Optimal Intelligent Controller for Matrix Converter Induction Motor Drive System

R. R. Joshi, R. A. Gupta, and A. K. Wadhwani

Abstract—This paper proposes a new control algorithm for a matrix converter (MC) induction motor drive system. First, a new switching strategy, which applies a back-propagation neural network to adjust a pseudo dc bus voltage, is proposed to reduce the current harmonics of the induction motor. Next, a two-degree-of-freedom controller is proposed to improve the system performance. The controller design algorithm can be applied in an adjustable speed control system and a position control system to obtain good transient responses and good load disturbance rejection abilities. The implementation of this kind of controller is only possible by using a high-speed digital signal processor. In this paper, all the control loops, including current-loop, speed-loop, and position-loop are implemented by TMS320C6711 digital signal processor. Several experimental results are shown to validate the theoretical analysis.

Index Terms—Adjustable speed control system, controller design algorithm, control loops, load disturbance rejection, matrix converter.

NOMENCLATURE

\(K_T\) Torque constant
\(I_t^*\) Ideal current command
\(I_{\text{ref}}^*\) Ideal torque command
\(I_{\text{ref}}^*\) Required compensating current
\(\Delta v_e(k)\) Speed error of motor at sampling interval \(k\)
\(\alpha(k)\) Change of speed error at sampling interval \(k\)
\(G_{s}(z)\) Transfer function of PI controller
\(G_{s}(z)\) Transfer function of simplified plant
\(N(I^*)\) Describing function of the current limiter
\(\mu_a\) Grade of the membership function
\(w_{a1}, w_{a2}\) Parameters of the neural
\(\theta_{\text{ok}}\) Network obtained from
\(\theta_{\text{ol}}\) The off-line learning

I. INTRODUCTION

The matrix converter (MC) has received considerable attention in recent years. The ac/ac matrix converter has many advantages. For example, it uses only nine bi-directional switches and does not require any dc links. In addition, it has a high-power-factor, sinusoidal input current, bi-directional power flow, and low switching frequency on each power device. Different switching schemes for an ac/ac matrix converter have been proposed to achieve sinusoidal input and output current waveforms.

Manuscript received December 25, 2005; revised May 27, 2006.
R. R. Joshi is with the Department of Electrical Engineering, CTAE, MPUAT, Udaipur (Raj.), India (e-mail: rrjoshi_iitd@yahoo.com).
R. A. Gupta is with the Department of Electrical Engineering, MNIT, Jaipur, (Raj.), India (email: rag_mnit@rediffmail.com).
A. K. Wadhwani is with Department of Electrical Engineering, MITS, Gwalior (MP), India (email: arun_wadhwani@rediffmail.com).
Publisher Item Identifier S 1682-0053(07)0451
cycloconverter, because, first, it doesn’t employ a dc link and, secondly the output waveforms are composed of switched segments of the input waveforms. The matrix converter therefore possesses the advantages of both the cycloconverter and the PWM drive, as summarized below:
1. It can operate in all four quadrants of the torque-speed plane because of its regeneration capability.
2. Its input current waveform is sinusoidal and the input power factor is unity.
3. The input power factor may be controlled across the whole speed range.
4. There is no dc link and therefore no requirement for energy storage devices.
5. The output voltage and input current waveforms can be controlled such that they are near sinusoidal in form.
6. The harmonic distortion that is incurred is at high frequencies.
7. It may be used as direct frequency changer, converting a fixed ac or dc source into a variable ac or dc supply.
8. Compact converter design.
9. No dc-link components.

Most of the previous publications on matrix converters have dealt with modulation strategies [1]-[6], or with aspects of adjustable speed control [7]-[11]. Very few publications have considered the controller design for the matrix converter based ac drive system [11], and only some simulated results have been provided. In addition, the previous publications did not discuss the position control for the matrix converter based ac drive system. The position control includes an inner speed control loop. If the speed cannot be adjusted from a very low speed to a high speed with precise control, the inner speed loop of the position control system becomes nonlinear. Then, the performance of the position control is seriously deteriorated. As a result, the position control is more challenging than the speed control system for other ac motors.

