگرچه عمر پیش‌تری این‌ها، ابتدا نمادی نقره‌کن‌زدیسته‌که به واحد سنگی آهک بالایی توسه‌کن زمین‌کارشده است. اگرچه عمر پیش‌تری این‌ها، ابتدا نمادی نقره‌کن‌زدیسته‌که به واحد سنگی آهک بالایی توسه‌کن زمین‌کارشده است. اگرچه عمر پیش‌تری این‌ها، ابتدا نمادی نقره‌کن‌زدیسته‌که به واحد سنگی آهک بالایی توسه‌کن زمین‌کارشده است. اگرچه عمر پیش‌تری این‌ها، ابتدا نمادی نقره‌کن‌زدیسته‌که به واحد سنگی آهک بالایی توسه‌کن زمین‌کارشده است. اگرچه عمر پیش‌تری این‌ها، ابتدا نمادی نقره‌کن‌زدیسته‌که به واحد سنگی آهک بالایی توسه‌کن زمین‌کارشده است. اگرچه عمر پیش‌تری این‌ها، ابتدا نمادی نقره‌کن‌زدیسته‌که به واحد سنگی آهک بالایی توسه‌کن زمین‌کارشده است. اگرچه عمر پیش‌تری این‌ها، ابتدا نمادی Naman, حفره‌های غیرصلاحیت و توسه‌های ناکافی (جاه). اما درصد کاهش آب‌دهي این‌ها ممکن است 20 سال نسبت به سایر جاه‌ها کمتر بوده است که توسه‌های مناسبی کارسدن واحد سنگی برخی جاه‌ها به‌وجود می‌آید. یک‌برای این‌ها باید توضیح داده شود که مصرف نابودی به آب پیش‌تری در عمق کمتر است؛ مشروط به اینکه سایر مراحل فصل جامع و حفره‌های نیز رعایت شوند. به‌توجه‌های توالی

References


