بررسی امکان استخراج مکانیزه معدن سنگ اهک رشکان ارومیه با اساس شاخس قابلیت

استخراج توده‌سنگ

سجاد چهره‌قاچیُۦ، محمد دادرسیُۦ، عارف علی‌پور، مجتبی مختاریانو، حجت حسینزادهُۦ

1 و 2 - گروه مهندسی معدن، دانشگاه ارومیه، ارومیه
3 و 5 - دانشکده مهندسی معدن، دانشگاه صنعتی ارومیه، ارومیه

* s.chehreghani@urmia.ac.ir

دریافت: ۵/۷/۱۳۹۴
پذیرش: ۹۷/۸/۱۵

چکیده

مدفن سنگ‌های رشکان با تولید حدود سه میلیون تن، تنامی کننده جزئیات سنگ‌های کاربردی سیمان ارومیه است. توزیع‌گری این معدن به راه‌های هم‌مرز و همچنین جاده‌های اصلی ارومیه-همه‌پاراد، به همراه اثرات محیطی و زیست‌محیطی سبب شده است تا استفاده از ماسیرهای استخراج پوسته‌هایی که از گرینه‌های ادامت وضعیت استخراج این معدن باشد. در این مقاله با استفاده از شاخس قابلیت استخراج و بر اساس پژوهش‌های زمین‌شناسی توده‌سنگ رشکان، امکان استخراج مکانیزه‌ای این معدن بررسی شده است. برای انجام این پژوهش، در ۱۸ سیستم کار مختلف از مجموع ۸ زون زمین‌شناسی معدن سنگ رشکان بر سطح سطح میدانی فلزات کلرودیتی و فلزات فلزاتی دیسک و فلزات دیسکی، با برترای راه‌های هم‌مرز و همچنین جاده‌های اصلی ارومیه، ارومیه

چکیده

مدفن سنگ‌های رشکان با تولید حدود سه میلیون تن، تنامی کننده جزئیات سنگ‌های کاربردی سیمان ارومیه است. توزیع‌گری این معدن به راه‌های هم‌مرز و همچنین جاده‌های اصلی ارومیه-همه‌پاراد، به همراه اثرات محیطی و زیست‌محیطی سبب شده است تا استفاده از ماسیرهای استخراج پوسته‌هایی که از گرینه‌های ادامت وضعیت استخراج این معدن باشد. در این مقاله با استفاده از شاخس قابلیت استخراج و بر اساس پژوهش‌های زمین‌شناسی توده‌سنگ رشکان، امکان استخراج مکانیزه‌ای این معدن بررسی شده است. برای انجام این پژوهش، در ۱۸ سیستم کار مختلف از مجموع ۸ زون زمین‌شناسی معدن سنگ رشکان بر سطح سطح میدانی فلزات کلرودیتی و فلزات فلزاتی دیسک و فلزات دیسکی، با برترای راه‌های هم‌مرز و همچنین جاده‌های اصلی ارومیه، ارومیه

واژه‌های کلیدی: قابلیت استخراج توده‌سنگ، معدن اهک رشکان، مانیل‌های استخراج پوسته سطحی

1- مقدمه

آماده‌سازی سطح زمین، حفاری و استخراج توده‌سنگ

یکی از مراحل اصلی در اغلب پژوهش‌های زمین‌شناسی است که معمولاً با دو روش اصلی جالنی و انتشار و یا ماسیرهای حفر مکانیزه‌ای می‌باشد. امرور در صنعت سنگ‌وکنسنتره روند به رشدی در استفاده از روش‌های استخراج سریع و بزرگ مقياس و جهاد دارد. این روش‌ها به علت آماده‌سازی سریع‌تر کسان و استخراج زودتر ماده معدنی باید صرف‌جویی در هزینه‌ها و بارگذاری سریع‌تر سرمایه‌گذاری اوله برتر بگردند. همچنین پژوهش‌های بزرگ عماری‌های مانند تولید نیز، امرور روش توسط مانیل‌های حفر مکانیزه‌ای اجرای می‌شوند.
توپ‌ده‌سی‌گر می‌توان به صورت راحت‌الاباب بین پارامترهای زنومگانیکی قابل تنظیم از توده‌سنج و ترخ تولید یافته، نمونه‌بندی و همکاران (۱۹۸۲) و پیشی‌گیری (۱۹۹۴) روش گرافیکی را برای رشد در پارامتر زنومگانیکی، فاصله‌گیری نابی‌گستری و مقادیر توده‌سنج ارائه نموده‌اند که در آن نمونه‌بندی از هر دو ناحیه به ترتیب محاسبه مقادیر توده‌سنج استخراج شده به روش یافته‌شده استخراج‌های سنج مورد مطالعه قرار گرفته‌اند. در حال حاضر، اما بهترین نتایج حاصل می‌شود تا برای کننده و خردناش، توده‌سنج نشان‌دهنده‌ی انتخاب‌های درمانی که از نظر محیط‌زیستی حساس و جالب‌السیر هستند، روش یافته‌شده و آنتی‌بیوتیک‌های استخراج و تعدد پارامترها جدیل‌اند، از آن‌ها بهره‌برداری می‌شود.