In this paper, a back-propagation neural network is used to adjust the pseudo dc-bus voltage of the matrix converter according to the motor speed and the output current deviation of the matrix converter. As a result, the switching pattern of the matrix converter is new. In addition, a matrix converter based induction motor drive system is developed. A two-degree-of-freedom controller is used for the drive system. The implementation of this kind of controller is only possible by using a high speed digital signal processor. In this paper, all the current, speed, and position-loops are implemented by a digital signal processor. The system can track a triangular time-varying position command well. As a result, the system has satisfactory performance as a servo drive system. It has a fast response and a good load disturbance rejection capability.

To the author’s best knowledge, this is the first time that a two-degree-of-freedom controller with parameter optimization has been applied in matrix converter induction motor drive system. Implementation of a high performance induction motor position-control system driven by a matrix converter is also an original idea. The proposed method has several advantages. The design procedures of the control law require only algebraic computation. In addition, the implementation of the control law is relatively simple using a high-speed digital signal processor TMS320C6711.

This paper is structured as follows. In section II, neural network based switching strategy is discussed. Section III, describes fuzzy controller design with torque pulsation improvement. In Section IV, DSP based implementation is described. Section V explains the experiments and their results. The paper is concluded in Section VI.

II. NEURAL NETWORK BASED SWITCHING STRATEGY

A multilayer neural network is used here to determine the bus voltage of the matrix converter. It is possible to compute the required voltage vector of the motor, and then determine the optimal selection of the bus voltage. This method, however, requires a lot of computations and is difficult to implement. An off-line learning neural network is therefore proposed. Fig. 2(a) shows the structure of the proposed neural network which includes an input layer, a hidden layer, and an output layer. The parameters of the synaptic weights are off-line trained. The input state variables are the motor speed and current deviation because they are related to the bus voltage. For example, a higher speed range requires a high bus voltage to produce the required current regulation. In addition, the current deviations during transient response and steady-state conditions appear different and thus require different bus voltages to reduce the deviations.

The parameters of the neural network, \(w_{ik}, v_{kj}, \theta_{ik}, \text{ and } \theta_j \) are obtained from the off-line learning processes. The off-line learning algorithm is shown in Fig. 2 (b). First, we obtain some desired training data from experimental results. Then, we can execute the training process to obtain the required parameters \(w_{ik}, v_{kj}, \theta_{ik}, \text{ and } \theta_j \). In the application of the back-propagation algorithm, two passes are required: the forward pass and the backward pass. In the forward pass, the synaptic weights remain unaltered throughout the network. The forward pass input state variables are the motor speed and the maximum absolute value of the three-phase current deviations. The backward
pass, on the other hand, starts at the output layer by passing the error signals leftward through the network, layer by layer, and recursively computing the relative weight corrections and then adjusting the synaptic weights.

III. TORQUE PULSATION IMPROVEMENT AND FUZZY CONTROLLER

Unfortunately, in the real world, the torque pulsation can be produced in many different ways. First, the rotor magnetic flux flows through a minimum reluctance path to the stator, which produces cogging torque. Second, the analog-to-digital (A/D) converter and Hall-effect current sensors have offset biases and thus produce torque pulsation. Finally, the phase currents and motor back emf are affected by the undesired high-order harmonics. In order to describe the real torque, a simple mathematical model, which is related to the rotor position of the motor and the current command, is used as [9]

$$T_r(\theta, I') = a_o(\theta) + K_t I'(1 + a_i(\theta))$$

(1)

where a_o and a_i are the parameters relative to torque pulsation, K_t is the torque constant which is equal to $\frac{zKTG(z)}{Jm}$ and I' is the ideal current command. The parameter $a_o(\theta)$ includes the torque pulsation due to the cogging torque and the current offset in the drives. It can be measured by setting the I' to zero, and then measuring the relative torque in different shaft angles. The parameter $a_i(\theta)$ includes the torque pulsation related to the harmonic contents, and the phase misalignment of the current and the back emf profiles. It can be calculated by using the following equation

$$a_i(\theta_j) = \frac{T_c(\theta_j, I') - a_o(\theta_j) - K_t I'}{K_t I'}$$

(2)

