CATEGORY OF \((POM)_L\)-FUZZY GRAPHS AND HYPERGRAPHS

M. M. ZAHEDI AND M. R. KHORASHADI-ZADEH

Abstract. In this note by considering a complete lattice \(L\), we define the notion of an \(L\)-Fuzzy hyperrelation on a given non-empty set \(X\). Then we define the concepts of \((POM)_L\)-Fuzzy graph, hypergraph and subhypergroup and obtain some related results. In particular we construct the categories of the above mentioned notions, and give a (full and faithful) functor form the category of \((POM)_L\)-Fuzzy subhypergroups ((\(POM\))\(_L\)-Fuzzy graphs) into the category of \((POM)_L\)-Fuzzy hypergraphs. Also we show that for each finite objects in the category of \((POM)_L\)-Fuzzy graphs, the coproduct exists, and under a suitable condition the product also exists.

1. Introduction

Rosenfeld [9] in 1975 defined the notion of a fuzzy graph. Berge studied hypergraphs [1]. Roy and Goetschel gave the notion of fuzzy hypergraphs [10]. Zahedi and Khorashadi-Zadeh in [9] gave some categoric connections between fuzzy hypergraphs, subhypergroups, Now we follow [10] and [11]. In this regard we redefine the notion of fuzzy hypergraph. In fact we give a new approach to this notion. To explain this, first we give the notions of fuzzy graph and fuzzy hypergraph which have defined in [9] and [10] respectively.

Definition 1.1. [9] A fuzzy graph is a triple \((X, \delta, \mu)\), where \(\delta\) is a fuzzy subset of a finite non-empty set of \(X\) and \(\mu\) is a fuzzy relation on \(\delta\), i.e. \(\mu\) is a fuzzy subset of \(X \times X\), and \(\mu(x, y) \leq \delta(x) \wedge \delta(y)\), for all \(x, y \in X\).

Definition 1.2. [10] Let \(X\) be a finite non-empty set and let \(\xi\) be a finite family of non-trivial fuzzy subsets on \(X\), i.e. for all \(\mu\) in \(\xi\), \(\operatorname{supp}\mu \neq \emptyset\) and \(X = \bigcup_{\mu \in \xi} \operatorname{supp}\mu\), where by \(\operatorname{supp}\mu\) we mean the set \(\{x \in X | \mu(x) > 0\}\). Then the pair \(\mathcal{H} = (X, \xi)\) is called a fuzzy hypergraph on \(X\).

Remark 1.3. We expect a hypergraph to be a fuzzy graph if \(\xi\) in Definition 1.2 is a singleton. However if \(\delta\) is a fuzzy subset on a finite nonempty set \(X\) and \(\operatorname{supp}\delta = X\), then the pair \((X, \xi = \{\delta\})\) is a fuzzy hypergraph on \(X\) according to Definition 1.2, while \((X, \delta)\) is not a fuzzy graph according to Definition 1.1. The problem arises because the fuzzy relation \(\mu\) has no place in Definition 1.2. Hence this definition is not a generalization of Definition 1.1. So in this paper we work with the Definition 1.2, that is a genuine extension of Definition 1.1.
Now in this note first we give the notions of L-Fuzzy hypersubsets, L-Fuzzy hyperrelations on a set X, $(POM)_{L}$-$Fuzzy hyperrelations on an L-Fuzzy hypersubsets of X and $(POM)_{L}$-$Fuzzy hyperrelations on a finite family of L-Fuzzy subsets. Then we present the concepts of $(POM)_{L}$-$Fuzzy hyperrelations on a finite family of L-Fuzzy subsets. After that we show that there is a full and faithful functor from $(POM)_{L}$-FG into $(POM)_{L}$-FHG. Finally we define the notion of $(POM)_{L}$-$Fuzzy hypergroups and then construct the category $(POM)_{L}$-FHG of all $(POM)_{L}$-$Fuzzy hypergroups, and obtain some related results.

Throughout this paper we let L be a complete lattice with the greatest element 1 and the least element 0.

Definition 1.4. [3, 8] Let $T : L \times L \to L$ be a binary operation having the properties:

(i) $T(x, 1) = x$
(ii) $T(x, y) = T(y, x)$
(iii) $T(x, y) \leq T(u, y)$ if $x \leq u$
(iv) $T(x, T(y, z)) = T(T(x, y), z)$.

Henceforth (L, T) is a partially ordered commutative monoid [2].

Remark 1.5. In the mathematical tradition of algebra (L, T) is better known as a partially ordered monoid in which the unity coincides with the top element of the lattice, for example in this regard see [2, 5]. However authors in the fuzzy set tradition sometimes call T an L-t-norm, because T is known as a t-norm when L is the unit interval.

It is obvious that if $\{x_\alpha\}_{\alpha \in \Lambda}$ and $\{y_\beta\}_{\beta \in \Lambda'}$ are two families of elements of L, then

\[\bigvee_{\alpha \in \Lambda} T(x_\alpha, y_\beta) \leq T\left(\bigvee_{\alpha \in \Lambda} x_\alpha, \bigvee_{\beta \in \Lambda'} y_\beta\right). \]

By an L-Fuzzy subset δ on a set X, we mean a function $\delta : X \to L$.

Notation:

(i) We let $\mathcal{F}_L(X)$ shows the set of all L-Fuzzy subsets on X, i.e.

\[\mathcal{F}_L(X) = \{\delta : X \to L \text{ is a function}\}. \]

(ii) Write $p^{*}(X) = p(X) \setminus \{\emptyset\}$, i.e. $p^{*}(X)$ is the set of all non-empty subsets of X.

Definition 1.6. [7] It is well-known that a hyperstructure is a non-empty set H together with a map $o : H \times H \to p^{*}(H)$, called hyperoperation. A hyperstructure (H, o) is called a hypergroup if the following axioms hold:

(i) $(xoy)o z = xo(yoz), \forall x, y, z \in H$,

(ii) $aoH = H = Hoa, \forall a \in H$,

where by AoB we mean $\bigcup_{x \in A, y \in B} xoy$, for all subsets A, B of H.