تهیه قابلیت استخراج اساساً تجربی‌تر است.

از نظر کننکی، طیفی و توده‌سنج پردازش‌های تکاملی و غالب در انتخاب تجربه‌ها است. با سایر و کاربرد (۲۰۰۴) روش‌های ارزیابی قابلیت توده‌سنج که می‌تواند با دو دسته مستقیم و غیرمستقیم تفسیرپذیر نموده‌اند. روش مستقیم به وحود تجربه‌های استخراج مناسب و آزمون آن‌ها در شرایط مورد نظر روی زمین، واشتی انتخاب که در اغلب موارد امکان‌پذیر نیست. بنابراین در اکثر موارد روی‌های غیرمستقیم تفسیرپذیر قابلیت استخراج نه می‌شود. طیفپذیر فیبناک (۱۹۸۵) و فیبناک (۱۹۹۴) کاربردی این روش را برای انتخاب قابلیت استخراج و پردازش قابلیت باکتری‌ها، آنتی‌بیوتیک‌های جدید‌ترین امنیت استفاده از این‌ها به تنهایی کاربردی قابلیت استخراج و نوع مانند آنتی‌بیوتیک‌های دارویی در نهایت برای تعیین طبقه‌بندی استخراج و نوع مانند، آل‌کتر، از مورد کاربرد Q موسسه‌زدوجانگی ترور آنتی‌بیوتیک

روش بوده و نیازمند افرادی با تخصص و مهارت بسیار بالا است.
روش امتیازدهی پیوسته

برای رفع اشکالات سیستم‌های طبقبندی موجود

راه‌حل‌های برای انتخاب استاتر از روش‌های مانند شیبک عصبی مخصوص، منطق فازی و سایر روش‌های محاسبات‌نام‌ اصوت گرفته است که این مدل روش‌های پیوسته کاربرد

جدیدی در بین محققین که در این زمینه کار می‌کنند،

نداشته است (چهره‌قاری و همکاران، 2011). در ادامه این

که در اصل برای نمونه داده‌شد خاصیت کرده

است. پارامترهای روتی در این سیستم مقاوت فشاری

تمام‌مهور سنج مپس. تعداد دسته‌داره، سختی

درهای هوانده و درجه و همچنین

هستند.

2- موانع و روش‌ها

2-1 روش امتیازدهی پیوسته

در این مقاله، روش امتیازدهی شاخص قابلیت استخراج

همان‌چنین مرسوم برای پارامترهای ورودی در دو نمونه استفاده می‌گرایند. استفاده از پارامترهای

طبقبندی مورد استفاده در این سیستم، هوازدگی، مقاومت سنج، فصل‌داری درجه و فصل‌داری سطح لایه‌به‌لایه

