Abstract—We report measurements of the temperature at different times during the arcing period of an experimental model of a sand-filled, high-voltage, high breaking capacity fuse. The cylindrical fuse-holder, containing a single-strand of uniform silver fuse-element, is tested at 6 kV, 50 Hz, and 1.25 kA prospective current is passed through it to generate the fuse arc. An optical fiber is used to carry light from the fuse arc to a spectrograph which is used to isolate spectral lines of interest. The spectrum is recorded by an intensified photodiode array. By gating the image intensifier in front of the diode array a complete spectrum is recorded in several microseconds. By varying the timing of the gate pulse the arc spectrum can be obtained at any desired time during the arcing period. The arc temperature is determined from the relative intensities of Si II spectral lines. The arc temperature was found to be around 20,000 °K.

Index Terms—Arc temperature, relative intensity of spectral lines, sand-filled-high-voltage fuse, the fuse’ arc spectrum.

I. INTRODUCTION

Accurate modeling of high-voltage, high breaking capacity (HBC) fuses requires better knowledge of the arc parameters of which the electron temperature of the plasma is a key parameter. Spectroscopic determination of the electron temperature and electron density has several advantages over other methods, such as the use of probes, as it does not disturb the plasma [1]. The use of spectroscopy to investigate the properties of a fuse arc was reported first by Chikata et al. [2]. Using a transparent Pyrex glass tube as the fuse holder, they recorded a spectrum and from the relative intensity of two Si II lines estimated the arc temperature to be about 23,000 °K. To obtain a more reliable picture of the arc in a sand-filled non-transparent fuse-holder, Barrow and Howe [3] inserted optical fibers into the plasma to convey light to a rapidly scanning spectrometer. They observed three pairs of Si II lines of interest. The spectrum is recorded by an intensified photodiode array. By gating the image intensifier in front of the diode array a complete spectrum is recorded in several microseconds. By varying the timing of the gate pulse the arc spectrum can be obtained at any desired time during the arcing period. The arc temperature is determined from the relative intensities of Si II spectral lines. The arc temperature was found to be around 20,000 °K.

We report here an extension of this technique to the investigation of fuse plasma for higher applied voltage and prospective current, conditions more typical of those likely to be encountered in a commercial sand-filled fuse. Several Si II lines were used to estimate the temperatures, rather than just the two used by other researchers, in order to increase the reliability of the temperature measurement.

II. THEORY OF SPECTROSCOPIC TEMPERATURE MEASUREMENT

Emission spectroscopy involves the analysis of light that is emitted when an excited atom undergoes a transition to a lower energy level [7]. The intensity of the emitted light can be represented by the following relationship [8]:

\[I = \frac{P g A}{\lambda} e^{-\frac{\lambda}{kT}} \]

where \(I \) is the intensity of emitted light, \(\lambda \) is the wavelength of light, \(E \) is the energy of the excited level, \(g \) is its statistical weight, \(k \) is the Boltzmann constant, \(A \) is the transition probability for the transition, \(T \) is the electron temperature of the plasma, and \(P \) is a constant for lines from the same ionization state. Equation (1) can be written as
\[\log \left(\frac{\psi_e}{gA} \right) = \frac{E \log e}{kT} + \log P \quad (2) \]

When \(E \) is in electron volts and \(T \) in kelvin, (2) reduces to:

\[\log \left(\frac{\psi_e}{gA} \right) = \frac{5040E}{T} + \text{const.} \quad (3) \]

Thus a plot of \(\log(\psi_e/gA) \) versus \(E \), for several lines belonging to the same ionization level, should be a straight line, from the slope of which the arc temperature is readily obtained. Values of the parameters \(g \), \(A \) and \(E \) are available in references [9]-[14].

