Large-Scale Triaxial Testing and Numerical Modeling of Rounded and Angular Rockfill Materials

A. Aghaei Araei, A. Soroush, and M. Rayhani

Abstract. This paper studies the behavior of a number of blasting (angular) and alluvium (rounded) modeled rockfill materials by conducting large-scale triaxial testing, as well as numerical modeling. The numerical modeling is based on an elasto-plastic theory and enables one to predict the stress-strain-volumetric behavior of materials during shearing. The material parameters were determined from the experimental and numerical modeling. Variations of the material parameters, with respect to the confining pressure, Los Angeles abrasion, Point Load index, and particle breakage were investigated. Also, for design applications, curves fitted to the data are presented.

Keywords: Rockfill materials; Triaxial testing; Numerical modeling; Particle breakage.

INTRODUCTION

Rockfill dams are increasingly used because of their inherent flexibility, capacity to absorb large seismic energy, and their adaptability to various foundation conditions. The use of modern earth and rockfill moving equipment and locally available materials make such dams economical as well. Rockfill materials consist primarily of angular to sub-angular blocks and particles obtained by blasting rocks or rounded to sub-rounded particles extracted from river beds.

The behavior of rockfill materials is affected by such factors as mineralogical composition, particle grading, fragmentation of particles, size and shape of particles, and stress conditions. Testing rockfill materials and modeling their behavior are essential prerequisites to realistic analyses and economic design of rockfill dams.

Rockfill materials contain particles of large sizes and their testing requires equipment of formidable dimensions. Therefore, the sizes of particles for testing are reduced, usually using modeling techniques. Four modeling techniques are available: the scaling technique [1], the parallel gradation technique [2], the generation of quadratic grains-curve technique [3] and the replacement technique [4]. Among them, the parallel gradation technique has been considered most appropriate by Ramanurthly and Gupta [5].

In high rockfill dams, particles of an underlying layer may be broken due to high stresses induced by the upper layers. Particle breakage and crushing of large particles to smaller ones result in lower strength and higher deformability. In earthquake prone regions, the latter is favored, as far as the behavior of rockfill dams is concerned.

The degradation of particles influences the strength and deformation behavior of coarse granular media [6-16]. Marsal [6] performed triaxial compression tests on coarse granular materials and found out that the most important factor affecting the shear strength and compressibility of the materials is the fragmentation of the granular body during compression and deviatoric loading. All granular aggregates subjected to stresses above normal geotechnical ranges exhibit considerable particle breakage [17-19]; however, particle breakage of rockfills may even occur at low confining pressures [10, 20]. Particle crushing causes volumetric

1. Iran University of Science and Technology, Tehran, P.O. Box 16765-163, Iran.
2. Department of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran, P.O. Box 11395-5631, Iran.
3. Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario, K1S 5B6, Canada.

* Corresponding author. E-mail: sorouh@ualc.ca

Received 27 June 2003; received in revised form 17 October 2009; accepted 20 February 2010

www.SID.ir
contraction in drained loading and pore pressure build up in undrained loading [21].

Varadarajan et al. [11] investigated the behavior of two dam site rockfill materials in triaxial compression testing; the first material consisted of rounded particles, and the second of angular particles. They observed that the volume change behavior of the two rockfills is significantly different. The rounded material exhibited continuous volume contraction, while the angular materials dilated after initial compression in volume. Also, they observed that a greater degree of particle breakage occurs with angular and larger particles because of the greater force per contact.

The two major factors governing the shear resistance of rockfill materials are interlocking between particles and particle breakage. The effect of increase in interlocking is to increase the shearing resistance, while the effect of breakage of particles is vice versa. Obviously, angular particles are more susceptible to breakage than rounded particles. Alluvial materials at high confining pressures show an increase in the angle of shearing resistance as the size of the particles increases [11,22,23], whereas materials produced from rock blasting show a decrease in the angle of shearing resistance as the size of the particles increases [11,24].

This paper studies the behavior of a number of angular and rounded rockfill materials by conducting large-scale triaxial testing, as well as numerical modeling, using the elasto-plastic Hardening Soil Model [25]. The numerical modeling enables one to predict the stress-strain-volumetric behavior of the materials during shearing.

MATERIALS PROPERTIES

The materials under study are from the shell of eleven rockfill dams constructed or under construction in Iran. These materials lie essentially in two distinct categories: river alluvium, which are mainly rounded or subrounded, and particles produced from the blasting of rock quarries, which are mainly angular or sub-angular. The above two types of material will be referred, hereafter, in the paper, respectively, as “alluvium” and “blasting” materials. Table 1 summarizes the materials characteristics including rockfill type, mineralogy, size distribution, Los Angeles abrasion (ASTM C 535), Point Load Strength index (ASTM D 5731), dry density and optimum water content. The maximum dry densities are estimated according to ASTM D1557. For the purpose of brevity, the names of the materials are introduced with their abbreviations.

EXPERIMENTAL PROGRAM

The gradations of the materials for triaxial testing are derived using the parallel gradation modeling technique with a maximum particle size of 50 mm, which is 1/6 of the diameter of the triaxial cell, as shown in Figure 1. The ranges of confining pressure are chosen according to the stress levels in the dams (50 kPa to 1500 kPa). Consolidated Drained (CD) triaxial testing is conducted on the modeled rockfill specimens with dimensions of 300 mm in diameter and 600 mm in height, using the large-scale triaxial equipment at the Geotechnical Department of Build-

Table 1. Characteristics of rockfill materials used in large-scale triaxial testing.