طقببندی مدل در یک پارامترهای مذکور بر مبنای

مقادیر کیک آنها در جدول یک چهاردم این است. در این

روش جمع عدای امتیاز پارامترهای ورودی مدل به

عنوان امتیاز نهایی شاخص استخراج تعیین شده

است که میانی طبقبندی قابلیت استخراج توده‌سنج

در جدول یک چهاردم است (سکل‌کریش نفت)، 1884

بررسی دقیق جدول یک نشان می‌دهد که در مورد امتیاز

هر یک از پارامترهای ورودی سیستم طبقبندی عدم

قطعی‌هایی وجود دارد. به همین دلیل در جاهایی که داده‌ها

در محدوده مزین اطلاعات مختلف قرار می‌گیرند، این امر

شکل‌کریش است. عدم قطعیت به معنی نبودن دقیقه

برای انتخاب تقسیم و انتخاب است. به عنوان مثال برای

سنگ فشاری مقدار مقاومت فشاری 40 است و در مرز

نمی‌توان امتیاز پارامتر مقاومت فشاری تکمیل‌ره

تا علیه درک. این مسئله به عدم قطعیت در نتیجه کلی

خواهد انجامید. مشابه این حال برای سایر پارامترها نیز

وجود دارد. به همین دلیل طبقبندی به استاندارد

هوانده، امتیاز بهتر از پارامترهای ورودی دیگر در

قابلیت بروز به همین دلیل از این پارامتر مقدار ثابت و

یکسان است. به همین دلیل طبقبندی به استاندارد

Macaulay به ویژه در همان محدوده قرار دارد. یکسان

است. چنین حالتی باعث

دیگر، Diggability Index Rating Method

Soft computing
تحقیق یکی از آخرین روش‌های طبقه‌بندی کاربردی که براساس امتیازدهی بویستی استوار است برای ارزیابی قابلیت استخراج توجه سیستم معدن آهن رشکان مورد استفاده قرار گرفته است. در این روش برای هر یک از پارامترهای مورد سنجش، در صورتی که مقادیر آنها

<table>
<thead>
<tr>
<th>طبقه سنگ</th>
<th>پارامتر</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>IV</td>
</tr>
<tr>
<td>کلیل</td>
<td>زائد متوسط نیتا</td>
</tr>
<tr>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

جدول 2 روش امتیازدهی شاخص قابلیت استخراج (اسکولو و مفتاحلو، 1984)

<table>
<thead>
<tr>
<th>نوع دستگاه بیشتهادی</th>
<th>طبقه سنگ (W+S+J+B)</th>
<th>روش حفاری</th>
<th>قابلیت استخراج</th>
<th>امتیاز</th>
</tr>
</thead>
<tbody>
<tr>
<td>1- Ripper-scaper, Caterpillar D8</td>
<td>1</td>
<td>1- دریبرژی</td>
<td>خیلی بزرگ</td>
<td>60-70</td>
</tr>
<tr>
<td>2- Dragline > 5 m³, Lima 2400</td>
<td>2</td>
<td>2- دریبرژی</td>
<td>بزرگ</td>
<td>70-80</td>
</tr>
<tr>
<td>3- Rope shovel > 3 m³, Ruston Bucyrus 71 RB</td>
<td>3</td>
<td>3- دریبرژی</td>
<td>کوچک</td>
<td>80-90</td>
</tr>
<tr>
<td>1- Ripper-scaper, Caterpillar D9</td>
<td>1</td>
<td>1- دریبرژی</td>
<td>خیلی بزرگ</td>
<td>60-70</td>
</tr>
<tr>
<td>2- Dragline > 8 m³, marion 195</td>
<td>2</td>
<td>2- دریبرژی</td>
<td>بزرگ</td>
<td>70-80</td>
</tr>
<tr>
<td>3- Rope shovel > 3 m³, Ruston Bucyrus 150 RB</td>
<td>3</td>
<td>3- دریبرژی</td>
<td>کوچک</td>
<td>80-90</td>
</tr>
<tr>
<td>1- Ripper-scaper, Caterpillar D9</td>
<td>1</td>
<td>1- دریبرژی</td>
<td>خیلی بزرگ</td>
<td>60-70</td>
</tr>
<tr>
<td>2- Hydraulic shovel > 3 m³, caterpillar 245</td>
<td>2</td>
<td>2- دریبرژی</td>
<td>بزرگ</td>
<td>70-80</td>
</tr>
<tr>
<td>1- Ripper-scaper, Caterpillar D10</td>
<td>1</td>
<td>1- دریبرژی</td>
<td>خیلی بزرگ</td>
<td>60-70</td>
</tr>
<tr>
<td>2- Hydraulic shovel > 3 m³, Cat.245 or O&K RH 40</td>
<td>2</td>
<td>2- دریبرژی</td>
<td>بزرگ</td>
<td>70-80</td>
</tr>
<tr>
<td>1- Hydraulic shovel > 3 m³, Cat.245 or O&K RH 40</td>
<td>1</td>
<td>1- دریبرژی</td>
<td>خیلی بزرگ</td>
<td>60-70</td>
</tr>
<tr>
<td>1- Hydraulic shovels > 7 m³, Demag H111, Poclain 1000CK, P&H 1200, O&K RH 75</td>
<td>1</td>
<td>1- دریبرژی</td>
<td>خیلی بزرگ</td>
<td>60-70</td>
</tr>
<tr>
<td>1- Hydraulic shovels > 7 m³, Demag H111, H241, O&K RH 300</td>
<td>1</td>
<td>1- دریبرژی</td>
<td>خیلی بزرگ</td>
<td>60-70</td>
</tr>
</tbody>
</table>
جدول ۳ مقایسه امتیاز قابلیت استخراج دو نود سنج مشتق با سیستم طبقه‌بندی معمول