Lemma 1.7. Let (H, o) be a hyperstructure. Then the following statements are equivalent:
(i) \(aoH = Hoa = H, \forall a \in H \),
(ii) for all \(a \) and \(y \) in \(H \) there exist \(u \) and \(v \) in \(H \) such that \(y \in uoa \) and \(y \in aov \).

2. \((POM)_L\)-Fuzzy (hyper)graphs

Definition 2.1. Let \(\delta \in F_L(X) \). Then we say that \(\delta \) is non-trivial if

\[\delta^* = \text{supp} \delta = \{ x \in X | 0 \leq \delta(x), \delta(x) \neq 0 \} \neq \emptyset. \]

Definition 2.2. Let \(\mu \in F_L(X \times X) \). Then we say that \(\mu \) is an \(L \)-Fuzzy relation on \(X \).

Definition 2.3. Let \(\delta \in F_L(X) \) and \(\mu \in F_L(X \times X) \). Then \(\mu \) is said to be a \((POM)_L\)-Fuzzy relation on \(\delta \) if

\[\mu(x, y) \leq T(\delta(x), \delta(y)), \forall x, y \in X. \]

Definition 2.4. Let \(X \neq \emptyset \) and \(\delta \in F_L(p^*(X)) \). Then \(\delta \) is said to be an \(L \)-Fuzzy hypersubset of \(X \), if for any finite family \(\{A_i\}_{i=1,2,...,n} \) of \(p^*(X) \) we have

\[\delta \bigcup_{i=1}^n A_i \leq \bigvee_{i=1}^n \delta(A_i). \]

Lemma 2.5. Let \(\delta \in F_L(X) \). Then \(\delta \) induces an \(L \)-Fuzzy hypersubset \(\delta' \) of \(X \).

Sketch of proof. Define \(\delta' \in F_L(p^*(X)) \) as follows:

\[\delta'(A) = \bigvee_{a \in A} \delta(a), \forall A \in p^*(X). \]

Definition 2.6. Let \(\mu \in F_L(p^*(X) \times p^*(X)) \). Then \(\mu \) is called an \(L \)-Fuzzy hyperrelation on \(X \) if:

\[\mu \left(\bigcup_{i=1}^n E_i, \bigcup_{j=1}^m F_j \right) = \bigvee_{i=1}^n \bigwedge_{j=1}^m \mu(E_i, F_j) \]

for any finite families \(\{E_i\}_{i=1,2,...,n} \) and \(\{F_j\}_{j=1,2,...,m} \) of \(p^*(X) \).

Remark 2.7. Let \(\mu \) be an \(L \)-Fuzzy hyperrelation on \(X \). Then \(A \subseteq B \) and \(C \subseteq D \) imply that \(\mu(A, C) \leq \mu(B, D) \).

Theorem 2.8. Let \(\mu \) be an \(L \)-Fuzzy relation on \(X \). Then \(\mu \) induces an \(L \)-Fuzzy hyperrelation \(\mu' \) on \(X \).

Sketch of proof. Define \(\mu' \in F_L(p^*(X) \times p^*(X)) \) as follows:

\[\mu'(A, B) = \bigvee_{a \in A, b \in B} \mu(a, b), \forall A, B \in p^*(X). \]

Definition 2.9. Let \(\delta \) be an \(L \)-Fuzzy hypersubset of \(X \) and \(\mu \) be an \(L \)-Fuzzy hyperrelation on \(X \). Then \(\mu \) is said to be a \((POM)_L\)-Fuzzy hyperrelation on \(\delta \) if

\[\mu(E, F) \leq T(\delta(E), \delta(F)), \forall E, F \in p^*(X). \]
Lemma 2.10. Let \(\mu \) be a \((POM)_L\)-Fuzzy relation on \(\delta \), and \(\mu', \delta' \) be such as defined in Theorem 2.8 and Lemma 2.5 respectively. Then \(\mu' \) is a \((POM)_L\)-Fuzzy hyperrelation on \(\delta' \).

Proof. The proof is easy. \(\square \)

Definition 2.11. Let \(X \neq \emptyset \) and \(\xi = \{\mu_i\}_{i=1,2,\ldots,n} \) be a family of non-trivial \(L \)-Fuzzy subsets of \(X \) and \(X = \bigcup_{i=1}^{n} \mu_i^* \). Then the \(L \)-Fuzzy hyperrelation \(\mu \) on \(X \) is called a \((POM)_L\)-Fuzzy hyperrelation on \(\xi \) if for all \(i, j \in \{1,2,\ldots,n\} \):

\[
\mu(A, B) \leq T(\bigvee_{x \in A} \mu_i(x), \bigvee_{y \in B} \mu_j(y)), \quad \forall A, B \in p^*(X), \ A \subseteq \mu_i^*, B \subseteq \mu_j^*.
\]

Theorem 2.12. Let \(X = \{x_1,x_2,\ldots,x_n\} \), \(\mu \in F_L(p^*(X) \times p^*(X)) \) and \(\delta \in F_L(p^*(X)) \). If \(\mu \) is a \((POM)_L\)-Fuzzy hyperrelation on \(\delta \), then there is a family \(\xi \) of non-trivial elements of \(F_L(X) \) such that \(\mu \) is a \((POM)_L\)-Fuzzy hyperrelation on \(\xi \).

Sketch of proof. For each \(1 \leq i \leq n \), define \(\mu_i \) as follows:

\[
\mu_i : X \rightarrow L, \ \mu_i(x) = \begin{cases}
\delta(\{x_i\}) & \text{if } \delta(\{x_i\}) \neq 0, x = x_i \\
1 & \text{if } \delta(\{x_i\}) = 0, x = x_i \\
0 & \text{if } x \neq x_i
\end{cases}
\]

Now let \(\xi = \{\mu_1,\mu_2,\ldots,\mu_n\} \). Then it can be checked that \(\mu \) is a \((POM)_L\)-Fuzzy hyperrelation on \(\xi \).

Theorem 2.13. Let \(\mu \) be a \((POM)_L\)-Fuzzy hyperrelation on a family \(\xi = \{\mu_i\}_{i=1,2,\ldots,n} \) of \(L \)-Fuzzy subsets of \(X \). Then there exists an \(L \)-Fuzzy hypersubset \(\delta \) of \(X \) such that \(\mu \) is a \((POM)_L\)-Fuzzy hyperrelation on \(\delta \).