<table>
<thead>
<tr>
<th>Material</th>
<th>Dam</th>
<th>Symbol</th>
<th>Passing</th>
<th>Passing</th>
<th>Passing</th>
<th>Passing</th>
<th>Los Angeles</th>
<th>Point Load</th>
<th>γ_d (95%)</th>
<th>W_{opt} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>39.2 mm</td>
<td>25.4 mm</td>
<td>4.75 mm</td>
<td>0.2 mm</td>
<td>Abrasion (LA)</td>
<td>Index (f_I)</td>
<td>(kN/m³)</td>
<td>(%)</td>
</tr>
<tr>
<td>Blastings</td>
<td></td>
<td></td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lime stone</td>
<td>Roodbar</td>
<td>BLR *</td>
<td>96</td>
<td>84</td>
<td>38</td>
<td>8</td>
<td>30</td>
<td>2.11</td>
<td>18.8</td>
<td>7.9</td>
</tr>
<tr>
<td>Sandstone</td>
<td>Vanyar</td>
<td>BSV</td>
<td>96</td>
<td>84</td>
<td>38</td>
<td>8</td>
<td>32</td>
<td>2.75</td>
<td>20.8</td>
<td>9.7</td>
</tr>
<tr>
<td>Andesite-Basalt</td>
<td>Sabalan</td>
<td>BAB5</td>
<td>95</td>
<td>72</td>
<td>37</td>
<td>4</td>
<td>28</td>
<td>5.45</td>
<td>21.1</td>
<td>4.5</td>
</tr>
<tr>
<td>Dacite</td>
<td>Zonoz</td>
<td>BDZ</td>
<td>80</td>
<td>72</td>
<td>37</td>
<td>10</td>
<td>20</td>
<td>5.42</td>
<td>21.1</td>
<td>7.1</td>
</tr>
<tr>
<td>Andesite</td>
<td>Ayglogmoosh-G1</td>
<td>HAA1</td>
<td>96</td>
<td>84</td>
<td>37</td>
<td>8</td>
<td>19</td>
<td>3.95</td>
<td>21.8</td>
<td>6.5</td>
</tr>
<tr>
<td>Andesite</td>
<td>Ayglogmoosh-P</td>
<td>HAA2</td>
<td>91</td>
<td>63</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
<td>21.8</td>
<td></td>
</tr>
<tr>
<td>Lime stone</td>
<td>Siah Bisleh</td>
<td>BLS1</td>
<td>95</td>
<td>85</td>
<td>43</td>
<td>5.5</td>
<td>40</td>
<td>2.75</td>
<td>21.5</td>
<td>5.33</td>
</tr>
<tr>
<td>Andesite-Dacite</td>
<td>Yamchi-G1</td>
<td>AADY1</td>
<td>97.5</td>
<td>91</td>
<td>62</td>
<td>10</td>
<td>32</td>
<td>NIA</td>
<td>20.3</td>
<td>9</td>
</tr>
<tr>
<td>Andesite-Dacite</td>
<td>Yamchi-G2</td>
<td>AADY2</td>
<td>97.5</td>
<td>91</td>
<td>62</td>
<td>10</td>
<td>32</td>
<td>NIA</td>
<td>20.3</td>
<td>9</td>
</tr>
<tr>
<td>Andesite-Basalt</td>
<td>Ghale-Chai</td>
<td>AABG</td>
<td>92</td>
<td>78</td>
<td>43</td>
<td>10</td>
<td>26</td>
<td>NIA</td>
<td>21.4</td>
<td>9.9</td>
</tr>
<tr>
<td>Deurite-Basalt</td>
<td>Sahand-G1</td>
<td>ADSB1</td>
<td>97</td>
<td>91</td>
<td>62</td>
<td>10</td>
<td>46</td>
<td>NIA</td>
<td>20.5</td>
<td>9</td>
</tr>
<tr>
<td>Deurite-Basalt</td>
<td>Sahand-G2</td>
<td>ADSB2</td>
<td>96</td>
<td>84</td>
<td>37</td>
<td>8</td>
<td></td>
<td></td>
<td>22.3</td>
<td>7.4</td>
</tr>
</tbody>
</table>

a: BLR: Stands for Blasting Limestone Roodbar; b: Rate of loading: 1 mm/min; c: γ_d (92%); d: NIA: No Information Available.
Testing and Modeling of Rounded and Angular Rockfill Materials

![Grading Graph](image)

Figure 1. Gradients of the modeled rockfill materials.

Testing and Housing Research Center (BHRC), Tehran, Iran.

TESTING PROCEDURE

For each of the specimens, the quantity of various sizes of gain required to achieve the gradation of the modeled rockfill materials for having the specimen at more than 95% maximum dry density is determined by weight. The individual fractions are mixed with distilled water to the optimum moisture content. The specimen materials are divided into six equal parts and prepared in six layers inside a split mold. Each of the layers is compacted using a vibrator with a frequency of 60 cycles/s. After passing CO₂ and applying vacuum, the specimen is saturated to more than 95% (Skempton B-value more than 95%) by allowing water to enter through the base of the triaxial cell and remove the air bubbles. The specimen is subjected first to the required consolidation pressure and then is sheared to failure by applying axial loading at a rate of 0.5 mm/min. A few tests are repeated to verify the reproducibility of the results. Axial loading, vertical displacements and volume changes are monitored and recorded at periodic intervals during the tests.