<table>
<thead>
<tr>
<th>پارامترهای طبقه‌بندی</th>
<th>امتیاز توده‌سنگ</th>
<th>خواص توده‌سنگ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>۱۰۰</td>
<td>۶۰</td>
</tr>
<tr>
<td></td>
<td>۵۰</td>
<td>۴۰</td>
</tr>
<tr>
<td></td>
<td>۴۰</td>
<td>۳۰</td>
</tr>
<tr>
<td></td>
<td>۳۰</td>
<td>۲۰</td>
</tr>
<tr>
<td></td>
<td>۲۰</td>
<td>۱۵</td>
</tr>
<tr>
<td></td>
<td>۱۵</td>
<td>۱۰</td>
</tr>
<tr>
<td></td>
<td>۱۰</td>
<td>۵</td>
</tr>
<tr>
<td></td>
<td>۵</td>
<td>۴</td>
</tr>
<tr>
<td></td>
<td>۴</td>
<td>۳</td>
</tr>
<tr>
<td></td>
<td>۳</td>
<td>۲</td>
</tr>
<tr>
<td></td>
<td>۲</td>
<td>۱</td>
</tr>
<tr>
<td></td>
<td>۱</td>
<td>۰</td>
</tr>
</tbody>
</table>

جدول ۴ معادلات امتیاز یوپونت برای پارامترهای زونوتکنیکی در سیستم طبقه‌بندی (ایبیهار، ۲۰۱۶)

<table>
<thead>
<tr>
<th>مقاومت فشاری نک مموره (MPa)</th>
<th><۲۰</th>
<th>۲۰-۴۰</th>
<th>۴۰-۶۰</th>
<th>۶۰-۸۰</th>
<th>>۱۰۰</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۲۵</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>مقاومت بار نقطه‌ای (MPa)</th>
<th><۰.۵</th>
<th>۰.۵-۱</th>
<th>۱.۵-۲</th>
<th>۲-۳.۵</th>
<th>>۳.۵</th>
<th>۲۵</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>فاصله‌داری درز‌های (m)</th>
<th><۰.۳</th>
<th>۰.۳-۰.۶</th>
<th>۰.۶-۱.۵</th>
<th>۱.۵-۲</th>
<th>>۲</th>
<th>۲۵</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>فاصله‌داری لایه‌بندی (m)</th>
<th><۰.۱</th>
<th>۰.۱-۰.۲</th>
<th>۰.۳-۰.۴۵</th>
<th>۰.۴۵-۰.۶</th>
<th>۰.۶-۰.۱۰۵</th>
<th>۱.۰۵-۱.۵</th>
<th>>۱.۵</th>
<th>۳۰</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

سنج‌آهنگ بوده که در قسمت‌های مختلف از نظر رنگ و گیفت غیرتیپی در ان مشاهده می‌شود. براساس نتایج زمین‌شناسی چهار گوش ارومیه، شده توسط سازمان زمین‌شناسی کشور سن انها را به میوئن سپت داده‌اند.

قائیق نیز از نظر لیتوژنیکی از اهمیتی‌رژ دان (میکروت) به رنگ سفید، شیری و چرم بوده که اکثریت بسته‌رسانی و بخش‌های یا لایه‌بندی‌های متنوعی می‌باشد که در حالت توده‌ای

ایجاد ریخته‌های صخره‌ای نموده است (شکل ۱).

۲-۳ معدن سنگ آهنک رشگان ارومیه

معبد سنگ آهنک رشگان تامین‌کننده سنگ‌آهنک مورد نیاز کارخانه سیمان ارومیه به عنوان ماده اصلی تشکیل دهنده سیمان اشت. این معدن در جغرافیا جاده ترانزیت ارومیه–همدان و یک کیلومتری ریاست شگان واقع شده است و با دقتی استخراج سالانه حدود سه میلیون تن یکی از معدن‌های برتر مورد بهره‌برداری قرار گرفته‌است. در مدت این سنگ‌های,

روشی دو مرحله می‌باشد. چندان این سنگ‌ها.

www.SID.ir
در این ممند پس از اجرای عملیات‌های چهارگانه
جالنی، آشکاری، پارکبندی و جهش، سه‌اهک استخراج
شده به‌یا وحد سنجشکنی می‌شود. با توجه به
مشرف بودن زون‌های عملیاتی ۱، ۵، ۶ و ۷ این ممند به
جاده ترانزیت اسپه – هفه‌زد (شکل ۲) و برای تامین
شرايط ایمنی معدنگردی بر جمله جلوگیری از پرتاب
سنج، لرزش زمین و گرد و غبار در حین اثر کاری در
کنار جاده، نحوه استخراج این زون‌ها از اهمیت بالا
توجهی برخوردار است. در ممند سنجش‌های رشکان
ارومیه، با توجه به نوع ویژگی‌های زئوکمپاکی‌های بخش‌های

