PEG-SO$_3$H as a New, Highly Efficient and Homogeneous Polymeric Catalyst for the Synthesis of Acylals from Aldehydes and Acetic Anhydride

A. Zare1,*, A. Hasaninejad2,*, E. Rostami1, A.R. Moosavi-Zare1 and M. Merajoddin1

Abstract. A highly efficient, simple and rapid method for the chemoselective preparation of acylals from aldehydes and acetic anhydride in the presence of a catalytic amount of poly(ethylene glycol)-bound sulfonic acid (PEG-SO$_3$H) (1.67 mol%) at room temperature is described. Ketones do not react under these reaction conditions.

Keywords: Poly (ethylene glycol)-bound sulfonic acid (PEG-SO$_3$H); Polymeric catalyst; Acylal; Aldehyde; Acetic anhydride.

INTRODUCTION

For many years, functionalized polymers have been employed as stoichiometric reagents and catalysts in organic synthesis [1,2]. However, their development and applications in organic synthesis are undergoing a tremendous renaissance at present, which is undoubtedly being fueled by the special requirements of combinatorial and green chemistry [1,2]. There are a number of key advantages that link functionalized polymers to synthetic chemistry including the ease of product isolation, the use of excess amounts of reagents to drive the reaction toward completion and the good stability of the catalyst [3,4]. Nevertheless, a large number of available functionalized polymers (especially major polymers) are insoluble in different solvents, being polystyrene based and possessing either low (merrifield resin) or high (macroporous resins) degrees of cross-linking [1,2]. Moreover, emerging problems associated with the application of insoluble polymeric derivatives under heterogeneous conditions, including lowered reactivities and site-site interactions, extended reaction times, diffusion-limited reactivity, reagent leaching and toxicity, have meant that soluble matrixes, [5] such as poly(ethylene glycol) (PEGs) [6-9], fluorocarbon supports [10], linear poly(styrene) [11] and poly(ethylene) [12] are receiving increasing attention, both for combinatorial synthesis and as supports to catalyze organic reactions in solution and solvent-free media. Among them, PEGs are inexpensive, readily functionalized reagents and solvents with nontoxic properties are Phase Transfer Catalysts (PTC) [13], environmentally benign [14], commercially available in different molecular weights and have a broad solubility profile [15]. According to these excellent properties, PEGs are an important group of polymers and catalysts in several branches of chemistry and industry, such as organic synthesis [16]. Based on recent efforts to use eco-friendly and environmentally benign reagents in chemistry, PEGs are good candidates for these purposes [17].

The protection of carbonyl functional groups as acylals is an important strategy in organic synthesis [18]. Acylals are alternatives to acetals, and are important protecting groups in organic synthesis because of their stability under neutral and basic conditions, as well as under critically controlled acidic conditions [18]. They have several synthetic and
industrial applications. Acylals have been utilized as cross linking reagents in cellulose and cotton industries, and as stain bleaching agents [19,20]. As synths, they have been exploited in well-known reactions of organic chemistry like nitriles synthesis [21], Grignard reactions [22], Prins reactions [23], condensation reactions, such as Knoevenagel [24] and benzoin [25]. Because of their industrial, as well as synthetic, importance and their excellent properties as protective groups and synths, finding a new strategy for the efficient and facile preparation of acylals is of current interest. Acylals are prepared from aldehydes and acetic anhydride using strong Bronsted or Lewis acidic catalysts, such as H₃PW₁₂O₄₀⋅24H₂O [26], H₂PW₁₂O₄₀ supported MCM-41 molecular sieves [27], supported H₂P₂Mo₉O₃₉ [28], Ce(OTf)₃ xH₂O [29], HClO₄/SiO₂ [30], P₂O₅/Al₂O₃ [31], In(OTf)₃ [32], ZrCl₄ [33], RuCl₃ xH₂O [34], TiCl₄(OTf) [35], NbCl₅ [36] and zirconia-supported mixed oxide systems [37]. However, many of the reported methods have one or more of the following disadvantages:

(i) Lack of substrate tolerance and generality.
(ii) Long reaction time.
(iii) Low yield and selectivity.
(iv) The use of large amounts of reagent.
(v) Rigorous reaction conditions.
(vi) Application of expensive, non-available, corrosive, as well as moisture and air-sensitive, reagents.