TESTS RESULTS

Immediate Results

Stress-strain-volume change behaviors of eight modeled blasting rockfill materials subjected to triaxial testing are shown in Figures 2 to 9. It is observed that, in general, axial strain at failure increases with an increase in confining stress. All the blasting materials showed mixed trends (dilation and compression) in their volume change behavior, depending on their confining pressures.

The stress-strain-volume change behaviors of five alluvium rockfill materials are shown in Figures 10...
Figure 4. Stress-strain-volume change relationships of BABS.

Figure 5. Stress-strain-volume change relationships of BDZ.

Figure 6. Stress-strain-volume change relationships of BAA1.

Figure 7. Stress-strain-volume change relationships of BAA2.
Testing and Modeling of Rounded and Angular Rockfill Materials

Figure 8. Stress-strain-volume change relationships of BLS1.

Figure 9. Stress-strain-volume change relationships of BLS2.

Figure 10. Stress-strain-volume change relationships of AAY1.

to 15. In these materials, axial strain at failure also increases with confining pressure. The dilation in volumetric strain decreases considerably with an increase in confining pressure.

In these high compacted specimens, a leveling out of the $\varepsilon_v : \varepsilon_1$ behavior occurs in some of the specimens at low confining pressures due to strain localization. At high confining pressures, the highly compacted specimens bulge uniformly in the vicinity of peak stress and develop complex multiple symmetrical radial shear bands at higher axial strain levels [26].

Compiled Results

The compiled tests results of the tests, such as volumetric strain at maximum shear stress (ε_v)$_{\text{max}}$, effective internal friction angle at maximum shear stress (ϕ'), ratio of maximum deviator stress to confining pressure ($\sigma_{\text{max}} / \sigma_c$) and Mansal’s breakage index (B_a) [6] are presented in Table 2. This table contains also a number of other parameters, which will be referred to in the coming sections.
Table 2. Results of triaxial tests and numerical modeling on rockfill materials (continued).