III. EXPERIMENTAL SETUP

A simple experimental model of a high-voltage HBC fuse in which the current was forced to zero, using a crow bar, was used to study the fuse arc. Commercially available fuses are designed to ensure that the current goes to zero at a time well before the fault current would have reached its maximum value had the fuse been replaced by a metallic link of negligible impedance. The current-limitation phenomenon is affected by a sudden rise of the voltage across the fuse at the initiation of the arcing: this voltage should be higher than the system voltage and is dependent upon the length of the fuse-element used. In commercial sand-filled fuses the fuse-element’ length is thus kept very large compared with the length of the fuse holder. The cylindrical holder for the experimental model HBC, of length 112.2 mm and internal diameter 59.6 mm, was filled with SiO₂ sand (Fig. 1)). The fuse was energized from a parallel-current-injection synthetic test circuit, as shown in Fig. 2. The fuse was tested at a prospective current of 1.25 kA (peak) at 6 kV, 50 Hz. The fuse element was a 0.55 mm diameter uniform silver wire. In order to convey light to the spectrograph a multimode silica optical fiber with a core diameter of 62.5 \(\mu \)m was inserted through the wall of the fuse holder to touch the fuse element [3]-[5]. The other end of the fiber was mounted in the middle of the 25 \(\mu \)m entrance slit of a Jarrell-Ash Monochromator [15]. The spectrum was recorded using a Princeton Applied Research model 1460 Optical Multi-channel Analyzer (OMA) with a 1024 element intensified photodiode array detector [16].

IV. RECORDING OF THE SPECTRUM

The OMA is operated in its gated mode in order to synchronize it with the fuse energizing circuit. The initiation pulse, provided by the OMA, closes the mechanical make switch MS1 of the test circuit (Fig. 2) which takes about 65 ms to close. A delay circuit enables the image intensifier to be triggered in order to record a spectrum at any chosen time during the arcing process. The exposure time, determined by the duration of the gating pulse, is several microseconds. A block diagram of the timing circuit is shown in Fig. 3. A Nicolet Pro digital oscilloscope [17] is used to record the voltage across the fuse, the current flowing through the fuse and the time at which the spectrum is recorded. The voltage across the fuse is measured by Tektronix P6015, 1000:1, 20 kV, 100 MΩ resistive divider voltage probe (rise time 5 ns). Current is measured using a 190.8 A/V coaxial current shunt (rise time approximately 60 ns).

V. EXPERIMENTAL RESULTS

A low-pressure mercury lamp was used to calibrate the spectrometer wavelength scale. Relative calibration of sensitivity as a function of wavelength was accomplished using a calibrated tungsten ribbon lamp. The light from the tungsten lamp traversed the same optical path, including the optical fiber, as the light from fuse arc. Thus:

\[I_{\text{lamp}} \propto S_{\text{lamp}} \text{ and } I_{\text{arc}} \propto S_{\text{arc}} \]

where \(I_{\text{lamp}} \) and \(I_{\text{arc}} \) are the intensities of the radiation from the tungsten lamp and fuse arc respectively, \(S_{\text{lamp}} \)

Fig. 1. Photograph of the test fuse: length is 112 mm and inner diameter of the cartridge is 59.5 mm.

Fig. 2. Parallel-circuit-injection synthetic test circuit used to energize the test fuse.

Fig. 3. A simplified block diagram to synchronize the OMA with the test fuse.
Fig. 4. Spectrum of the tungsten lamp and the background level, exposure time was 5 seconds at a current of 15.53 A, and the intensifier set in “continuous” mode.

Fig. 5. The OMA head is opened and the fuse’ arc spectrum recorded at 2.302 ms after the arc has struck (arcing time at which the spectrum is recorded is thus 2.302 ms).

Fig. 6. The arc spectrum is recorded at an arcing time of 8.95 ms, i.e. 8.95 ms after the start of the arcing.

Fig. 7. Plot for the \(\log \left(\frac{I}{gA} \right) \) vs. upper level energy that is used to determine the electron temperature at arcing time of 2.302 ms (for the spectrum shown in Fig. 5): arc current is 770 A and arc voltage is 728 V.

and \(S_{\text{arc}} \) are the corresponding signals recorded by the OMA. Since the proportionality factor is same function of wavelength in both cases the relative intensity of the fuse arc spectrum is given by:

\[
I_{\text{arc}} = \left(\frac{S_{\text{arc}} \times I_{\text{lamp}}}{S_{\text{lamp}}} \right).
\]

(4)