Therefore, development of an efficient, general, low cost, selective and simple method for the conversion of aldehydes to acylals is still of interest.

Having the above facts in mind, and also as part of our ongoing program to develop more efficient methods in organic synthesis [38-46], we report here a new efficient method for the preparation of acylals via the acylation of aldehydes with acetic anhydride, using polyethylene glycol)-bound sulfonic acid (PEG-SO₃H) as a homogeneous catalyst at room temperature (Figure 1). Interestingly, our method has none of the above-mentioned disadvantages.

RESULTS AND DISCUSSION

At first, the synthesis of acylal 1 from benzaldehyde (2 mmol) and acetic anhydride (8 mmol) was examined in the presence of different amounts of PEG-SO₃H in

CH₂Cl₂ (2 mL) at room temperature (Figure 1): the respective results are summarized in Table 1. As the data in Table 1 show, the best results were obtained when 0.2 g (1.67 mol%) of the catalyst was used. Increasing the amount of PEG-SO₃H to 2.1 mol% did not improve the reaction results.

To select the appropriate solvent for the acylation reaction, the influence of various solvents was investigated on the reaction of benzaldehyde with acetic anhydride (Table 2). As the data in Table 2 indicate, a higher yield and a shorter reaction time were obtained when CH₂Cl₂ was used.

To assess the generality and scope of the method, acylals were synthesized from different aromatic/alkyl aldehydes and acetic anhydride in the presence of PEG-SO₃H in CH₂Cl₂ at room temperature; the respective results are displayed in Table 3. As clear from the data in Table 3, the method was highly efficient and general; using this method, all kinds of aldehydes, including benzaldehyde, aromatic aldehydes possessing electron-releasing substituents, electron-withdrawing substituents and halogens on their aromatic rings, 2-naphthaldehyde, acid-sensitive aldehyde (furfural), bis-aldehyde (terephthaldehyde) and aliphatic aldehydes were acetylated in excellent yields and in short reaction times.

In another study, a competitive reaction for the preparation of acylal 1 from benzaldehyde in the presence of a ketone (acetophenone) using PEG-SO₃H

Table 1. Effect of different amounts of PEG-SO₃H on the reaction of benzaldehyde (2 mmol) with acetic anhydride (8 mmol) in CH₂Cl₂ (2 mL) at room temperature.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Amount of PEG-SO₃H</th>
<th>Time (min)</th>
<th>Yield* (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1 g (~0.83 mol%)</td>
<td>40</td>
<td>75</td>
</tr>
<tr>
<td>2</td>
<td>0.15 g (~1.25 mol%)</td>
<td>30</td>
<td>86</td>
</tr>
<tr>
<td>3</td>
<td>0.2 g (~1.67 mol%)</td>
<td>18</td>
<td>97</td>
</tr>
<tr>
<td>4</td>
<td>0.25 g (~2.1 mol%)</td>
<td>18</td>
<td>97</td>
</tr>
</tbody>
</table>

a: Isolated yield.
b: Increasing the amount of PEG-SO₃H to 2.1 mol% did not improve the reaction results.

Table 2. The synthesis of acylal 1 from benzaldehyde and acetic anhydride using PEG-SO₃H in different solvents at room temperature.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Time (min)</th>
<th>Yield* (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CH₂Cl₂</td>
<td>18</td>
<td>97</td>
</tr>
<tr>
<td>2</td>
<td>CHCl₃</td>
<td>30</td>
<td>79</td>
</tr>
<tr>
<td>3</td>
<td>THF</td>
<td>25</td>
<td>82</td>
</tr>
<tr>
<td>4</td>
<td>Ethyl acetate</td>
<td>25</td>
<td>88</td>
</tr>
</tbody>
</table>

a: Isolated yield.
Table 3. The preparation of acylals from aldehydes and acetic anhydride using PEG-SO₃H at room temperature.