<table>
<thead>
<tr>
<th>Rockfill</th>
<th>σ^s_0 (kPa)</th>
<th>$(\varepsilon_0)q_{max}$ (%)</th>
<th>ϕ^s (Peak)</th>
<th>q_{max}/σ^s_0</th>
<th>D_2 (%) (at Failure)</th>
<th>Test</th>
<th>ϕ^s (Modeling)</th>
<th>ψ^o (Modeling)</th>
<th>E^{def}_{50} (kPa)</th>
<th>E^{ref}_{1000} (kPa)</th>
<th>E^{ref}_{200} (kPa)</th>
<th>E^{ref}_{1000} (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLR</td>
<td>100 -1.0</td>
<td>50.4 6.7</td>
<td>NIA*</td>
<td>48.5</td>
<td>16</td>
<td>400</td>
<td>390</td>
<td>1200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>300 0.9</td>
<td>45.6 5.0</td>
<td>NIA</td>
<td>42</td>
<td>2</td>
<td>200</td>
<td>110</td>
<td>600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500 1.2</td>
<td>42.6 4.2</td>
<td>NIA</td>
<td>42</td>
<td>2</td>
<td>200</td>
<td>110</td>
<td>450</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>700 1.3</td>
<td>42.4 4.1</td>
<td>NIA</td>
<td>40</td>
<td>0</td>
<td>150</td>
<td>80</td>
<td>450</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>900 2.0</td>
<td>41.3 3.8</td>
<td>NIA</td>
<td>38</td>
<td>0</td>
<td>150</td>
<td>70</td>
<td>450</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1200 2.0</td>
<td>39.9 3.5</td>
<td>NIA</td>
<td>38</td>
<td>0</td>
<td>150</td>
<td>70</td>
<td>450</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSV</td>
<td>100 -0.05</td>
<td>53.1 8.0</td>
<td>NIA</td>
<td>51</td>
<td>19</td>
<td>390</td>
<td>300</td>
<td>1170</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>300 -1.2</td>
<td>41.8 4.0</td>
<td>NIA</td>
<td>40</td>
<td>15</td>
<td>260</td>
<td>200</td>
<td>780</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500 -1.2</td>
<td>40.0 3.6</td>
<td>NIA</td>
<td>38</td>
<td>12</td>
<td>200</td>
<td>200</td>
<td>600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>700 -1.2</td>
<td>39.2 3.4</td>
<td>NIA</td>
<td>38</td>
<td>8</td>
<td>200</td>
<td>247</td>
<td>600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BABS</td>
<td>300 -1.5</td>
<td>38.7 5.5</td>
<td>NIA</td>
<td>38</td>
<td>11</td>
<td>55</td>
<td>116</td>
<td>165</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>600 1.4</td>
<td>38.2 3.25</td>
<td>NIA</td>
<td>38</td>
<td>0</td>
<td>100</td>
<td>60</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BDZ</td>
<td>100 -0.5</td>
<td>43.0 4.3</td>
<td>NIA</td>
<td>42</td>
<td>19</td>
<td>250</td>
<td>202</td>
<td>750</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>200 -0.5</td>
<td>59.5 12.5</td>
<td>NIA</td>
<td>57</td>
<td>13</td>
<td>800</td>
<td>734</td>
<td>1610</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>400 -0.2</td>
<td>56.1 9.75</td>
<td>NIA</td>
<td>54.5</td>
<td>6</td>
<td>800</td>
<td>786</td>
<td>2400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500 -0.1</td>
<td>54.2 8.6</td>
<td>NIA</td>
<td>52.5</td>
<td>4</td>
<td>600</td>
<td>512</td>
<td>1800</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>700 0.2</td>
<td>53.4 8.14</td>
<td>NIA</td>
<td>52.5</td>
<td>3</td>
<td>600</td>
<td>585</td>
<td>1800</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>800 0.3</td>
<td>52.6 7.75</td>
<td>NIA</td>
<td>51</td>
<td>2</td>
<td>450</td>
<td>433</td>
<td>1350</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAA1</td>
<td>100 -0.08</td>
<td>56.7 10.2</td>
<td>NIA</td>
<td>54.5</td>
<td>22</td>
<td>750</td>
<td>497</td>
<td>2250</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 -1.4</td>
<td>52.1 7.5</td>
<td>NIA</td>
<td>51</td>
<td>16</td>
<td>400</td>
<td>393</td>
<td>1200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAA1-repeated</td>
<td>300 0</td>
<td>45.3 4.93</td>
<td>NIA</td>
<td>44.5</td>
<td>5</td>
<td>330</td>
<td>300</td>
<td>990</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>200 -0.75</td>
<td>46.1 5.15</td>
<td>NIA</td>
<td>45</td>
<td>9</td>
<td>370</td>
<td>362</td>
<td>1110</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>300 -0.5</td>
<td>45.3 4.93</td>
<td>NIA</td>
<td>44.5</td>
<td>7</td>
<td>330</td>
<td>300</td>
<td>1110</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500 0.0</td>
<td>45.9 5.1</td>
<td>NIA</td>
<td>44</td>
<td>5</td>
<td>300</td>
<td>200</td>
<td>900</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>700 0.48</td>
<td>44.1 4.57</td>
<td>NIA</td>
<td>43</td>
<td>3</td>
<td>200</td>
<td>130</td>
<td>600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAA2</td>
<td>50 -2</td>
<td>57.8 11</td>
<td>NIA</td>
<td>55</td>
<td>23</td>
<td>450</td>
<td>319</td>
<td>2230</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 -1.3</td>
<td>51.1 7.1</td>
<td>NIA</td>
<td>51</td>
<td>17</td>
<td>400</td>
<td>393</td>
<td>1200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>300 0.5</td>
<td>42.5 4.17</td>
<td>NIA</td>
<td>41</td>
<td>4</td>
<td>150</td>
<td>100</td>
<td>400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>700 1.6</td>
<td>39.9 3.57</td>
<td>NIA</td>
<td>39</td>
<td>0</td>
<td>150</td>
<td>85</td>
<td>400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLS1</td>
<td>200 1.5</td>
<td>44.4 4.65</td>
<td>NIA</td>
<td>42.5</td>
<td>1.5</td>
<td>75</td>
<td>47</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>600 2.7</td>
<td>40.4 3.69</td>
<td>NIA</td>
<td>40</td>
<td>0</td>
<td>80</td>
<td>40</td>
<td>160</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000 3.3</td>
<td>38.1 3.23</td>
<td>NIA</td>
<td>38</td>
<td>-2</td>
<td>80</td>
<td>41</td>
<td>160</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1500 5</td>
<td>36.9 3.2</td>
<td>NIA</td>
<td>36</td>
<td>-8</td>
<td>70</td>
<td>35</td>
<td>160</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLS2</td>
<td>200 -0.1</td>
<td>45.0 4.84</td>
<td>NIA</td>
<td>43.5</td>
<td>5</td>
<td>250</td>
<td>244</td>
<td>750</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>600 1.0</td>
<td>41.0 3.82</td>
<td>NIA</td>
<td>41</td>
<td>1</td>
<td>150</td>
<td>85</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000 1.8</td>
<td>39.0 3.4</td>
<td>NIA</td>
<td>39</td>
<td>0</td>
<td>120</td>
<td>70</td>
<td>240</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1500 3</td>
<td>38.0 3.2</td>
<td>NIA</td>
<td>37</td>
<td>-2.5</td>
<td>100</td>
<td>60</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AADY1</td>
<td>200 0.0</td>
<td>43.8 4.5</td>
<td>NIA</td>
<td>43</td>
<td>6</td>
<td>250</td>
<td>210</td>
<td>700</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>400 0.0</td>
<td>40.7 3.75</td>
<td>NIA</td>
<td>40.2</td>
<td>5</td>
<td>250</td>
<td>210</td>
<td>700</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>700 0.5</td>
<td>39.0 3.4</td>
<td>NIA</td>
<td>38.5</td>
<td>2</td>
<td>250</td>
<td>200</td>
<td>700</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a: NIA: No Information Available.

Other parameters of the Hardening Soil model: $\kappa_{ur} = 0.25$, $p_{ref} = 500$ kPa, $m = 0.35$, $c = 0$, $R_f = 0.9$, $\kappa_0^{ur} = 1 - \sin \phi$.

www.SID.ir
Table 2. Continued.