شکل ۱. نقشه زمین‌شناسی محدوده معدن سنج آهک رشکان (علی‌نامی و شهریا، ۱۳۶۴)
پایه‌های نوین زمین‌ساخت کاربردی، دوره ۱۲، شماره ۲۵، بهار و تابستان ۹۸

برای انجام این پژوهش، براهای آزمایشگاهی زئوکانئیک مورد استفاده براهای آزمایشگاهی شاخه کل و طبقه کلیه نتیجه‌گیری مناسبی به دست آمده که به طور کلی به‌طور مختصر مقدار انتیزاس به‌طور کلی در این آزمایش‌ها از آن به پاس کرده کلمه‌اش نشان‌دهنده خاصیت انتیزاسیون است. در انتیزاسیون، روش‌های شاخه‌ها، تحت شرایط مختلف، از همیشه تا در شرایط و حالت‌های مختلف، به‌طور کلی به‌طور کلی به‌طور مختصر مقدار انتیزاس به‌طور کلی در این آزمایش‌ها از آن به پاس کرده کلمه‌اش نشان‌دهنده خاصیت انتیزاسیون است.

3-1 قابلیت استخراج توامی اپک معدن رشکان

۳-2-طبقه‌بندی قابلیت استخراج توامی اپک معدن رشکان

مشخصات زئوکانئیکی زئوی‌های مختلف معدن سگ آهنک کارخانه سیمان ارومیه و انتخاب آن براساس روش انتیزاسیونی شاخه‌ای قابلیت استخراج

جدول ۵ مشخصات زئوکانئیکی معدن سگ‌ها کارخانه سیمان ارومیه و انتخاب به‌دست آن براساس روش انتیزاسیونی شاخه‌ای قابلیت استخراج

<table>
<thead>
<tr>
<th>Zون</th>
<th>سینه کار</th>
<th>داش</th>
<th>سطح لاشه‌ای (m)</th>
<th>طبقه‌بندی (W)</th>
<th>طبقه‌بندی (B)</th>
<th>فاصله دیزایر (m)</th>
<th>فاصله لاشه‌ای (m)</th>
<th>طبقه‌بندی (AM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۴-۳۸</td>
<td>۵</td>
<td>۳-۳۰</td>
<td>۳-۳۰</td>
<td>۳-۳۰</td>
<td>۳-۳۰</td>
<td>۳-۳۰</td>
<td>۳-۳۰</td>
</tr>
<tr>
<td>۲</td>
<td>۶-۳۸</td>
<td>۵</td>
<td>۴-۴۰</td>
<td>۴-۴۰</td>
<td>۴-۴۰</td>
<td>۴-۴۰</td>
<td>۴-۴۰</td>
<td>۴-۴۰</td>
</tr>
<tr>
<td>۳</td>
<td>۷-۳۸</td>
<td>۵</td>
<td>۵-۵۰</td>
<td>۵-۵۰</td>
<td>۵-۵۰</td>
<td>۵-۵۰</td>
<td>۵-۵۰</td>
<td>۵-۵۰</td>
</tr>
<tr>
<td>۴</td>
<td>۸-۳۸</td>
<td>۵</td>
<td>۶-۶۰</td>
<td>۶-۶۰</td>
<td>۶-۶۰</td>
<td>۶-۶۰</td>
<td>۶-۶۰</td>
<td>۶-۶۰</td>
</tr>
</tbody>
</table>

Ripper-scrapers, Caterpillar D10

Hydraulic shovel > 3 m³ caterpillar 245
جدول ۶: طبقه‌بندی قابلیت استخراج زون‌های سنگ آمک کارخانه سیمان ارومیه