A compensation current command is designed to produce an ideal torque. The relationship between the compensation command and the ideal torque is shown by

$$T' = K_t I' = a_o(\theta_j) + K_t I'_{ref}(1 + a_i(\theta_j))$$

(3)

where T' is the ideal torque command, and I'_{ref} is the required compensating current command. Now, it is easy to obtain the compensation current command as

$$I'_{ref} = \frac{I'}{1 + a_i(\theta_j)} - \frac{a_o(\theta_j)}{K_t(1 + a_i(\theta_j))}$$

(4)

The proportional - integral (PI) controller has been widely used in industry for a long time due to its simplicity and reliability. Unfortunately, by using a fixed PI controller, it is difficult to obtain both a good transient response and a good load disturbance rejection. It is possible to tune the PI controller by using a self-tuning algorithm. However, this method is very complicated and is difficult to implement. A fuzzy algorithm is therefore proposed to adjust the parameters of the PI controller. Both a good transient response and a good load disturbance rejection capability can be achieved by using this method.

First, the state variables of this system are defined as

$$\Delta \omega(k) = \omega^*_k - \omega(k)$$

(5)

$$\alpha(k) = \frac{[\Delta \omega(k) - \Delta \omega(k-1)]}{T}$$

where $\Delta \omega(k)$ is the speed error of the motor at sampling interval k, $\alpha(k)$ is the change of the speed error at sampling interval k, and T is the sampling interval of the drive system.

Then, the PI controller is tuned according to the proposed fuzzy algorithm. The acceptable tuning range of the PI controller can be determined as follows. A saturation-type current limiter exists in the forward loop. The reason is that the matrix converter has its allowable maximum current to avoid damage to the solid-state power devices. The current limiter is a nonlinear element which may cause limit cycles of the speed response. In order to avoid producing limit cycles, the parameters of the PI controller should be limited within a reasonable range. The describing function technique is used here to determine the range of the parameters of the PI controller. In the discrete-time domain, the transfer function in the forward-loop is

$$G_f(z) = \frac{K_tz}{Jm(z-I)^2 + K_tz}$$

(6)

where $Gc(z)$ is the transfer function of the PI controller, $Gf(z)$ is the transfer function of the simplified plant, and Jm is the equivalent inertia of the system. Then, we can use the bilinear transformation, $z = (1+\omega)/(1-\omega)$, to obtain

$$G_f(\omega) = \frac{K_tT[-(K_t + 2K_t) \omega^2 + 2K_t\omega + K_t]}{4Jm \omega^2}$$

(7)

The $G_f(\omega)$ can be transformed into the frequency domain. The current limiter can be approximated by its describing function.
The membership functions are used to describe the compatibility or degree of truth. The speed error is divided into three categories: the large error, the small error, and the zero error and is shown in Fig. 3(a). Then, any $\Delta w(k)$ may have different membership functions which are related to the three different categories. In Fig. 3(b), the change of the speed error is $a(k)$, which can be divided into three categories as well. The maximum value of the change of the speed error is set as 400 rad/s² due to the current limitation and inertia of the induction motor drive system.

The fuzzy-reasoning algorithm is based on the characteristics of the induction motor drive system and the designer's experience. For example, when the motor is starting, the PI controller is adjusted to achieve a fast response. However, when the motor is in a close to steady-state condition, the PI controller is tuned to avoid oscillations of the speed response. The details are as follows:

1. IF $|\Delta w(k)|$ is big THEN $K_p = K_{p1}, K_i = K_{i1}$.
2. IF $|\Delta w(k)|$ is small and $|a(k)|$ is big THEN $K_p = K_{p2}, K_i = K_{i2}$.
3. IF $|\Delta w(k)|$ is small and $|a(k)|$ is zero THEN $K_p = K_{p3}, K_i = K_{i3}$.
4. IF $\Delta w(k)$ is zero THEN $K_p = K_{p5}, K_i = K_{i5}$.

The parameters $K_{p1} - K_{p5}$ and $K_{i1} - K_{i5}$ should satisfy tuning range of PI controller, keeping in mind, these parameters are determined by the designer's experience.