<table>
<thead>
<tr>
<th>Rockfill</th>
<th>σ_3^* (kPa)</th>
<th>$(\varepsilon_{ref})_H$ (max) (%)</th>
<th>ϕ^* (Peak)</th>
<th>q_{max}/σ_3^* (at Failure) (Test)</th>
<th>B_f (%) (Modeling)</th>
<th>ψ^* (Modeling)</th>
<th>E_{ref}^{1000} (kPa)</th>
<th>E_{ref}^{100} (kPa)</th>
<th>E_{ref}^{10} (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDY2</td>
<td>200</td>
<td>-0.2</td>
<td>38.2</td>
<td>3.25</td>
<td>5.3</td>
<td>37</td>
<td>2</td>
<td>70</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>0.75</td>
<td>40.7</td>
<td>3.75</td>
<td>NIA</td>
<td>40</td>
<td>4</td>
<td>250</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>0.2</td>
<td>39.9</td>
<td>3.57</td>
<td>6.3</td>
<td>39.5</td>
<td>6</td>
<td>150</td>
<td>178</td>
</tr>
<tr>
<td>ADDY2-</td>
<td>200</td>
<td>0.2</td>
<td>37.4</td>
<td>3.1</td>
<td>NIA</td>
<td>37</td>
<td>2</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>Repeated</td>
<td>400</td>
<td>0.2</td>
<td>41.3</td>
<td>3.875</td>
<td>NIA</td>
<td>40</td>
<td>9</td>
<td>172</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>0.4</td>
<td>40.5</td>
<td>3.71</td>
<td>NIA</td>
<td>39.5</td>
<td>6</td>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td>AABG</td>
<td>100</td>
<td>-0.2</td>
<td>45.6</td>
<td>5</td>
<td>2.5</td>
<td>44.3</td>
<td>17</td>
<td>750</td>
<td>722</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>-0.6</td>
<td>38.2</td>
<td>3.25</td>
<td>4</td>
<td>38</td>
<td>9.5</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>-1</td>
<td>36.9</td>
<td>3</td>
<td>5.9</td>
<td>36</td>
<td>9.5</td>
<td>150</td>
<td>250</td>
</tr>
<tr>
<td>ADBS1</td>
<td>200</td>
<td>0</td>
<td>44.9</td>
<td>4.8</td>
<td>NIA</td>
<td>45</td>
<td>14.5</td>
<td>370</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>-0.35</td>
<td>45.6</td>
<td>5</td>
<td>NIA</td>
<td>44.5</td>
<td>12</td>
<td>360</td>
<td>270</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>0</td>
<td>42.4</td>
<td>4.14</td>
<td>NIA</td>
<td>41.7</td>
<td>9</td>
<td>300</td>
<td>250</td>
</tr>
<tr>
<td>ADBS2</td>
<td>200</td>
<td>-0.5</td>
<td>48.2</td>
<td>5.85</td>
<td>NIA</td>
<td>46.5</td>
<td>20</td>
<td>400</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>0</td>
<td>43.0</td>
<td>4.3</td>
<td>NIA</td>
<td>42</td>
<td>10</td>
<td>400</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>0.85</td>
<td>39.9</td>
<td>3.57</td>
<td>3.1</td>
<td>39</td>
<td>2</td>
<td>200</td>
<td>120</td>
</tr>
<tr>
<td>AAA</td>
<td>300</td>
<td>0.3</td>
<td>41.5</td>
<td>3.93</td>
<td>NIA</td>
<td>45.3</td>
<td>12</td>
<td>500</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>-0.3</td>
<td>47.2</td>
<td>5.5</td>
<td>NIA</td>
<td>45.3</td>
<td>12</td>
<td>500</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>0</td>
<td>43.0</td>
<td>4.28</td>
<td>NIA</td>
<td>42</td>
<td>8</td>
<td>400</td>
<td>300</td>
</tr>
</tbody>
</table>

Note: NIA: No Information Available.

Other parameters of the Hardening Soil model: $\varepsilon_{ref} = 0.25$, $p^{ref} = 500$ kPa, $m = 0.35$, $c = 0$, $R_f = 0.9$, $k_0^{ref} = 1 - \sin \phi$.

Figure 11. Stress-strain-volume change relationships of AAY2.

Figure 12. Stress-strain-volume change relationships of AABG.
\textbf{Figure 13.} Stress-strain-volume change relationships of ADBS1.

\textbf{Figure 14.} Stress-strain-volume change relationships of ADBS2.

\textbf{Figure 15.} Stress-strain-volume change relationships of AAA.

\((\varepsilon_v)q_{\max} : \sigma_3\)

Variations of the volumetric strain at maximum shear stress \((\varepsilon_v)q_{\max}\) versus confining pressure \((\sigma_3')\) for the blasting and alluvium materials are shown in Figure 16. This figure indicates that for almost all of the blasting materials, \((\varepsilon_v)q_{\max}\) is negative (i.e., dilative behavior) at low confining pressures and positive at high confining pressures (i.e., contractive behavior). The only exception is BSV, in which \((\varepsilon_v)q_{\max}\) remains negative, even for high confining pressures. The variations of \((\varepsilon_v)q_{\max}\) with confining pressures for the alluvium materials are less pronounced, and range from -1% to +1%; whereas the variations for the blasting materials are more, and range from -2% to +5%.