Four pairs of Si II lines were identified in the arc spectrum. They were around 413 nm (412.8 and 413.1), 505 nm (504.1 and 505.6), 597 nm (595.8 and 597.9), and 636 nm (634.7 and 637.1). Because of partial overlap of the recorded line profiles the four doublets were treated as single lines with the signal value determined by calculating the area under the combined profile after subtraction of the background level. Average wavelength values were used for plotting \(\left(\frac{g\lambda}{gA} \right) \), and \(gA \) was replaced by \(g_1A_1 + g_2A_2 \) where subscripts 1 and 2 represent the first and second lines of each doublet. Fig. 4 shows the spectrum of the tungsten lamp; Figs. 5 and 6 show arc spectra taken at different times during the arcing period. A typical plot for determining the electron temperature is shown in Fig. 7.

A summary of temperature measurements as a function of time is shown in Table I which also gives the instantaneous arc current, instantaneous arc voltage, and
instantaneous arc power. The arc time was obtained by subtracting the pre-arcing time for each shot (the average value around 5.3 ms) from the time at which the spectrum was recorded. Arc temperature as a function of time is also given in Fig. 8.

VI. DISCUSSION

During the measurements care was taken to ensure that each sample fuse was identical and was energized under identical conditions so that a variation of temperature with time could be measured on a shot-to-shot basis. The spectrograph enabled us to record spectra from 300 nm to 800 nm. Since intensity calibration using the tungsten lamp was reliable above 420 nm only, we were forced to ignore values around 5.3 ms) from the time at which the spectrum falls slowly from about 22,000 °K - at the arc initiation - to around 18,000 °K - at the end - during the arcing period when a 112.2 mm long (at internal diameter of 59.6 mm) model fuse was tested from a prospective current of 1.25 kA at 6 kV, 50 Hz. The arc was not extinguished by the fuse due to its current-limiting action, but in fact the fault current was carried by the crow bar (MS2, Fig. 2). The high temperature measured throughout the arcing period indicates that the arc probably had not cooled enough for successful current interruption by the fuse itself.

ACKNOWLEDGMENT

The authors wish to thank Greg Toland for his assistance in running the laboratory during the course of this study.

REFERENCES

Anthony David (Tony) Stokes graduated B.Sc., in 1960 and B.Eng, with First Class Honors, in 1962, both from the University of Sydney. He joined the Electricity Commission of N.S.W., working on generating plant design, system control and substation equipment. Later he pursued research in the area of high frequency induction plasmas and, after graduating Ph.D. in 1966, undertook studies of the electrical and mining applications of high frequency electrical power.

In 1967 he was appointed Lecturer in Electrical Engineering at the University of Sydney, and is now an Associate Professor. Since 1972 he has been engaged in studies of high power electric apparatus with emphasis on switching equipment and electric arcs. In 1978 he won the Orbit Award of the Australian and New Zealand Association for the Advancement of Science for his film “Circuit Breaker Arcs”. In 1979 and 1990 he won the John Madsen Medal of the Institution of Engineers, Australia for the best papers in those years. In 1995 he was again in 1990 he won the John Madsen Medal of the Institution of Engineers, Australia for the best papers in those years. In 1995 he was awarded the University medal of the Gdansk Polytechnic University. In 1997 he was awarded the inaugural CIGRE Distinction medal. In 2004 he was awarded the inaugural CIGRE Distinction medal.

Professor Stokes has been a Fellow of the Institution of Engineers, Australia, a member of the CIGRE international Study Committee 13, Switching Equipment and a number of their sub committees. In 1989 he co-founded, on Static Electrical Machinery and EL/7 (Chairman), on Switching Equipment and a number of their sub committees. In 1989 he was elected Chairman of the Executive of the Optical Fiber Technology Center at the University of Sydney. He has been a Member of the Organizing Committee of the International Conference on Electric Fuses and Their Applications since 1991. Between 1993 and 1996 he was the Director of the Optical Fiber Sensors Center. In 2000 he moved to an honorary post at the University of Sydney and co-founded the Sydney based engineering company Golden Triangle Enterprises Pty Ltd. He is now its Managing Director.