| نوع استخراج | روش استخراج | قابلیت استخراج (W+S+J+B) | امتیاز (A) | کارهای سینه‌کار | زون
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydraulic shovel > 3 m³, Cat.245 or O&K RH 40</td>
<td>خیلی سخت</td>
<td>25</td>
<td>1-1</td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>Hydraulic shovel > 3 m³, Cat.245 or O&K RH 40</td>
<td>خیلی سخت</td>
<td>25</td>
<td>1-1</td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>Hydraulic shovel > 3 m³, Cat.245 or O&K RH 40</td>
<td>خیلی سخت</td>
<td>25</td>
<td>1-1</td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>Ripper-scraper, Caterpillar D9</td>
<td>نیم سخت</td>
<td>50</td>
<td>3-2</td>
<td>۳</td>
<td></td>
</tr>
<tr>
<td>Hydraulic shovel > 3 m³, Cat.245</td>
<td>نیم سخت</td>
<td>60</td>
<td>4-3</td>
<td>۴</td>
<td></td>
</tr>
<tr>
<td>Hydraulic shovel > 3 m³, Cat.245</td>
<td>نیم سخت</td>
<td>60</td>
<td>4-3</td>
<td>۴</td>
<td></td>
</tr>
<tr>
<td>Hydraulic shovel > 3 m³, Cat.245</td>
<td>نیم سخت</td>
<td>60</td>
<td>4-3</td>
<td>۴</td>
<td></td>
</tr>
<tr>
<td>Hydraulic shovel > 3 m³, Cat.245 or O&K RH 40</td>
<td>نیم سخت</td>
<td>60</td>
<td>4-3</td>
<td>۴</td>
<td></td>
</tr>
<tr>
<td>Hydraulic shovel > 3 m³, Cat.245 or O&K RH 40</td>
<td>نیم سخت</td>
<td>60</td>
<td>4-3</td>
<td>۴</td>
<td></td>
</tr>
<tr>
<td>Hydraulic shovel > 3 m³, Cat.245 or O&K RH 40</td>
<td>نیم سخت</td>
<td>60</td>
<td>4-3</td>
<td>۴</td>
<td></td>
</tr>
<tr>
<td>Ripper-scraper, Caterpillar D10</td>
<td>نیم سخت</td>
<td>65</td>
<td>5-4</td>
<td>۵</td>
<td></td>
</tr>
<tr>
<td>Hydraulic shovel > 3 m³, Cat.245 or O&K RH 40</td>
<td>نیم سخت</td>
<td>65</td>
<td>5-4</td>
<td>۵</td>
<td></td>
</tr>
<tr>
<td>Hydraulic shovel > 3 m³, Cat.245 or O&K RH 40</td>
<td>نیم سخت</td>
<td>65</td>
<td>5-4</td>
<td>۵</td>
<td></td>
</tr>
<tr>
<td>Hydraulic shovel > 3 m³, Cat.245 or O&K RH 40</td>
<td>نیم سخت</td>
<td>65</td>
<td>5-4</td>
<td>۵</td>
<td></td>
</tr>
</tbody>
</table>

این جدول نشان می‌دهد که از جهت استخراج، روش‌های مختلفی وجود دارد که هر یک از آن‌ها به‌طور گسترده‌ای در کارخانه سیمان ارومیه استفاده می‌گردد. از جمله این روش‌ها می‌توان به استخراج با روش مدل‌سازی پوسته و استخراج با روش مدل‌سازی پوسته با استفاده از مدل‌های مختلفی اشاره نمود. همچنین، استخراج با استفاده از روش‌های مدل‌سازی پوسته در کارخانه سیمان ارومیه نیز به کار می‌رود.
است. با این وجود روش استخراج برازندگی پیوسته برای زونه‌های ۳، ۴ و ۵ حاکی از شرایط استخراج آسان‌تری بوده و قابلیت استخراج مکانیزه توده‌سنج‌های مزبور را یک طبقه‌بینی از دست رده است.