\(\phi' : \sigma_3\)

The variations of internal friction angle versus confining pressure for the blasting and alluvium materials are presented in Figure 17. Friction angles are calculated for each single confining pressure, assuming \(c = 0\) and using the following equation:

\[
\sin \phi' = \frac{\sigma_1' - \sigma_3'}{\sigma_1' + \sigma_3'}.
\]

(1)

Figure 17a indicates that the internal friction angle of the blasting materials decreases with increasing of the
confining pressure. This is, in fact, due to the effect of particle breakage. The behavior of BDZ materials is an exception in which the internal friction angle first increases sharply from 43° for \(\sigma'_3 = 100 \) kPa to 59° for \(\sigma'_3 = 200 \) kPa, then \(\phi' \) decreases moderately to about 53° for \(\sigma'_3 = 800 \) kPa. For this material, it seems that particle breakage did not happen in the lower stress levels, and that strain localization also occurred very early before the peak, corresponding to a non-homogeneous strain at low confining pressures. At higher stress levels, the amount of softening decreased and some breakage occurred, leading to a decrease in \(\phi' \); however, it still remains higher than the initial \(\phi' \) at \(\sigma'_3 = 100 \) kPa. This behavior may be attributed to the fact that this material is relatively hard and stiff, as indicated by its Los Angeles abrasion and point load index, \(I_p \) (Table 1). Generally, the internal friction angle for blasting materials ranges between 59° to 38° for the confining pressures ranging from 50 to 1500 kPa.

Figure 17b shows that the internal friction angle for some of the alluvium materials (e.g. AADY2, ADBS1 and AAA) increases, due to less interlocking, with confining pressures up to 400-500 kPa, and then decreases due to particle breakage, in the higher confining pressure. In these materials, pre-peak strain localization may have occurred, corresponding to a non-homogeneous strain at low confining pressure, which has led to lower values of internal friction angles. In higher stress levels (up to 400-500kPa), the degree of softening decreases and, at stress levels higher than 500 kPa, some breakage has also occurred, which resulted in decreasing the friction angle. For ADBS2, AADY1, and AABG alluvium materials, continuous decreases in the internal friction angle are observed with an increase in the confining pressures. Generally, the internal friction angle of the alluvium materials for the confining pressures of 100-700 kPa ranges between 49°-37°.

In general, the reduction rate of \(\phi' \) for the blasting materials at low confining pressures is much higher than the same rate for the alluvium materials.

Data presented in Tables 1 and 2 suggests that particle gradation has significant effects on the value
of the internal friction angle for both blasting and alluvium materials. Generally, \(\phi' \) for blasting materials subjected to a specific confining pressure decreases with an increase in the size of the particle. For example, the internal friction angle decreases by changing from BA1 to BA2 grading (see Figure 1). A similar trend is obvious for the alluvium materials; for example, \(\phi' \) decrease by changing from AADY1 to AADY2 or from ADBS1 to ADBS2 grading. The above behavior may be attributed to the fact that particle breakage potential in materials with relatively larger particles is comparatively higher.

Effect of Point Load Index and Los Angeles Abrasion

Individual particle strength is one of the factors that affects the shear strength of the rockfill materials, in particular, as the particle is subjected to high interparticle stresses during shearing. The strength of rock particles is usually evaluated by the point load test (ASTM D5731).

Figure 18 presents variations of \(\phi' \) versus the ratio of Point Load index to Los Angeles abrasion \((\frac{I_{PL}}{LA}) \) for each of the blasting materials. As expected, stiff materials have higher friction angles.

Particle Breakage

Breakage of the particles was observed during the triaxial tests. The breakage is usually expressed quantitatively by the breakage index, \(B_g \) [6]. The value of \(B_g \) is calculated by sieving the sample using a set of sieves (50 to 0.075 mm) before and after testing. The percentage of particles retained in each sieve is determined at both stages. Due to breakage of particles, the percentage of the particles retained in large size sieves will decrease and the percentage of particles retained in small size sieves will increase. The sum of the decreases will be equal to the sum of increases in the percentage retained. The decrease (or increase) is the value of the breakage factor, \(B_g \).

Figure 19 shows variations of the maximum principle stress ratio, \(\left(\frac{\sigma'_1}{\sigma'_3} \right)_{\text{max}} \) versus Marsal breakage index \((B_g) \) for the alluvium and blasting materials. As expected, \(B_g \) increases as \(\left(\frac{\sigma'_1}{\sigma'_3} \right)_{\text{max}} \) decreases. Consequently, it can be inferred that the friction angle decreases with an increase in \(B_g \) (see also Table 2).

Figure 20 presents variations of breakage index versus confining pressure for the two material types. Although the data are scattered, \(B_g \) increases generally as \(\sigma'_3 \) increases, with a slightly higher rate of increase for the blasting materials. The effect of particle size and confining pressure on \(B_g \) for the blasting material is more significant than for the alluvium materials [11].

Figure 18. Variation of \(\phi' \) versus \(I_{PL}/LA \) for the blasting materials.

Figure 19. Variations of maximum principle stress ratio \(\left(\frac{\sigma'_1}{\sigma'_3} \right)_{\text{max}} \) versus Marsal breakage index \((B_g) \).

Figure 20. Variations of maximum breakage index \((B_g) \) versus \(\sigma'_3 \).
NUMERICAL MODELING

Constitutive Model

The elasto-plastic Hardening Soil Model [25], adopted in the PLAXIS finite element computer code [27], was employed for numerical analyses. This model uses principles of the hyperbolic model [28] and formulates plastic stresses and strains. The Hardening Soil Model (HSM) supersedes the hyperbolic model by:

(a) Using the theory of plasticity rather than the theory of elasticity;
(b) Including soil dilatancy;
(c) Introducing a yield cap.