Muhammad Ashgar Saqib received his B.Sc. degree in electrical engineering from University of Engineering and Technology, Lahore, Pakistan in 1991, and M.E.S. and Ph.D. degrees in electrical power engineering from the School of Electrical Engineering and Information Engineering, University of Sydney, Australia, in 1996 and 2000 respectively.

He joined the Faculty of Electronic Engineering, Gulham Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan, as Assistant Professor in November 1999. Dr. Saqib’s research interests are in the areas of electric arcs’ investigation, power electronics and electrical drives, and renewable energy.

In 1967 he was appointed Lecturer in Electrical Engineering at the University of Sydney, and is now an Associate Professor. Since 1972 he has been engaged in studies of high power electric apparatus with emphasis on switching equipment and electric arcs. In 1978 he won the Orbit Award of the Australian and New Zealand Association for the Advancement of Science for his film “Circuit Breaker Arcs”. In 1979 and 1990 he won the John Madsen Medal of the Institution of Engineers, Australia for the best papers in those years. In 1995 he was awarded the University medal of the Gdansk Polytechnic University. In 1997 he was awarded the inaugural CIGRE Distinction medal. In 2004 he was awarded the inaugural CIGRE Distinction medal.

Professor Stokes has been a Fellow of the Institution of Engineers, Australia, a member of the CIGRE international Study Committee 13, Switching Equipment and a number of their sub committees. In 1989 he co-founded, on Static Electrical Machinery and EL/7 (Chairman), on Switching Equipment and a number of their sub committees. In 1989 he was elected Chairman of the Executive of the Optical Fiber Technology Center at the University of Sydney. He has been a Member of the Organizing Committee of the International Conference on Electric Fuses and Their Applications since 1991. Between 1993 and 1996 he was the Director of the Optical Fiber Sensors Center. In 2000 he moved to an honorary post at the University of Sydney and co-founded the Sydney based engineering company Golden Triangle Enterprises Pty Ltd. He is now its Managing Director.

Brian William James was born in Sydney, and educated at state schools before studying physics at the University of Sydney, where he graduated B.Sc. with First Class Honors in Physics in 1967 and a Ph.D. in Plasma Physics in 1971. He was appointed as a Lecturer in the School of Physics in 1971, where he continued his studies of ionizing shock waves and plasma spectroscopy.

In 1974 he spent a year at Culham Laboratory, where he gained expertise in laser diagnostics. On his return he played a leading role in the design and construction of TORTUS (Toriol of the University of Sydney), a medium-sized tokamak specifically designed for the study of plasma waves and the development of diagnostics which went into operation in 1981. Although he continued to contribute to the TORTUS program, in the 1980s he expanded his interests to the study of processing plasmas.

Professor James’ current research interest is in the experimental study of dusty plasmas, where his leadership has ensured that the University of Sydney team is a key contributor to this aspect of plasma physics.

During his tenure at the University of Sydney Professor James has traveled overseas to continue his researches at the Culham Laboratory (UK), UCLA, Kyushu University (Japan) and the Dublin City University, Dublin, Ireland.

Professor James is an authority on the application of laser and spectroscopic techniques to the measurement of the characteristics of plasmas, and has been involved in the experimental study of a wide range of plasmas ranging from tokamaks to dusty plasmas.

Ian Stuart Falconer was born in Lower Hutt, New Zealand, and educated at state schools before studying physics at Victoria University College [now Victoria University of Wellington], where he graduated B.Sc. in 1957 and M.Sc. in 1959. He continued his studies at the Australian National University, graduating with a PhD in 1963. In that year he took up a Postdoctorate Fellowship with the National Research Council of Canada, where he worked with Stuart Ramsden’s Plasma Physics group, one of the pioneers in the application of lasers to plasma diagnostics.

In 1966 Dr. Falconer accepted a position as Lecturer in the School of Physics at the University of Sydney, where he worked on laser diagnostics of plasmas, using lasers operating at wavelengths from the ultraviolet to the submillimetre regions. He has extended his interests from laser diagnostics to plasma spectroscopy, and from fusion-related plasma to gaseous electronics. He retired in 1997, but continues his association with the University of Sydney’s School of Physics as an Honorary Senior Lecturer.