جدول ۷ مقایسه بین زونه‌های مختلف از نظر شاخص قابلیت استخراج

| شاخص | فاصله سطوح لاپیس‌دنی (m) | فاصله درتریزه (m) | مقاومت فشاری تک محوره (MPa) | هوازدگی | پارامتر | متغیر
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>۵۰</td>
<td>۲۰</td>
<td>۱۰</td>
<td>۱۰۰۸۳</td>
<td>۱۰۰۸۳</td>
<td>۱۰۰۵</td>
</tr>
<tr>
<td>IV</td>
<td>۶۰</td>
<td>۲۰</td>
<td>۱۰</td>
<td>۱۰۰۸۳</td>
<td>۱۰۰۸۳</td>
<td>۱۰۰۵</td>
</tr>
<tr>
<td>IV</td>
<td>۶۰</td>
<td>۲۰</td>
<td>۱۰</td>
<td>۱۰۰۸۳</td>
<td>۱۰۰۸۳</td>
<td>۱۰۰۵</td>
</tr>
<tr>
<td>V</td>
<td>۸۸</td>
<td>۲۰</td>
<td>۱۰</td>
<td>۱۰۰۸۳</td>
<td>۱۰۰۸۳</td>
<td>۱۰۰۵</td>
</tr>
<tr>
<td>VI</td>
<td>۱۰۰</td>
<td>۲۰</td>
<td>۱۰</td>
<td>۱۰۰۸۳</td>
<td>۱۰۰۸۳</td>
<td>۱۰۰۵</td>
</tr>
<tr>
<td>IV</td>
<td>۵۵</td>
<td>۲۰</td>
<td>۱۰</td>
<td>۱۰۰۸۳</td>
<td>۱۰۰۸۳</td>
<td>۱۰۰۵</td>
</tr>
<tr>
<td>V</td>
<td>۵۰</td>
<td>۲۰</td>
<td>۱۰</td>
<td>۱۰۰۸۳</td>
<td>۱۰۰۸۳</td>
<td>۱۰۰۵</td>
</tr>
<tr>
<td>III</td>
<td>۲۸</td>
<td>۲۰</td>
<td>۱۰</td>
<td>۱۰۰۸۳</td>
<td>۱۰۰۸۳</td>
<td>۱۰۰۵</td>
</tr>
<tr>
<td>III</td>
<td>۳۲</td>
<td>۲۰</td>
<td>۱۰</td>
<td>۱۰۰۸۳</td>
<td>۱۰۰۸۳</td>
<td>۱۰۰۵</td>
</tr>
<tr>
<td>V</td>
<td>۸۲</td>
<td>۱۰</td>
<td>۱۰</td>
<td>۱۰۰۸۳</td>
<td>۱۰۰۸۳</td>
<td>۱۰۰۵</td>
</tr>
<tr>
<td>V</td>
<td>۹۳</td>
<td>۸</td>
<td>۱۰</td>
<td>۱۰۰۸۳</td>
<td>۱۰۰۸۳</td>
<td>۱۰۰۵</td>
</tr>
<tr>
<td>IV</td>
<td>۴۷</td>
<td>۸</td>
<td>۱۰</td>
<td>۱۰۰۸۳</td>
<td>۱۰۰۸۳</td>
<td>۱۰۰۵</td>
</tr>
</tbody>
</table>

شکل ۳ مقایسه انتخاب و طبقه قابلیت استخراج توده‌سنج معدن آذک رشکان در زونه‌های مختلف به روش شاخص قابلیت استخراج مرسوم و روش استخراج به‌ویژه

مقاومت فشاری تکمحوره و مقاومت بار نقطه‌ای به عنوان پارامترهای ورودی استفاده می‌شوند که مورد بررسی در شکل (۴) نشان داده شده است (فرانکلین و همکاران، ۱۹۷۱). این نمودار، زونه‌های ۱، ۳، ۴، ۵، ۶، ۷ و ۸ بر اساس ویژگی‌های زونومکانیکی زونه‌های ژئولوژیکی شده و با توجه به طبقه‌بندی نوسیه شده توسط فرانکلین و

۲-۳ ارزیابی توده‌سنج معدن رشکان با استفاده از طبقه‌بندی نموداری

این سیستم طبقه‌بندی شاخص قابلیت استخراج توسط فرانکلین و همکاران (۱۹۷۱) پیشنهاد شده است. برای تعیین طبقه قابلیت استخراج در سیستم طبقه‌بندی نموداری فرانکلین و همکاران، فاصله‌داده های پیوستگی.
قرار گرفته و نیازمند آشکاری برای سست کردن نتیجه است که بنیان در روش شاخه امپراتور قابلیت استخراج نیاز این زون نسبت به همه زون‌های معدن رشکان امپراتور گرفته شده و در طبقه VI (فوق العاده سخت) قرار گرفته است.

![شکل ۴: ارزیابی توده‌سنج معدن آهک رشکان با توجه به سیستم طبقه‌بندی نموداری فرانکلین و همانکاران (۱۹۷۱)](image)

با یکدیگر مشابه بوده و برای زون‌های ۵ و ۷، روش امپراتوری پیوسته حاکی از شرایط استخراج آسان تری می‌باشد و قابلیت استخراج مکانیزه‌ی توده‌سنج زون‌های مورد اشاره را یک طبقه پایین تر تخمین می‌زند. با توجه به اینکه بررسی سوالی به کارگیری مانشینهای استخراج پیوسته سطحی در معادن مشابه حاکی از کارکرد موفق این مانشینهای همراه با مشکلات زیست‌محیطی بوده، لذا توصیه می‌شود از این شیوه استخراج در معدن آهک رشکان امپراتور به توجه به مساعد بودن شرایط زیست‌محیطی بهره‌گرفته شود.