Proof. Define the \(L \)-Fuzzy hypersubset \(\delta \) of \(X \) as follows:

\[
\delta : p^*(X) \rightarrow L \\
A \rightarrow \bigvee_{i=1}^{n}(\bigvee_{x \in A \cap \mu_i^*} \mu_i(x)).
\]
It is obvious that \(\delta \) is well-defined and since each \(\mu_i \) is non-trivial for \(i = 1, 2, \ldots, n \), we conclude that \(\delta \) is also non-trivial. First we show that \(\delta \) is an \(L \)-Fuzzy hyper-subset of \(X \). Let \(\{A_j\}_{j=1,2,\ldots,t} \) be a finite family of \(p^*(X) \), then

\[
\delta \left(\bigcup_{j=1}^{t} A_j \right) = \bigvee_{i=1}^{n} \left(\bigvee_{x \in \left(\bigcup_{j=1}^{t} A_j \right) \cap \mu_i^*} \mu_i(x) \right) = \bigvee_{i=1}^{n} \left(\bigvee_{x \in \bigcup_{j=1}^{t} (A_j \cap \mu_i^*)} \mu_i(x) \right) = \bigvee_{i=1}^{n} \left(\bigvee_{x \in (A_i \cap \mu_i^*)} \mu_i(x) \right)
\]

Now let \(E,F \in p^*(X) \), then

\[
\mu(E,F) = \mu(X \cap E, X \cap F) = \mu \left(\bigcup_{i=1}^{n} \mu_i^* \cap E, \bigcup_{j=1}^{n} \mu_j^* \cap F \right) = \mu \left(\bigcup_{i=1}^{n} \mu_i^* \cap E \right) \bigcup_{j=1}^{n} \mu_j^* \cap F \right) = \bigvee_{i=1}^{n} \mu \left(\bigvee_{x \in \mu_i^* \cap E} \mu_i(x) \right) \bigvee_{j=1}^{n} \mu_j \left(\bigvee_{y \in \mu_j^* \cap F} \mu_j(y) \right)
\]

\[
\leq T \left(\bigvee_{i=1}^{n} \mu_i \left(x \right) \mid_{x \in \mu_i^* \cap E}, \bigvee_{j=1}^{n} \mu_j \left(y \right) \mid_{y \in \mu_j^* \cap F} \right), \quad \text{by } (*)
\]

\[
= T \left(\delta(E), \delta(F) \right).
\]

Definition 2.14. Let \(X \neq \emptyset \) be a finite set. Then the triple \(H = (X, \delta, \mu) \) is called a \((POM)_L\)-Fuzzy graph on \(X \) if

(i) \(\delta \in F_L(X) \),

(ii) \(\mu \in F_L(X \times X) \) and \(\mu \) is a \((POM)_L\)-Fuzzy relation on \(\delta \).

Note that if \(L = [0,1] \subseteq \mathbb{R} \) and \(T = \min \), then a \((POM)_L\)-Fuzzy graph is also a fuzzy graph.
Remark 2.15. Let $H = (X, \delta, \mu)$ be a $(POM)_L$-Fuzzy graph. So $\mu(x, y) \leq T(\delta(x), \delta(y))$, for all $x, y \in X$. If $x \not\in \delta^*$, then

$$\mu(x, y) \leq T(\delta(x), \delta(y)) = T(0, \delta(y)) = 0 ; \forall y \in X$$

That is $\mu(x, y) = 0$. So $(x, y) \not\in \mu^*$ for all $y \in X$. Now if we put $Y = \delta^* \subseteq X$, then $(Y, \delta|_{Y \times Y}, \mu|_{Y \times Y})$ is a $(POM)_L$-Fuzzy graph, called the saturated $(POM)_L$-Fuzzy subgraph of (X, δ, μ).

From now on we let all $(POM)_L$-Fuzzy graph (X, δ, μ) to be the saturated $(POM)_L$-Fuzzy subgraph of itself, so that $\delta^* = X$.

Definition 2.16. Let $X \neq \emptyset$ be a finite set and $\mathcal{H} = (X, \{\mu_i\}_{i=1,2,\ldots,n}, \mu)$. Then \mathcal{H} is called a $(POM)_L$-Fuzzy hypergraph on X if μ is a $(POM)_L$-Fuzzy hyperrelation on $\{\mu_i\}_{i=1,2,\ldots,n}$.

Theorem 2.17. Every $(POM)_L$-Fuzzy graph on X, induces (naturally) a $(POM)_L$-Fuzzy hypergraph on X.

Proof. Let (X, δ, μ) be a $(POM)_L$-Fuzzy graph where $\delta^* = X = \{x_1, x_2, \ldots, x_n\}$. We define δ_i, for all $i = 1, 2, \ldots, n$ as follows:

$$\delta_i : X \rightarrow L , \delta_i(x) = \begin{cases} \delta(x_i) & \text{if } x = x_i \\ 0 & \text{if } x \neq x_i \end{cases}$$

we have $\delta_i^* = \{x_i\}$ and $X = \bigcup_{i=1}^{n} \delta_i^*$. Consider $\mu' \in F_L(p^*(X) \times p^*(X))$ as defined in Theorem 2.8. Now we claim that $(X, \{\delta_i\}_{i=1,2,\ldots,n}, \mu')$ is a $(POM)_L$-Fuzzy hypergraph on X. To see this, since $\delta(x_i) = \delta_i(x_i)$ for all $i = 1, 2, \ldots, n$ we have

$$\mu'(\delta_i^*, \delta_j^*) = \mu'(\{x_i\}, \{x_j\}) = \mu(x_i, x_j) \leq T(\delta(x_i), \delta(x_j)) = T(\delta_i(x_i), \delta_j(x_j)) = T(\bigvee_{x \in \delta_i^*} \delta_i(x), \bigvee_{y \in \delta_j^*} \delta_j(y)).$$

Thus μ is a $(POM)_L$-Fuzzy hyperrelation on $\{\delta_i\}_{i=1,2,\ldots,n}$, and the proof is complete. \hfill \Box

Theorem 2.18. Let $X = \{x_1, x_2,\ldots, x_n\}$ and $(X, \{\mu_i\}_{i=1,2,\ldots,n}, \mu)$ be a $(POM)_L$-Fuzzy hypergraph on X such that $\mu_i^* = \{x_i\}$, for $i = 1, 2, \ldots, n$. Then μ induces a $(POM)_L$-Fuzzy graph on X.

