Detection of NAD(P)H: quinone oxidoreductase 609C→T polymorphism in blood and archival human tissues using a simple PCR method

Firouzeh Biramijamal¹, Mohammed Hossein Sanati¹, Guity Iravanloo², Kourosh Shamimi³ and Dariush D. Farhud⁴

¹National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, ²Department of Pathology, Cancer Institute of Tehran, Tehran University of Medical Sciences, Tehran, ³Department of Surgery, Tehran University of Medical Sciences, Tehran, ⁴Genetic Clinic Valiyeaser square, Tehran, I.R. Iran.

Abstract

NAD(P)H: quinone oxidoreductase (NQO1) plays an important role in detoxification of numerous endogenous and foreign compounds. This gene has a single nucleotide polymorphism at site of codon 187 (CCT→TCT). Recently, it has been demonstrated that individuals with T allele may exhibit resistance to quinone based anticancer drugs such as mitomycin C. In the present study, a simple and feasible method was developed for detection of NQO1 genotype. In this modified procedure, dimethylsulfoxide (DMSO) and Triton X-100 were eliminated, also, PCR cycling conditions were modified to improve the PCR products from blood and formalin-fixed, paraffin-embedded tissues. PCR-RFLP and DNA sequencing analysis carried out on a limited number of blood and archival samples. It is suggested that this procedure convenient for NQO1 genotyping.

Keywords: NQO1, polymorphism, simple PCR-RFLP method

The NAD(P)H: quinone oxidoreductase (NQO1) is involved in detoxification of numerous endogenous and foreign compounds (Nebert et al., 2002; Smith et al., 2001; Chen et al., 1999). It has been reported that this gene has a single nucleotide polymorphism (SNP) at site of codon 187 (nucleotide 609) (Kelsey et al., 1997 and Moran et al., 1999). It has been shown that homozygous individuals having T allele exhibit negligible NQO1 enzyme activity ((Phillips et al., 2004). Lack of NQO1 activity might increase the risk of certain types of toxicity and cancer (Smith et al., 2001; Chen et al., 1999). A Pro (CCT) to Ser (TCT) substitution at codon 187 of the NQO1 gene was found to be associated with esophageal cancer (Zhang et al., 2003). In addition, has been indicated that polymorphism at NQO1 associated with susceptibility to several malignancies (Zhang et al., 2003; Choi et al., 2003; Sabria et al., 2003; Hamajima et al., 2002; Rothman et al., 1997 and Chen et al., 1999).

It has been shown that individuals with T allele may exhibit resistance to quinone based anticancer drugs such as mitomycin C (Fleming et al., 2002). Hence, NQO1 allelotyping can be useful before chemotherapy. Recently, Phillips et al. (2004) described a new PCR amplification method using nested primer to detect NQO1 genotype for analyzing genome DNA isolated from formalin-fixed paraffin embedded human tissues. Ozawa et al. (1999) also showed that genome DNA isolated from blood can be amplified using dimethylsulfoxide (DMSO) and Triton X-100 to detect NQO1 genotype. In this study we modified and simplified the method for assessment of NQO1 C609T genotype in healthy individuals and archival cancer tissues.

For this purpose, first archival cancerous human tissues were collected. Then blood samples from healthy individuals (n=11) were collected for this
study. An informed consent was signed from normal individuals volunteers followed by completion of a structured questionnaire. Three milliliters of venous blood was drawn from each individual, blood sample was immediately frozen and transferred to laboratory for analysis. Genomic DNA was extracted from the frozen blood and kept at -20°C for further use. The samples were anonymized and then PCR and RFLP were performed. The study was approved by the National Institute for Genetic Engineering and Biotechnology (NIGEB) and the local ethical Committee on human experimentation. Genomic DNA from the 3 formalin-fixed, paraffin-embedded esophageal carcinoma epithelial and 2 colon adenocarcinoma, with high neoplastic cellularity, were extracted as described by Biramijamal et al. (2001). The \textit{NQO1} C609T genotyping was performed by PCR, a 318-bp PCR fragment was amplified from DNA isolated from whole blood and esophageal and colon tissues using the primers as described by Ozawa et al. (1999).