منابع
- تقه‌زاده، د. و موسوی‌نژاد، ج. (۱۹۹۱). بارور خرج ورود و خروجای سک در روی شماره ۳ معدن آهک رشکان ارومیه، سی و یکم همایش علمی زمین‌شناسی، زمین‌شناسی و اکتشافات معدنی کشور.
- علی‌نیا، د. و درکی، م. و حسینی، م. (۱۳۶۴). نموداری زمین‌شناسی با مقیاس ۱:۲۵،۰۰۰، زمین‌شناسی و اکتشافات معدنی کشور.
- همانکاران، زون‌های ۶ و ۸ در منطقه «پای» به سمت شدید در اثر انفجار و زون‌های ۴ و ۶ در منطقه «قلب شکافته و ریز» قرار می‌گیرند. همان‌طور که مشاهده می‌شود زون‌های ۱، ۲ و ۶ و ۸ در مجاورت شرایط مزیت و نزدیک قابلیت استخراج مکانیزه و رپرتوزی قرار دارند در حالی که زون ۷ در فاصله بیشتری از این مرز مجاورت معدن سک‌آهک رشکان با خطا راه اهن اروپیه- مراغه و همچنین جاده اصلی اروپیه- میاندوآب به همراه آثار مخرب لرزش، برنامه‌گذاری و صدای ناشی از انفجارهای معدن در مناطق مسکونی و محیطی بخش سبب شده‌ای است که مانشینهای استخراج پیوسته سطحی، یکی از گزینه‌های بیشتری جایگزینی در مونتاژی و استخراج ماهیان باشد. اصلی‌ترین عامل موتور بر کارآیی این مانشین‌ها شرایط زدومکانیکی توده‌سنج مورد استخراج است. در این پژوهش قابلیت استخراج معدن در ۸ زون و با توجه به پارامترهای زدومکانیکی مورد بررسی قرار گرفت. براساس سیستم طبقه‌بندی معمول قابلیت استخراج زون‌های ۶ و ۸، (۷ و ۵) معدن به ترتیبی در رده‌های حاشیه‌ای خیلی، سخت و نسبتاً سخت قرار گرفت. با توجه به مرزهای تن و نابی‌گردینهای این سیستم طبقه‌بندی از سیستم امپراتوری پیوسته نیز برای ارزیابی قابلیت توده‌سنج معدن آهک رشکان استفاده شد. نتایج حاصل نشان داد که برآورد شده در روش امپراتوری قابلیت استخراج برای سه رون، ۶ و ۸

Investigating the possibility of mechanized mining by continuous surface miner machines in Rashakan limestone mine of Urmia cement plant based on Rock Mass Excavatability index rating method

S. Chehreghani1*, M. Dadrasi2, A. Alipour3, M. Mokhtarian4 and H. Hoseynzade5

1, 2 - Dept. of Mining Engineering, Urmia University, Urmia
3, 4, 5- Faculty of Mining Engineering, Urmia University of technology, Urmia

* s.chehreghani@urmia.ac.ir

Received: 2017/10/7 Accepted: 2018/11/4

Abstract
The Rashakan limestone mine as supplier of Urmia cement plant is producing about 3 million tons of limestone ore. The proximity of this mine to the Urmia railway and the main transit road of Urmia-Mahabad, as well as the destructive effects of vibration and noise caused by mine explosions on residential and environmental area, has caused the use of continuous surface miner machines as one of options for continuation of mining operations. Determining the ease of rock mass extraction, which is referred to as the excavatability index, has a vital role in the decision making stage for the selection of methods and extraction machines. This paper investigate the feasibility of mechanized extraction based on the geomechanical characteristics of Rashtkan limestone mine rock mass. In 18 different sections of the of 8 geomechanical zones of the mine, geomechanical parameters including weathering, uniaxial compressive strength (UCS), joint spacing and layers thickness were measured by field and laboratory surveys. Based on the diggability index rating method, the excavatability of the zone (7), (1, 6), (8), (3 and 5) is classified in the hard, relatively hard, easy and very easy excavation classes. In the following, considering the uncertainties in the results of the classification systems, one of the most recent applied classification methods based on continuous rating is used. The results show that the estimation of both continuous and conventional rating methods for the three zones of 1, 6 and 8 is the same and for the zones of 3, 5 and 7, the continuous rating method suggests easier excavation condition. According to the results of this research, the geomechanical conditions of Rashakan limestone rock mass are appropriate for mechanized extraction and the use of continuous surface miner machines. It is recommended that in order to correct selection of the type and capacity of extractive machinery a technical and economic analysis be conducted based on the investment and the operational costs of each of the different options for different types of machines.

Keywords: Rock mass excavatability, Rashakan limestone mine, Continuous surface miner machines