Sketch of Proof. Define $\delta \in F_L(X)$ and $\mu' \in F_L(X \times X)$ as follows:

$$\delta : X \rightarrow L , \delta(x_i) = \mu_i(x_i), \forall i = 1, 2, \ldots, n$$

and

$$\mu'(x_i, x_j) = \mu(\{x_i\}, \{x_j\}), \forall x_i, x_j \in X.$$

Then the proof can be completed by some calculations.

Theorem 2.19. (i) Every (ordinary) graph is a $(POM)_L$-Fuzzy graph. (ii) Every (ordinary) hypergraph is a $(POM)_L$-Fuzzy hypergraph.
Sketch of proof. (i) Let $G = (X, E)$ be a graph. Define
\[\delta : X \to L, \quad \delta(x) = 1, \text{ for all } x \in X \]
and
\[\mu : X \times X \to L, \quad \mu(x, y) = \begin{cases} 1 & \text{if } (x, y) \in E \\ 0 & \text{if } (x, y) \notin E. \end{cases} \]
Then we see that (X, δ, μ) is a (POM)_L-Fuzzy hypergraph on X.

(ii) Let $\mathcal{H} = (X, \{E_i\}_{i=1,\ldots,n})$ be a hypergraph. Define $\mu_i = \chi_{E_i}$, for all $i = 1, 2, \ldots, n$. Then if μ is an arbitrary L-Fuzzy hyperrelation on X, we conclude that $(X, \{\mu_i\}_{i=1,\ldots,n}, \mu)$ is a (POM)_L-Fuzzy hypergraph on X.

3. Category of (POM)_L-Fuzzy hypergraphs

Definition 3.1. Let $(X, \{\mu_i\}_{i=1,\ldots,n})$ and $(Y, \{\delta_i\}_{i=1,\ldots,m})$ be two (POM)_L-Fuzzy hypergraphs. If
\[\alpha : \{1, 2, \ldots, n\} \to \{1, 2, \ldots, m\} \]
and $f : X \to Y$ be two functions such that

(i) $f(\mu_i) \subseteq \delta^*_{\alpha(i)}$, $i = 1, 2, \ldots, n$,

(ii) $\mu_i(x) \leq \delta_{\alpha(i)}(f(x))$, $i = 1, 2, \ldots, n$, $\forall x \in X$,

(iii) $\mu(E, F) \leq \delta(f(E), f(F))$, $\forall E, F \in p^*(X)$,

then (f, α) is called a homomorphism of (POM)_L-Fuzzy hypergraphs.

Category of (POM)_L-Fuzzy hypergraphs ($\text{(POM)}_L - \text{FHG}_r$):

In order to construct the category $\text{(POM)}_L - \text{FHG}_r$ of all (POM)_L-Fuzzy hypergraphs, we consider all (POM)_L-Fuzzy hypergraphs as the objects of this category and for any two objects $X = (X, \{\mu_i\}_{i=1,\ldots,n}, \mu)$ and $Y = (Y, \{\delta_i\}_{i=1,\ldots,m}, \delta)$, we define $\text{Hom}(X, Y)$ as follows:

\[\text{Hom}(X, Y) = \{(f, \alpha) | (f, \alpha) \text{ is a homomorphism from } X \text{ to } Y\}. \]

Now let $X = (X, \{\mu_i\}_{i=1,\ldots,n}, \mu)$, $Y = (Y, \{\delta_i\}_{i=1,\ldots,m}, \delta)$, $Z = (Z, \{\nu_i\}_{i=1,\ldots,n}, \nu)$ be three (POM)_L-Fuzzy hypergraphs and let $(f, \alpha) : X \to Y$ and $(g, \beta) : Y \to Z$ be two homomorphisms of (POM)_L-Fuzzy hypergraphs. We define the composition of these homomorphisms by

\[(g, \beta) \circ (f, \alpha) = (g \circ f, \beta \circ \alpha). \]

Then $(g \circ f, \beta \circ \alpha)$ is a homomorphism from X to Z, because for all $i = 1, 2, \ldots, n$ we have

i) $g \circ f(\mu_i) = g(f(\mu_i)) \subseteq g(\delta^*_i) \subseteq \nu^*_{\beta \circ \alpha}(i)$

ii) $\mu_i(x) \leq \delta_{\alpha(i)}(f(x)) \leq \nu_{\beta \circ \alpha}(i)(g \circ f(x))$, $\forall x \in X$

iii) $\mu(E, F) \leq \delta(f(E), f(F)) \leq \nu(g(f(E)), g(f(F)))$, $\forall E, F \in p^*(X)$.

Now it is easy to check that $(\text{POM})_L - \text{FHG}_r$ has all properties of a category.

Theorem 3.2. Let $(f, \alpha) : (X, \{\mu_i\}_{i=1,\ldots,n}, \mu) \to (Y, \{\delta_i\}_{i=1,\ldots,m}, \delta)$ be a homomorphism of (POM)_L-Fuzzy hypergraphs. Then (f, α) is an isomorphism in $(\text{POM})_L - \text{FHG}_r$ if and only if
(i) \(\alpha \in S_n \), where \(S_n \) is the permutation group on \{1,2,\ldots,n\},

(ii) \(f \) is one to one and onto,

(iii) \(f(\mu_i^\alpha) = \delta_\alpha^{i(\alpha)} \), \(i = 1,2,\ldots,n \),

(iv) \(\mu_i(x) = \delta_\alpha^{i(\alpha)}(f(x)) \), \(i = 1,2,\ldots,n \), \(\forall x \in X \),

(v) \(\mu(E, F) = \delta(f(E), f(F)) \), \(\forall E, F \in p^\ast(X) \).