<table>
<thead>
<tr>
<th>Product Number</th>
<th>Product</th>
<th>Time (min)</th>
<th>Yield a (%)</th>
<th>Found</th>
<th>Reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>18</td>
<td>97</td>
<td>44-46</td>
<td>42-43 [31]</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>16</td>
<td>96</td>
<td>83-85</td>
<td>81-82 [34]</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>22</td>
<td>94</td>
<td>Oil</td>
<td>Oil [31]</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>26</td>
<td>90</td>
<td>61-63</td>
<td>64 [30]</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>18</td>
<td>97</td>
<td>55-57</td>
<td>57 [30]</td>
</tr>
<tr>
<td>6 b</td>
<td></td>
<td>18</td>
<td>95</td>
<td>55-57</td>
<td>57 [30]</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>20</td>
<td>92</td>
<td>121-126</td>
<td>128-130 [33]</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>23</td>
<td>96</td>
<td>122-124</td>
<td>125 [30]</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>20</td>
<td>98</td>
<td>61-63</td>
<td>64-66 [32]</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>23</td>
<td>92</td>
<td>87-89</td>
<td>85-86 [32]</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>20</td>
<td>94</td>
<td>78-80</td>
<td>80 [30]</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>20</td>
<td>95</td>
<td>61-63</td>
<td>65-66 [31]</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>25</td>
<td>90</td>
<td>97-99</td>
<td>100-102 [30]</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>20</td>
<td>91</td>
<td>83-85</td>
<td>84 [30]</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>20</td>
<td>94</td>
<td>99-101</td>
<td>101 [30]</td>
</tr>
<tr>
<td>16 c</td>
<td></td>
<td>30</td>
<td>89</td>
<td>50-52</td>
<td>51-52 [31]</td>
</tr>
<tr>
<td>17 d</td>
<td></td>
<td>25</td>
<td>94</td>
<td>170-172</td>
<td>174-175 [30]</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>30</td>
<td>86</td>
<td>Oil</td>
<td>Oil [31]</td>
</tr>
</tbody>
</table>

a: Isolated yield.
b: In this reaction, the starting aldehyde was p-hydroxybenzaldehyde in which the corresponding triacetate was produced.
c: This reaction was carried out using 1.25 mol% of PEG-SO₃H.
d: In this reaction, the aldehyde/Ac₂O ratio (mol/mol) was 1/8, and 2.5 mol% of the catalyst was utilized.
as a catalyst was performed (Figure 2). It was observed that using this catalyst, an aldehyde could be selectively acylated in the presence of a ketone. Thus, the method is highly chemo-selective.

CONCLUSION

In summary, we have developed a new method for the chemo-selective preparation of acylals from aldehydes and acetic anhydride. The advantages of this method are generality, efficiency, high yield, short reaction time, simplicity, low cost, cleaner reaction profile, ease of preparation of the catalyst and ease of product isolation.

EXPERIMENTAL

All chemicals were purchased from Merck or Fluka Chemical Companies. All products were identified by comparison of their melting points and/or spectral data with those of the authentic samples. IR spectra were run on a Shimadzu FTIR-8000 spectrophotometer. The 1H NMR (250 MHz) were run on a Bruker Avance DPX-250 FT-NMR spectrometer (δ in ppm). Melting points were recorded on a Büchi B-545 apparatus in open capillary tubes.

Preparation of Polymeric Catalyst PEG-SO₃H

At 0°C, chlorosulfonic acid (10 mmol) was added to a solution of PEG-6000 (1 mmol) in CH₂Cl₂ (10 mL), and the resulting solution was stirred at room temperature overnight. Then, the solution was concentrated under a vacuum and ether (25 mL) was added to it. The resulting precipitate was filtered and washed with ether (10 mL) three times to afford PEG-SO₃H as a gummy solid [8,9].

General Procedure for the Chemo-selective Preparation of Acylals from Aldehydes and Acetic Anhydride

Aldehyde (2 mmol) was added to a mixture of acetic anhydride (0.817 g, 8 mmol), PEG-SO₃H (0.2 g, 0.033 mmol) and CH₂Cl₂ (2 mL) in a 10 mL round-bottomed flask, and the resulting mixture was stirred at room temperature for the times reported in Table 3. Afterward, the reaction mixture was diluted with CH₂Cl₂ (30 mL), washed with a saturated solution of Na₂CO₃ (2 x 30 mL) and, then, with H₂O (2 x 30 mL). The organic layer was separated and dried over Na₂SO₄. The solvent was evaporated to afford the pure product or chromatographed on silica gel (petroleum ether/EtOAc) where necessary.