The model computes volume changes induced by dilation and employs the yield cap for defining volumetric failures. Some basic characteristics of the model are as follows:

(a) Stress-dependent stiffness according to a power law (input parameter, \(m \));
(b) Plastic straining due to primary deviatoric loading (input parameter, \(E_{00}^{ref} \));
(c) Plastic straining due to primary compression (input parameter, \(E_{01}^{ref} \));
(d) Elastic unloading/reloading (input parameters, \(E_{ur}^{ref}, \nu_{ur} \));
(e) Failure, according to the Mohr-Coulomb model (input parameters, \(c, \phi' \) and \(\psi \)). The model relates the dilation angle, \(\psi \), to the volumetric and major principal strains, as follows:

\[
\frac{\varepsilon_v}{\varepsilon_1} = \frac{2 \sin \psi}{1 - \sin \psi}. \tag{2}
\]

The verification and modeling of some large-scale triaxial tests and finite element back analyses of the Masjed-E-Soleymian dam showed that the Hardening Soil model is capable of favorably simulating the behavior of rockfill materials [29,30].

Analysis Procedure

In order to substantiate values of the parameters, such as \(\phi' \) and \(\psi \), and to estimate values of the special parameters for the Hardening Soil model (\(E_{00}^{ref}, E_{01}^{ref}, E_{ur}^{ref} \)), we simulated, numerically, the triaxial tests introduced in the foregoing sections. The reference stress for the stiffness in the model was chosen 500 kPa. Based on the simulation results, some empirical correlations are suggested. The HSM is not able to predict the degree of particle breakage at increments of shearing.

Results of Numerical Analyses

Values for the above parameters (\(\phi' \), \(\psi \), \(E_{00}^{ref} \), \(E_{01}^{ref} \) and \(E_{ur}^{ref} \)) were selected, so that numerical analyses resulted in the best fits with test results (\(q : \varepsilon_1 \) and \(e_v : \varepsilon_1 \)). The above values are presented in Table 2. Figure 21 compares the stress-strain and volumetric behaviors resulted from analyses for specimen BAA1, which is angular. Figure 22 presents the same comparison for specimen ADBS1, which is rounded. Good agreement between these results and their corresponding test results (Figures 6 and 13, respectively) is evident, indicating that the HSM is capable of capturing the behavior of rockfill materials. These results are typical: favorable results were obtained for the other rockfill type specimens. For each of the materials, a value of \(\phi' \) for the reference stress value of 500 kPa, used for the numerical analyses, is selected two degrees less than the \(\phi' \) value resulted from Equation 1.

Data presented in Table 2 suggests that, generally, the secant stiffness (\(E_{00}^{ref} \)), tangent stiffness (\(E_{01}^{ref} \)), and stiffness in unloading and reloading (\(E_{ur}^{ref} \)) decrease as \(\sigma_0 \) increases. The behavior of BDZ, AADY2 and AAA

![Figure 21. Computed results of triaxial testing on BAA1.](image_url)
are exceptions, in which the values of the mentioned parameters first increase (probably due to interlocking) with increase of confining pressure, and then decrease (probably due to particle breakage), at higher confining pressure.

Figure 23 shows variations of E_{r0}^{ref} versus ϕ' (for reference stress of 500 kPa) for the alluvium and blasting materials separately. Reasonable linear relationships exist for the data. As expected, E_{r0}^{ref} increases as ϕ' increases for both types of rockfill material. It is seen that for a given ϕ', E_{r0}^{ref} is comparatively higher for the alluvium materials. The following equations may be used for estimating E_{r0}^{ref} as a function of ϕ'.

\[E_{r0}^{ref} = 31228\phi' - 100000, \] for blasting materials, \hspace{1cm} (3)

\[E_{r0}^{ref} = 39330\phi' - 10^6, \] for alluvium materials, \hspace{1cm} (4)

where E_{r0}^{ref} is in kPa and ϕ' is in degree. Similar trends are obtained for E_{r0}^{ref} and E_{r0}^{ref}.

Figures 24a and 24b show variations of E_{r0}^{ref} respectively, versus E_{r0}^{ref} and E_{r0}^{ref} for the materials. Obviously, linear and almost identical relationships
exist between these parameters, as follows:

\[E^{ef}_{so} = 0.31 E^{ef}_{ur} + 27000 \text{ (kPa)} \]

for blasting materials, (5)

\[E^{ef}_{so} = 0.33 E^{ef}_{ur} + 10000 \text{ (kPa)} \]

for alluvium materials, (6)

\[E^{ef}_{so} = E^{ef}_{so} + 48000 \text{ (kPa)} \]

for blasting materials, (7)

\[E^{ef}_{so} = E^{ef}_{so} + 63000 \text{ (kPa)} \]

for alluvium materials. (8)

SUMMARY AND CONCLUSIONS

This paper presented the results of large scale triaxial testing in drained conditions on a number of rockfill material specimens. Rockfill materials fall basically into two distinct categories:

1. Materials collected from river sediment, which are rounded and/or subrounded (namely alluvium).
2. Materials from rock quarries, which are angular and/or subangular (namely blasting).