Proof. (\(\Rightarrow \)) Let \((f, \alpha) \) be an isomorphism. Then

(i), (ii): There exists a morphism \((g, \beta) \) in \((POM)_L - FHG_r \) such that \((g, \beta) \circ (f, \alpha) = (1_X, 1_{\{1,2,\ldots,n\}}) \) and \((f, \alpha) \circ (g, \beta) = (1_Y, 1_{\{1,2,\ldots,n\}}) \). These show that \(g \circ f = 1_X \), \(f \circ g = 1_Y \), \(\beta \circ \alpha = 1_{\{1,2,\ldots,n\}} \). This means that \(f \) is bijective and \(\alpha \in S_n \); moreover \(m = n \).

(iii): Let \(i \in \{1,2,\ldots,n\} \) and \(j = \alpha(i) \). Then \(\beta(j) = 1 \). So

\[
\delta_j^\beta \subseteq \mu_{\beta(j)}^\alpha \Rightarrow f(g(\delta_j^\beta)) \subseteq f(\mu_{\beta(j)}^\alpha)
\]

\[
\Rightarrow \delta_j^\beta \subseteq f(\mu_{\beta(j)}^\alpha) \Rightarrow \delta_j^\beta \subseteq f(\mu_i^\alpha).
\]

On the other hand we have \(f(\mu_i^\alpha) \subseteq \delta_j^\beta \). Thus \(\delta_j^{\alpha(i)} = f(\mu_i^\alpha) \).

(iv): Let \(i \in \{1,2,\ldots,n\} \), \(x \in X \) and \(\alpha(i) = j \), \(f(x) = y \). Then

\[
\mu_i(x) = \delta_{\alpha(i)}(f(x)).
\]

Since \(\delta_j^\beta \subseteq \mu_{\beta(j)}^\alpha \) we get that \(\delta_{\alpha(i)}(f(x)) \leq \mu_i(x) \). Thus \(\mu_i(x) = \delta_{\alpha(i)}(f(x)) \).

(v): Let \(E, F \subseteq X \), and \(A = f(E) \), \(B = f(F) \). Thus \(g(A) = E \) and \(g(B) = F \). Since \(\delta(A, B) \leq \mu(g(A), g(B)) \) we conclude that

\[
\delta(f(E), f(F)) \leq \mu(E, F) \leq \delta(f(E), f(F)),
\]

and (v) is proved.

(\(\Leftarrow \)) Define \(g = f^{-1} \) and \(\beta = \alpha^{-1} \), first we show that \((g, \beta) \) is a morphism in \((POM)_L - FHG_r \) from \((Y, \{\delta\}, \{d\}) \) into \((X, \{\mu\}, \{\delta\}) \).

Note that since \(\alpha \) is bijective, we must have \(m = n \). Let \(j \in \{1,2,\ldots,n\} \). Then there exists \(i \in \{1,2,\ldots,n\} \) such that \(i = \beta(j) \). For \(i \) we have \(f(\mu_i^\alpha) = \delta_{\alpha(i)}^\beta \), by (iii) so \(\mu_i^\alpha = g(\delta_{\alpha(i)}^\beta) \), and hence \(g(\delta_j^\beta) = \mu_i^\alpha \). Thus condition (i) of Definition 3.1 holds.

Now let \(j \in \{1,2,\ldots,n\} \) and \(y \in Y \). Then there exists \(i \in \{1,2,\ldots,n\} \) and \(x \in X \) such that \(i = \beta(j) \) and \(x = g(y) \). Now from (iv) we get

\[
\mu_i(x) = \delta_{\alpha(i)}(f(x)) \Rightarrow \mu_{\beta(j)}(g(y)) = \delta_j(y).
\]

Hence, the condition (ii) of Definition 3.1 holds too. Let \(A, B \subseteq Y \). Then there exist \(E, F \subseteq X \) such that \(E = g(A) \) and \(F = g(B) \). For \(E, F \) we have

\[
\mu(E, F) = \delta(f(E), f(F)) \Rightarrow \delta(A, B) = \mu(g(A), g(B)).
\]

Hence \((g, \beta) \) is a morphism in \((POM)_L - FHG_r \). It is clear that \((g, \beta) \circ (f, \alpha) = (f, \alpha) \circ (g, \beta) = (1,1) \). So \((g, \beta) \) is an isomorphism. \(\square \)

Definition 3.3. Let \(X = (X, \delta, \mu) \), \(Y = (Y, \delta', \mu') \) be two \((POM)_L \)-Fuzzy graphs. If \(f : X \longrightarrow Y \) be a function such that:

(i) \(\delta(x) \leq \delta'(f(x)), \forall x \in X \),

(ii) \(\mu(x, y) \leq \mu'(f(x), f(y)), \forall (x, y) \in X \times Y \),

then we say that \(f \) is a homomorphism from \(X \) to \(Y \).
Category of \((POM)_L\)-Fuzzy graphs \(((POM)_L - FG_r)\):

We construct the category \((POM)_L - FG_r\) of all \((POM)_L\)-Fuzzy graphs. The objects of this category are all \((POM)_L\)-Fuzzy graphs, and for any two objects \(X = (X, \delta, \mu), Y = (Y, \delta', \mu')\), we define \(\text{Hom}(X, Y)\) to be the set of all homomorphism from \(X\) into \(Y\). It is easy to see that \((POM)_L - FG_r\) has all properties of a category.

Theorem 3.4. In \((POM)_L - FG_r\), coproduct exists, for any finite family of objects.