B. Defuzzification

The center of area (COA) method is used to obtain the PI parameters. In order to consider the effect of both the state variables, Δw and α, the intersection of the grade of the membership function μ, with and α is calculated as:

$$\mu = \mu_{\Delta w}(r) \cap \mu(\alpha)$$

where $N(\Delta w')$ is the describing function of the current limiter, I'_{max} is the maximum allowable current of the inverter. The closed-loop system exhibits limit cycles if $G_{\text{j}}(\omega)$ and $-1/N$ intersect. It is easy to observe that the magnitude of $N(\Delta w')$ is always positive and varies from 0 to 1. As a result, the phase of $-1/N$ is always -180 degrees and the magnitude of $-1/N$ varies from 1 to infinity. Assume ω_0 is the phase crossover frequency for $G_{\text{j}}(\omega)$. Then, the $G_{\text{j}}(\omega)$ is approximated by:

$$|G_{\text{j}}(\omega)| = K_{\text{j}} T (2K_p + K_i)/(\omega_0^2)$$

(9)

The condition for the closed-loop system to be stable, is one in which $G_{\text{j}}(\omega_0)$ cannot intersect with $-1/N$. This, then implies that the $|G_{\text{j}}(\omega_0)|$ satisfies the following inequality:

$$0 < |G_{\text{j}}(\omega_0)| < 1$$

(10)

Finally, the tuning range of the PI controller can be obtained as:

$$0 < K_p T (2K_p + K_i) < 4J$$

(11)

A. Membership Functions and Fuzzy Control Law

The membership functions are used to describe the compatibility or degree of truth. The speed error is divided into three categories: the large error, the small error, and the zero error and is shown in Fig. 3(a). Then, any $\Delta w(k)$ may have different membership functions which are related to the three different categories. In Fig. 3(b), the change of the speed error is $a(k)$, which can be divided into three categories as well. The maximum value of the change of the speed error is set as 400 rad/s² due to the current limitation and inertia of the induction motor drive system.

The fuzzy-reasoning algorithm is based on the characteristics of the induction motor drive system and the
Fig. 4. Measured speed response at 500 r/min, (a) transient, and (b) load disturbance.

Fig. 5. Measured steady-state stator currents. (a) traditional at 100 r/min, (b) proposed at 100 r/min, (c) traditional at 500 r/min, (d) proposed at 500 r/min, (e) traditional at 1500 r/min, and (f) proposed at 1500 r/min.

V. EXPERIMENTAL RESULTS

An experimental prototype matrix converter drive system based on the proposed control method has been constructed. The motor line currents are measured by two Hall-effect current sensors. The other feedback quantities are the absolute rotor shaft angle and motor speed, which can be obtained by the resolver mounted on the motor shaft. The parameters of the induction motor are shown as follows. The stator resistance is 0.40 \(\Omega \)/phase, the
d-axis inductance is 6.7 mH, the q-axis inductance is 6.7 mH, the inertia of the motor and dynamometer is 0.0233 Nm·s²/rad, and the torque constant is 0.643 Nm/A. The current limitation of the matrix converter is ±14 A.

Fig. 4 shows the measured speed responses of the matrix converter drive system with different control methods. Fig. 4(a) is the transient responses with a speed command of 500 r/min. Fig. 4(b) is the load disturbance responses when a 2 Nm external load is added at a speed of 500 r/min. According to Fig. 4(a) and Fig. 4(b), the proposed control algorithm, which uses fuzzy logic to adjust the PI controller parameters, performs better than the fixed PI controllers.

The traditional PWM drive system employ either a traditional rectifier or a PWM rectifier to convert the source voltage in the required dc voltage. A PWM inverter is normally used to convert the dc voltage to the required ac output voltage and frequency. Smaller power converters may employ PWM converter and inverters using IGBT devices. Larger PWM drives, often favors diode Rectifier Bridge, thereby overcoming the reverse voltage limitation of the IGBT devices. The matrix converter is superior to the traditional PWM drives because of regeneration ability and sinusoidal input current. Therefore it meets the stringent energy-efficiency and power quality requirements of the new century.