Selected Spectral Data of the Products

Compound 1: IR (KBr): 3067, 2952, 1754, 1503, 1441, 1242, 1010, 951 cm⁻¹; ¹H NMR (CDCl₃): δ 2.09 (s, 6H), 7.36-7.40 (m, 3H), 7.50-7.53 (m, 2H), 7.65 (s, 1H).

Compound 8: IR (KBr): 2961, 1757, 1625, 1536, 1349, 1234, 995 cm⁻¹; ¹H NMR (CDCl₃): δ 2.13 (s, 6H), 7.76 (d, 2H, J = 7.9 Hz), 8.25 (d, 2H, J = 7.9 Hz), 7.71 (s, 1H).

Compound 16: IR (KBr): 3114, 1751, 1609, 1501, 1374, 1140, 960 cm⁻¹; ¹H NMR (CDCl₃): δ 2.15 (s, 6H), 6.42 (m, 1H), 6.59 (m, 1H), 7.38 (m, 1H), 7.76 (s, 1H).

ACKNOWLEDGMENTS

The authors thank Payame Noor University (PNU) and the Persian Gulf University Research Council for the financial support of this work.

REFERENCES

BIographies

Abdolkarim Zare was born in Bushehr, Iran, in 1977. He received his BS degree in Chemistry from Yazd University, Iran, in 1998, and his MS and PhD degrees in Organic Chemistry from Shiraz University, Iran, with Professor Hashem Sharghi, in 2002, and, with Professor Ali Khalafi-Nezhad, in 2006, respectively. He is now faculty member of Payame Noor University (PNU). His research interests include: Applications of Solvent-Free Conditions, Ionic Liquids and Microwave Irradiation in Organic Synthesis, and Study of Methodology in Organic Chemistry.

Alireza Hasaninejad was born in Dehbid, Iran, in 1973. He received his BS degree in Chemistry from the Sistan and Baluchestan University, Iran, in 1997, and his MS and PhD degrees in Organic Chemistry from Shiraz University, Iran, with Professor Hashem Sharghi, in 2001 and 2005, respectively. He is now faculty member of the Persian Gulf University, in Iran. His research fields include: Applications of Solvent-Free Conditions, Ionic Liquids and Microwave Irradiation in Organic Synthesis, and Study of Methodology in Organic Chemistry.

Esmaeil Rostami was born in Ahram, Iran, in 1973. He received his BS degree in Chemistry from the Sistan and Baluchestan University, Iran, in 1998, and his MS and PhD degrees in Organic Chemistry from Tarbiat Moallem University, Iran, with Professor Ablas Shokravi, in 2001 and 2007, respectively. He is faculty member of the Payame Noor University.
Iran. His research fields include: Synthesis of Polymers and Crown Ethers, and Application of Solvent-Free Conditions and Microwave Irradiation in Organic Synthesis.

Ahmad Reza Moosavi-Zare was born in Shiraz, Iran, in 1974. He received his BS degree in Chemistry from Yazd University, Iran, in 1998, and his MS degree in Organic Chemistry from Mohaghegh Ardebili University, Iran, with Dr. Gholam Hosain Imanzadeh, in 2006. He is currently working on his PhD in Organic Chemistry under the supervision of Professor Mohammad Ali Zolfigol and Professor Ardeshr Khazaei in the Organic Chemistry Department at Bu-Ali Sina University, Hamadan, Iran. His research interests include Applications of Ionic Liquids, Solvent-Free Conditions and Microwave Irradiation in Organic Synthesis, and Green Chemistry.

Maria Merajoddin was born in Bushehr, Iran, in 1987. He received his BS degree in Chemistry from Payame Noor University, Iran, in 2010. His research interests include Application of Solvent-Free Conditions and Microwave Irradiation in Organic Synthesis.