Proof. Let \(\{(A_i, \delta_i, \mu_i)\}_{i \in I}\) be a finite family of objects of \((POM)_L - FG_r\). For \(\{A_i\}_{i \in I}\). It is well-known that \(\bigcup_{i \in I} A_i, \lambda_i\) is a coproduct in the category of sets, where by \(\bigcup_{i \in I} A_i\) we mean the set \(\{(a, i) | (a, i) \in \bigcup_{i \in I}(A_i \times \{i\}), a \in A_i\}\), and for each \(i \in I\),

\[
\lambda_i : A_i \rightarrow \bigcup_{i \in I} A_i, \quad \lambda_i(a) = (a, i).
\]

Now we define

\[
\delta : \bigcup_{i \in I} A_i \rightarrow L, \quad \delta((a, i)) = \delta_i(a) \quad \text{for all}(a, i),
\]

and

\[
\mu : \bigcup_{i \in I} A_i \times \bigcup_{i \in I} A_i \rightarrow L, \quad \mu((a, i), (b, j)) = \begin{cases}
\mu_i(a, b) & \text{if } i = j \\
0 & \text{if } i \neq j
\end{cases}
\]

Then it is easy to see that \(\mu\) is a \((POM)_L\)-Fuzzy relation on \(\delta\). So \(\bigcup_{i \in I} A_i, \delta, \mu\) is an object in \((POM)_L - FG_r\). Now we show that for each \(i \in I\), \(\lambda_i : (A_i, \delta_i, \mu_i) \rightarrow (\bigcup_{i \in I} A_i, \delta, \mu)\) is a morphism in \((POM)_L - FG_r\). To see this:

(i) \(\delta(\lambda_i(a)) = \delta(a, i) = \delta_i(a)\), for all \(a \in A_i\),

(ii) \(\mu(\lambda_i(a), \lambda_i(b)) = \mu((a, i), (b, i)) = \mu_i(a, b), \forall a, b \in A_i\).

Thus \(\lambda_i\) is a morphism.

Next we prove that \(\{(\bigcup_{i \in I} A_i, \delta, \mu), \{\lambda_i\}_{i \in I}\}\) is a coproduct for \(\{(A_i, \delta_i, \mu_i)\}_{i \in I}\).

Let \((S, \delta', \mu')\) be a \((POM)_L\)-Fuzzy graph and \(\{f_i : (A_i, \delta_i, \mu_i) \rightarrow (S, \delta', \mu')\}_{i \in I}\) be a family of morphisms in \((POM)_L - FG_r\).

Since \(\bigcup_{i \in I} A_i, \{\lambda_i\}_{i \in I}\) is the coproduct for \(\{A_i\}_{i \in I}\) in the category of sets, we conclude that there exists a unique morphism \(\psi : \bigcup_{i \in I} A_i \rightarrow S\) in the category of
sets, such that
\[\psi \circ \lambda_i = f_i , \quad \forall i \in I . \]
Now it can be checked that, in fact \(\psi : \left(\bigcup_{i \in I} A_i, \delta, \mu \right) \rightarrow (S, \delta', \mu') \) is a morphism in \((POM)_L - FG_r \). Moreover it is unique, and this makes commutative the following diagram:
\[\begin{array}{c}
 \left(\bigcup_{i \in I} A_i, \delta, \mu \right) \\
 \downarrow \psi \\
 (S, \delta', \mu') \\
\end{array} \]
that is \(\left(\bigcup_{i \in I} A_i, \delta, \mu \right) \) is a coproduct. \(\square \)

Category of fuzzy subsets \((FS)\) [5]:

The objects in this category are pairs \((S, \delta)\), where \(S \) is a set and \(\delta \) is a fuzzy subset on \(S \). A morphism from \((S, \delta)\) to \((S', \delta')\) is an ordinary function \(f : S \rightarrow S' \) such that \(\delta(x) \leq \delta'(f(x)), \forall x \in S \). The identity associated with the object \((S, \delta)\) is the identity map on the set \(S \).

The composition of maps \(f : (S, \delta) \rightarrow (S', \delta') \) and \(g : (S', \delta') \rightarrow (S'', \delta'') \) is \(g \circ f : (S, \delta) \rightarrow (S'', \delta'') \) where \(g \circ f : S \rightarrow S'' \) and \(\delta(S) \leq \delta'(f(S)) \leq \delta''(g(f(S))) \) for all \(s \in S \).

Lemma 3.5. Let \(\{(A_i, S_i)\}_{i \in I} \) be a family of fuzzy subsets. Then the product of this family exists in \(FS \).

Definition 3.6. [8] Let \((L,T)\) be a partially ordered monoid such that
\[\bigwedge_{\alpha \in I} T(x_{\alpha}, y_{\beta}) \leq T\left(\bigwedge_{\alpha \in I} x_{\alpha}, \bigwedge_{\beta \in J} y_{\beta} \right), \]
for any two families \(\{x_{\alpha}\}_{\alpha \in I}, \{y_{\beta}\}_{\beta \in J} \) of elements of \(L \). Then we say that \(T \) satisfies the meet-property.

Theorem 3.7. Let \((L,T)\) be a partially ordered monoid which satisfies the meet-property. Then the product exists for any finite family of objects in \((POM)_L - FG_r\).
Sketch of Proof. Let \(\{ (A_i, \delta_i, \mu_i) \}_{i \in I} \) be a finite family of objects of \((POM)_L-FG_r\). Consider the product \(\prod_{i \in I} A_i \) of \(\{ A_i \}_{i \in I} \) in the category of sets. Define
\[
\delta : \prod_{i \in I} A_i \longrightarrow L ; \quad \delta((a_i)_{i \in I}) = \bigwedge_{i \in I} \delta_i(a_i) \quad (1)
\]
and
\[
\mu : \prod_{i \in I} A_i \times \prod_{i \in I} A_i \longrightarrow L ; \quad \mu((a_i)_{i \in I}, (b_i)_{i \in I}) \longrightarrow \bigwedge_{i \in I} \mu_i(a_i, b_i) \quad (2)
\]
Now we show that \(\mu \) is a \((POM)_L\)-Fuzzy relation on \(\delta \). We have
\[
\mu((a_i)_{i \in I}, (b_i)_{i \in I}) = \bigwedge_{i \in I} \mu_i(a_i, b_i) ; \quad \text{by (2)}
\]
\[
\leq \bigwedge_{i \in I} T(\delta_i(a_i), \delta_i(b_i)) ; \quad \text{since \(\mu_i \) is \(L_t \)-fuzzy relation on \(\delta_i, \forall i \in I \)}
\]
\[
\leq T\left(\bigwedge_{i \in I} \delta_i(a_i), \bigwedge_{i \in I} \delta_i(b_i) \right) ; \quad \text{by meet property of \(T \)}
\]
\[
= T(\delta((a_i)_{i \in I}), \delta((b_i)_{i \in I})) ; \quad \text{by (1)}
\]
Thus \(\prod_{i \in I} A_i, \delta, \mu \) is an object in \((POM)_L-FG_r\).