Fig. 5 shows the measured a-phase currents in steady-state. Fig. 5(a) shows the a-phase current at 100 r/min and 2 Nm by using the traditional method. Fig. 5(b) shows the a-phase current in the same condition by using the proposed method. The proposed method performs better. Fig. 5(c) shows the a-phase current at 500 r/min and 2 Nm by using the traditional method proposed in reference paper [5]. Fig. 5(d) shows the a-phase current in the same situation by using the proposed method. The proposed method performs better again. Fig. 5(e) shows the a-phase current at 1500 r/min and 2 Nm by using the traditional method. Fig. 5(f) shows the a-phase current in the same condition by using the proposed method. The proposed method has similar performance to the traditional one when the motor is operated at a rated speed. The major reason for this is that almost the highest bus voltage switching patterns are selected as the motor is operated at a rated speed. According to Fig. 5, we can observe that the proposed method can effectively reduce the current deviations in a low or middle speed range.

Fig. 6 shows the low speed responses of 1 r/min. Fig. 6(a) is the speed response of the traditional method proposed in [5]. Fig. 6(b) is the speed response obtained by using the neural-network learning technique without using torque compensation. Fig. 6(c) is the speed response when using the neural network learning technique and torque compensation. This method can obtain a smooth speed with small ripples.

VI. CONCLUSIONS

In this paper, design and implementation of a novel matrix converter induction motor system has been investigated. All the control algorithms, which include the switching strategy, the coordinate transformation, the speed control, and the position control, are executed by a digital signal processor TMS320C6711. This paper has provided a systematic and analytic approach for designing a high performance matrix converter induction motor drive system. The proposed design approach has been validated by actual implementation. Moreover, this design approach can be applied in both the speed and the position control system with an added advantage that the implemented system is flexible.

These research results concerning intelligent control scheme and robustness of the bidirectional switch commutation have led to innovative solutions and from technical point of view industrial use seem to be reasonable now. The impact of these results on the future work in IM control is in speeding-up process of the matrix converter technology in real industrial applications. As a result, it is likely to play major role in future converter designs both as a motor drive at low and high powers and as a power converter linking two electrical power systems having different voltages and frequencies.
REFERENCES

R. R. Joshi was born in India in 1961. He received bachelor degree in Electrical Engineering from M B M Engineering College, Jodhpur, and M. Tech. degree from IIT, Delhi, both from India in 1984 and 2000, respectively. He is working towards the Ph.D. Degree in Electrical Engineering from MITS, Gwalior. He was employed as a plant maintenance engineer at Udaipur cement works, Dabok (India) in 1984. He had served as installation and maintenance engineer at Mahi hydroelectric power plant, Bawara, where he was primarily involved in planning and implementation of PERT/CPM techniques for upcoming hydro power plant at Mahi and Bagidora together with plant erection task in 1985. He is currently an Associate Professor in the Department of Electrical Engineering, Maharana Pratap University of Agriculture and Technology, Udaipur, India. His research interests include fuzzy logic, neural networks, genetic algorithms, intelligent control, and matrix converter technology. He is a life member of ISTE. He is a fellow member of Institution of Engineers (India).

R. A. Gupta was born in India. He received bachelor degree in Electrical Engineering and M. Tech. degree from M.B.M. Engineering College, Jodhpur, India. He received Ph.D. degree in Electrical Engineering from IIT, Roorkee, India in 1994. He is currently a Professor in the Department of Electrical Engineering, MNIT, Jaipur, India. His current research interests are in the area of application of artificial intelligence in electric drives. He is a fellow member of Institution of Engineers (India).

A. K. Wadhwan obtained B.E. (Electrical) from Bhopal University in 1987 and M.E. (Measurement & Instrumentation) from University of Roorkee, Roorkee in 1993 and Ph. D. in Electrical from IIT Roorkee in 2003. At present he is working as Reader in Electrical Engineering at MadHAV Institute of Technology & Science, Gwalior. He has published 30 research papers in National, International Journals and conferences. He has organized a number of staff development programs and national conferences for the benefit of student, faculty and field engineers. His areas of interest are application of neural network, fuzzy logic and wavelets in Electrical Engineering, digital signal processing. He is life member of ISTE.