The tests results revealed that the strength and deformation parameters of the materials depend on such factors as type and size of particles, confining pressure during tests, Point Load index of the individual particles, and Los Angeles abrasion of the materials. A number of correlations between the above factors and the strength and deformation parameters of the materials are suggested. The main results can be summarized as follows:

- Axial strain at failure of blasting and alluvium rockfills increases with an increase in confining stress.
- The variations of \((\varepsilon_v)_{\text{max}}\) with confining pressures for the alluvium materials are less pronounced and range from -1% to +1%; whereas the variations for the blasting materials are more, and range from -2% to +5%.
- All the blasting and alluvium materials showed mixed trends (dilation and contraction) in their volume change behavior, depending on their confining pressures. The dilation in volumetric strain decreases considerably with an increase in confining pressure.
- Generally, the internal friction angle for the blasting materials ranges between 59° to 38° for the confining pressures ranging from 50 to 1500 kPa. The internal friction angle of the alluvium materials for the confining pressures of 100-700 kPa ranges between 49°-37°.
- Generally, \(\phi'\) for the blasting materials subjected to a specific confining pressure, decreases with an increase in the size of the particle.
- As expected, the stiffer materials, as defined by the Point Load Index and Los Angeles Abrasion, have relatively higher friction angles.
- Generally, the internal friction angle of the blasting materials decreases with an increase in confining pressure; whereas the alluvium materials show mixed trends in their friction angle behavior, depending on their confining pressures, stiffness and particle breakage.
- In general, the reduction rate of \(\phi'\) with confining pressure for the blasting materials is much higher at low confining pressures than the same rate for the alluvium materials.
- Generally, \(B_g\) increases as \(\phi'_g\) increases, with slightly higher rate of increase for the blasting materials. The effect of particle size and confining pressure on \(B_g\) for the blasting material is more significant than that on the alluvium materials.

The triaxial tests results were also numerically simulated by employing the Hardening Soil Model adopted in the PLAXIS computer code. Reasonable agreements between the simulation results and the tests results were observed, indicating that the Hardening Soil Model is capable of capturing the behavior of rockfill materials. On the basis of the simulation results, the special parameters of the soil model are estimated using a number of correlations.

ACKNOWLEDGMENT

The authors are grateful to the Department of Geotechnical Engineering, BHRC for conducting the tests and for financial support, and to the Ministry of Energy, as the projects’ client for providing data for this research. Also, the authors wish to thank the reviewers and referees of this paper for their constructive comments and valuable suggestions.

NOMENCLATURE

- \(B_g\): Mansel’s breakage index
- \(c\): cohesion
- CD: Consolidated Drained
E_{ref} secant stiffness in standard drained triaxial test

E_{ref} tangent stiffness for primary oedometer loading

E_{ur} stiffness in unloading and reloading

I_s point load index

m exponent factor for stress-level dependence of stiffness

P_{ref} reference stress for stiffness

R_f failure ratio

W_{opt} optimum water content

γ_d dry density

ν_{ur} Poisson ratio for unloading/reloading

ϕ' effective friction angle at maximum shear stress

ψ dilation angle

q deviatoric stress

σ_{m}' effective minor principal stress

LA Los Angeles abrasion

σ_1' effective major principal stress

θ_{modeling} simulated internal friction angle

ε_1 major principal strain

ε_v volumetric strain

REFERENCES

5. Ramamurthy, T. and Gupta, K.K. “Response paper on how one ought to determine soil parameters to be used in design of earth and rockfill dams”, Proc., Indian Geotechnical Conf., New Delhi, India, 2, pp. 15-19 (1986).

BIOGRAPHIES

Ata Aghaei Araei is a PhD candidate in the School of Civil Engineering at Iran University of Science and Technology (IUST) and also PhD Researcher at Geotechnical Laboratory of Civil Engineering at The University of Tokyo. He received his MS from the Amirkabir University of Technology (Tehran Polytechnic) in 2002. He is working as a senior geotechnical engineer and head of geotechnical laboratory at Building and Housing Research Center (BHRC) since 2003. Mr. Aghaei-Araei’s primary research interests include: (i) Monotonic and dynamic testing on geomaterials, (ii) Microzonation, (iii) Geotechnical equipment construction.

Abbas Soroush is an associate professor in the Department of Civil and Environmental Engineering at the Amirkabir University of Technology (Tehran Polytechnic) since 1997. He received his PhD degree in Geotechnical Engineering under the supervision of Professor N.R. Morgenstern from the Department of Civil and Environmental Engineering, University of Alberta, Canada. His research interests cover a variety of subjects, including numerical modeling of geomaterials and soil structures, especially earth dams. Dr. Soroush is known as an expert in dam engineering and has attended several numbers of international expert panels for reviewing large dams in the country.

Mohammad Rayhani is an Assistant Professor in the Department of Civil and Environmental Engineering at Carleton University. He received his PhD from the University of Western Ontario in 2007. Prior to joining Carleton University in 2009, he worked as a postdoctoral fellow and adjunct professor at Queen’s University between 2007 and 2009. He has over 10 years experience in the field of geotechnical engineering and geotechnical engineering research. He has been involved in over 20 engineering projects in Canada and Iran and has experience in foundation investigation and design, landfill barrier design, geotechnical earthquake engineering, embankment dam design and slope stability. Dr. Rayhani’s primary research interests include: (i) Landfill barrier systems, (ii) Seismic site response and soil-structure interaction, and (iii) Geotechnical hazards.