By considering the family \(\{ \Pi_i : \prod_{i \in I} A_i, \delta, \mu \longrightarrow (A_i, \delta_i, \mu_i) \}_{i \in I} \) of morphism in \((POM)_L-FG_r\), it is not difficult to prove that \((\prod_{i \in I} A_i, \delta, \mu), \{ \Pi_i \}_{i \in I} \) is the product of \(\{ (A_i, \delta_i, \mu_i) \}_{i \in I} \) in \((POM)_L-FG_r\).

Theorem 3.8. There exists a full and faithful functor from \((POM)_L-FG_r\) to \((POM)_L-FHG_r\). Hence there exists an embedding from \((POM)_L-FG_r\) into \((POM)_L-FHG_r\).

Proof. Let \((X, \delta, \mu)\) be a \((POM)_L\)-Fuzzy graph, and \(A, B \in p^*(X) \). Define
\[
\mu'(A, B) = \bigvee_{a \in A} (\bigvee_{b \in B} \mu(a, b))
\]
Then
\[
\mu'(A, B) = \bigvee_{a \in A} (\bigvee_{b \in B} \mu(a, b))
\]
\[
\leq \bigvee_{a \in A} (\bigvee_{b \in B} T(\delta(a), \delta(b)))
\]
\[
\leq T(\bigvee_{a \in A} \delta(a), \bigvee_{b \in B} \delta(b)) , \text{ by (*)}
\]
So \((X, \{\delta\}, \mu')\) is a \((POM)_L\)-Fuzzy hypergraph. Now define
\[
F : L_t - FG_r \rightarrow L_t - FHG_r,
\]
\[
(X, \delta, \mu) \mapsto (X, \{\delta\}, \mu')
\]
\[
f \mapsto (f, 1)
\]
for any morphism \(f : (X, \delta, \mu) \rightarrow (Y, \lambda, \nu)\) in \((POM)_L - FG_r\), where \(1 : \{1\} \rightarrow \{1\}\) is the identity function.

We show that \(F\) is a functor.

(i) \(f(\delta^*) = f(X) \subseteq Y = \lambda^*\)
(ii) Since \(f\) is a morphism in \((POM)_L - FG_r\), then
\[
\delta(x) \leq \lambda(f(x)), \forall x \in X.
\]
(iii) \(\mu'(E, F) = \bigvee_{a \in E} \bigvee_{b \in F} \mu(a, b) \leq \bigvee_{a \in E} \bigvee_{b \in F} \nu(f(a), f(b)) = \nu'(f(E), f(F)).\)

Thus \((f, 1)\) is a morphism in \((POM)_L\)-Fuzzy hypergraph. Now if \(g : (Y, \lambda, \nu) \rightarrow (Z, \xi, \rho)\) be a morphism in \((POM)_L - FG_r\), then
\[
f(goF) = (gof, 1) = (gof, 1o1)
\]
\[
= (g, 1)o(f, 1), \text{ by Definition of } L_t - FHG_r
\]
\[
= F(g)oF(f).
\]

It is clear that
\[
F(1_{(X, \delta, \mu)}) = (1_X, 1) = 1_{F(X)}.
\]

So \(F\) is a (covariant) functor.

Now let \(\mathcal{X} = (X, \delta, \mu)\) and \(\mathcal{Y} = (Y, \lambda, \nu)\) be two arbitrary objects in \((POM)_L - FG_r\). Consider two arbitrary morphisms \(f, g\) form \(\mathcal{X}\) to \(\mathcal{Y}\) such that \(F(f) = F(g)\). Thus we have \((f, 1) = (g, 1)\), which implies that \(f = g\). That is \(F\) is a faithful functor.

Also for the given objects \(\mathcal{X}\) and \(\mathcal{Y}\), let \((f, \alpha)\) be an arbitrary morphism from \(F(\mathcal{X}) = (X, \delta, \mu')\) to \(F(\mathcal{Y}) = (Y, \lambda, \nu')\) in \((POM)_L - FHG_r\). Then \(f : X \rightarrow Y\) and \(\alpha = 1 : \{1\} \rightarrow \{1\}\) are two functions. Now it is easy to check that \(f\) is a morphism from \(\mathcal{X}\) to \(\mathcal{Y}\) in \((POM)_L - FG_r\), and moreover \(F(f) = (f, 1) = (f, \alpha)\). Thus \(F\) is a full functor.

Definition 3.9. Let \((H, \ast)\) be a hypergroup and \(\delta \in F_L(H)\). Then \((H, \ast, \delta)\) is called a \((POM)_L\)-Fuzzy subhypergroup of \(H\) if

(i) \(T(\delta(x), \delta(y)) \leq \bigvee_{a \in x \ast y} \{\delta(a)\}, \forall x, y \in H\)
(ii) \(\forall x, a \in H, \exists y \in H\) such that \(x \in a \ast y\) and \(T(\delta(x), \delta(a)) \leq \delta(y)\).

(iii) \(\forall x, a \in H, \exists z \in H\) such that \(x \in z \ast a\) and \(T(\delta(x), \delta(a)) \leq \delta(z)\).
Example 3.10. Let A be a set of n elements, say $\{a_1, a_2, \ldots, a_n\}$. Then $L = (p(A), \subseteq)$ is a complete lattice which is not a chain. If we consider T as follows:

$$T : L \times L \longrightarrow L$$

$$(B, C) \longmapsto B \cap C$$

Then (L, T) is a partially ordered monoid. Now let $H = \{1, 2, \ldots, n\}$. Define the hyperoperation \circ on H by

$$\circ : H \times H \longrightarrow P^*\{H\}$$

$$(i, j) \longmapsto \{i, j\}$$

Then it is easy to see that (H, \circ) is a (commutative) hypergroup. Clearly $\delta : H \longrightarrow L$ is an H, δ-hypergroup. Without loss of generality we always suppose that δ and x are all L-Fuzzy subsets on H. Now we can check that (H, \circ, δ) is an $(POM)_L$-Fuzzy subhypergroup of H. Moreover we can show that for any $k \in N$, $k \leq n$, (H_k, \circ, δ) is a $(POM)_L$-Fuzzy subhypergroup of H_k.