PCR was performed in a 50 µl volume containing 100 ng DNA template, 5µl 10x PCR-buffer, MgCl\textsubscript{2} 1.5 mM, 1.25U/µl \textit{Taq} DNA polymerase (Cinnagen, Tehran-Iran), 0.2 mM dNTPs and 10 pmol sense primer (5´-ATTCTCTAGTGTGCGCCTGAG-3´) and antisense primer (5´-AATCCGGCCAGGATTTGA-3´), initial denaturation for 5 min at 95°C was followed by 35 cycles at 95°C for 1 min, at 57°C for 1 min, and at 72°C for 45 sec. The PCR products were subsequently digested with 15 units of \textit{Hinf}\textsubscript{I} (Fermentas, Lithuania) for 3h at 37°C and separated on a 3% or 4% agarose gel (Fig. 1A and 1B). PCR products with homozygous genotype (C/C) was not cut, but PCR products with heterozygous genotype (C/T) was cleaved to yield one or two fragments (154 and 164 bp) on either 3% or 4% agarose gel respectively. Selected PCR products were purified with PCR product purification Kit (Roche, Germany) and sequenced directly by Big DyeTM fluorescent dye dideoxy sequencing and microcapillary electrophoresis using an ABI 310 Genetic Analyzer according to the supplier’s instructions (Applied Biosystems International). In addition, the samples were reanalyzed by retrieving genomic DNA stocks, performing new PCR amplifications, and resequencing of new PCR amplification products. It was found that this procedure is simple and feasible for detection of \textit{NQO1} genotyping.

The results showed that of the 3 esophageal squamous cell carcinoma, two samples were heterozygous and one sample was homozygous wild genotype, (Fig. 1B). The colon samples were homozygous wild genotype and heterozygous. Of the 11 blood samples from healthy individuals, 5 samples showed C allele, one sample with T allele, and 5 samples were heterozygous genotype (C/T), (Fig. 1A). The results of some samples were confirmed by direct DNA sequencing, (Fig. 2). The results showed that this modified method for PCR is suitable and feasible for analyzing the \textit{NQO1} genotype. The suitability of PCR products for analyzing the \textit{NQO1} genotype was further confirmed by direct DNA sequencing and digestion by \textit{Hinf}\textsubscript{I} restriction enzyme. Recently, Phillips et al. (2004) described

![Figure 1: A PCR assay to detect genetic polymorphism at the \textit{NQO1} locus. A 318 bp region of genomic DNA flanking exon 6 was amplified using primers NQO1-F (5´-ATT CTC TAG TGT GCC TGA G-3´) and NQO1-R (5´-AAT CCT GCC TGG AAG TTT AG-3´). (A) The PCR product was then digested by \textit{Hinf}\textsubscript{I} and run on 4% agarose gel. Lane 1, 72-1353 bp molecular marker; Lane 2, negative control (PCR reaction without using genomic DNA to control analysis and possibility of contamination); Lane 3, PCR product of genomic DNA from esophageal cancerous tissue sample; Lanes 5, 8, 11-13, homozygous genotype (C/C); Lanes 4, 6, 7, 9, 10, heterozygous genotype (C/T); Lane 14, homozygous genotype (T/T). (B) A PCR assay to detect genetic polymorphism at the \textit{NQO1} locus. The PCR product was then digested with \textit{Hinf}\textsubscript{I} and run on 3% agarose gel. Lane 1, 72-1353 bp molecular marker; Lane 2, negative control (PCR reaction without using genomic DNA to control analysis and possibility of contamination); Lane 3, PCR product of genomic DNA from colon cancerous tissue sample; Lane 4, homozygous genotype (C/C) for colon cancer sample; Lane 5, heterozygous genotype (C/T) for blood sample; Lane 6, homozygous genotype (T/T) for blood sample; Lanes 7, 9 heterozygous genotype (C/T) for esophageal cancer samples; Lane 8, homozygous wild genotype (C/C) for blood sample.](https://www.SID.ir)
a new PCR amplification method using nested primer but we present in this study a simple method without using nested primer. Also, DNA isolated from blood was successfully amplified after elimination of DMSO and Triton X-100 using new cycling conditions.

Acknowledgement

This study was supported by the NIGEB, project No. 197, 176, 206. The authors thank Dr. Banoie for his valuable participation in the collection of materials, also, F. Zandi and T. Majidizadeh for their help in this study.

References