Remark 3.11. Let $(H, *, \delta)$ be a $(POM)_L$-Fuzzy subhypergroup of H. If $x \in H$ and $x \not\in \delta^*$, i.e. $\delta(x) = 0$, then the conditions of Definitions 3.9 always hold. Thus without loss of generality we always suppose that $\delta^* = H$.

Category of $(POM)_L$-Fuzzy subhypergroups $((POM)_L - FHG_p)$:

The objects are all $(POM)_L$-Fuzzy subhypergroups. A morphism form $(H, *, \delta)$ to $(H', *, \delta')$ is a function $f : H \longrightarrow H'$, satisfies

(i) $f(x * y) = f(x) *' f(y), \forall x, y \in H$

(ii) $\delta(x) \leq \delta'(f(x)), \forall x \in H$.

Lemma and Definition 3.12 (see [9]). Let $\delta \in F_L(X)$. Define $\mu_\delta \in F_L(X \times X)$ as follows:

$$\mu_\delta(x, y) = T(\delta(x), \delta(y)), \forall (x, y) \in X \times Y.$$

Then μ_δ is a $(POM)_L$-Fuzzy relation on δ, and called the strong $(POM)_L$-Fuzzy relation on X.

Proof. The proof is obvious. \square

Theorem 3.12. There exists a functor from $(POM)_L - FHG_p$ to $(POM)_L - FG_r$.

Proof. Let $(H, *, \delta)$ be a $(POM)_L$-Fuzzy subhypergroup. Define $F((H, *, \delta)) = (H, \delta, \mu_\delta)$. By Lemma 3.12 (H, δ, μ_δ) is a $(POM)_L$-Fuzzy graph. Let $f : (A, *, \delta) \longrightarrow (B, o, \delta)$ be a morphism in $(POM)_L - FHG_p$. Define $F(f) = f$. We have $F(f) : (A, \delta, \mu_\delta) \longrightarrow (B, \delta, \mu_\delta')$ such that

i) $\delta(a) \leq \delta'(f(a)), \forall a \in A$

ii) $\mu_\delta(a, b) = T(\delta(a), \delta(b))$

$$\leq T(\delta'(f(a)), \delta'(f(b)))$$

$$= \mu_{\delta'}(f(a), f(b)).$$

Therefore $F(f)$ is a morphism in $(POM)_L - FG_r$. It is clear that $F(1_{(A, *, \delta)}) = 1_{(A, \delta, \mu_\delta)}$, and $F(gof) = F(g) \circ F(f)$. Hence F is a functor. \square

Theorem 3.13. There exists a functor from $(POM)_L - FHG_p$ to $(POM)_L - FHG_r$.
Proof. The proof follows from Theorems 3.8 and 3.13. □

Theorem 3.14. Let L be totally ordered. Then every $(POM)_L$-Fuzzy hypergraph, induces a $(POM)_L$-Fuzzy hypergroup.

Proof. Let $H = (X, \{\mu_i\}_{i=1,2,...,n}, \mu)$ be a $(POM)_L$-Fuzzy hypergraph. Define

$$o : p^*(X) \times p^*(X) \longrightarrow p^*(p^*(X))$$

by

$$o(A, B) = o(B, A) = \{ C \in p^*(X) | \bigvee_{i=1}^{n} \bigvee_{a \in A} \mu_i(a) \leq \bigvee_{i=1}^{n} \bigvee_{c \in C} \mu_i(c) \leq \bigvee_{i=1}^{n} \bigvee_{b \in B} \mu_i(b)$$

or

$$\bigvee_{i=1}^{n} \bigvee_{b \in B} \mu_i(b) \leq \bigvee_{i=1}^{n} \bigvee_{c \in C} \mu_i(c) \leq \bigvee_{i=1}^{n} \bigvee_{a \in A} \mu_i(a) \}.$$

Thus clearly $A, B \in AoB, \forall A, B \in p^*(X)$. (1)

Now we must show that $(p^*(X), o)$ is a commutative hypergroup, to see this let $A, Y \in p^*(X)$ and $U = V = Y$. By (1) we have $Y \in AoV$ and $Y = UoA$. Therefore by Lemma 1.5 we have

$$Ao \circ p^*(X) = p^*(X) \circ A = p^*(X), \quad \forall A \in p^*(X).$$

Let $A, B, C \in p^*(X)$. Then by considering the totally ordered property of L, it is not difficult to check that $(AoB) \circ C = A \circ (BoC)$. Hence $(p^*(X), o)$ is a commutative hypergroup.

Now define

$$\delta : p^*(X) \longrightarrow L; \quad \delta(A) = \bigvee_{i=1}^{n} \mu_i(a), \quad \forall A \in p^*(X).$$

We claim that $(p^*(X), o, \delta)$ is a $(POM)_L$-Fuzzy subhypergroup. Let $A, B \in p^*(X)$ such that $\delta(A) \leq \delta(B)$, we have

$$\inf_{D \in AoB} \{ \delta(D) \} = \inf_{\delta(A) \leq \delta(D) \leq \delta(B)} \{ \delta(D) \} \geq \delta(A)$$

$$= T(\delta(A), 1) \geq T(\delta(A), \delta(B))$$

So condition (i) of Definition 3.9 holds.

Since $B \in AoB = BoA$ and $T(\delta(A), \delta(B)) \leq \delta(A)$, so conditions (ii) and (iii) of Definition 3.9 hold too. Therefore $(p^*(X), o, \delta)$ is a $(POM)_L$-Fuzzy subhypergroup.

Note that since $X = \bigcup_{i=1}^{n} \mu_i^*$, hence $\delta^* = p^*(X)$. □

Question: Let L be totally ordered. Then can the object function defined in Theorem 3.14 be completed to a functor?
References

M. M. Zahedi, Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran
E-mail address: zabedi_mm@uk.ac.ir

M. R. Khorashadi-Zadeh*, Department of Mathematics, Imam Ali Military University, Tehran, Iran
E-mail address: mr_khorashadi@yahoo.com

*Corresponding author