During his tenure at the University of Sydney, Dr. Falconer has traveled overseas to continue his researches at the University of Hull (UK), the MIT Plasma Fusion Center, the JET Joint Undertaking at Culham (UK), and the Laboratoire de Spectrometrie Physique in Grenoble. He has also worked for a period of several months at the CSIRO’s Division of Applied Physics in Sydney.

Dr. Falconer’s research interests are based around the application of laser and spectroscopic techniques to the measurement of the characteristics of plasmas ranging from fusion plasma to the dielectric barrier discharges that form the pixels of plasma screen TVs.

Muhammad Ashgar Saqib received his B.Sc. degree in electrical engineering from University of Engineering and Technology, Lahore, Pakistan in 1991, and M.E.S. and Ph.D. degrees in electrical power engineering from the School of Electrical Engineering and Information Engineering, University of Sydney, Australia, in 1996 and 2000 respectively.

He joined the Faculty of Electronic Engineering, Gulham Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan, as Assistant Professor in November 1999. Dr. Saqib’s research interests are in the areas of electric arcs’ investigation, power electronics and electrical drives, and renewable energy.

Professor Stokes has been a Fellow of the Institution of Engineers, Australia, a member of the CIGRE international Study Committee 13, Switching Equipment and a number of their sub committees. In 1989 he co-founded, on Static Electrical Machinery and EL/7 (Chairman), on Switching Equipment and a number of their sub committees. In 1989 he was elected Chairman of the Executive of the Optical Fiber Technology Center at the University of Sydney. He has been a Member of the Organizing Committee of the International Conference on Electric Fuses and Their Applications since 1991. Between 1993 and 1996 he was the Director of the Optical Fiber Sensors Center. In 2000 he moved to an honorary post at the University of Sydney and co-founded the Sydney based engineering company Golden Triangle Enterprises Pty Ltd. He is now its Managing Director.

Brian William James was born in Sydney, and educated at state schools before studying physics at the University of Sydney, where he graduated B.Sc. with First Class Honors in Physics in 1967 and a Ph.D. in Plasma Physics in 1971. He was appointed as a Lecturer in the School of Physics in 1971, where he continued his studies of ionizing shock waves and plasma spectroscopy.

In 1974 he spent a year at Culham Laboratory, where he gained expertise in laser diagnostics. On his return he played a leading role in the design and construction of TORTUS (Toriol of the University of Sydney), a medium-sized tokamak specifically designed for the study of plasma waves and the development of diagnostics which went into operation in 1981. Although he continued to contribute to the TORTUS program, in the 1980s he expanded his interests to the study of processing plasmas.

Professor James’ current research interest is in the experimental study of dusty plasmas, where his leadership has ensured that the University of Sydney team is a key contributor to this aspect of plasma physics.

During his tenure at the University of Sydney Professor James has traveled overseas to continue his researches at the Culham Laboratory (UK), UCLA, Kyushu University (Japan) and the Dublin City University, Dublin, Ireland.

Professor James is an authority on the application of laser and spectroscopic techniques to the measurement of the characteristics of plasmas, and has been involved in the experimental study of a wide range of plasmas ranging from tokamaks to dusty plasmas.

Ian Stuart Falconer was born in Lower Hutt, New Zealand, and educated at state schools before studying physics at Victoria University College [now Victoria University of Wellington], where he graduated B.Sc. in 1957 and M.Sc. in 1959. He continued his studies at the Australian National University, graduating with a Ph.D. in 1963. In that year he took up a Postdoctorate Fellowship with the National Research Council of Canada, where he worked with Stuart Ramsden’s Plasma Physics group, one of the pioneers in the application of lasers to plasma diagnostics.

In 1966 Dr. Falconer accepted a position as Lecturer in the School of Physics at the University of Sydney, where he worked on laser diagnostics of plasmas, using lasers operating at wavelengths from the ultraviolet to the submillimetre regions. He has extended his interests from laser diagnostics to plasma spectroscopy, and from fusion-related plasma to gaseous electronics. He retired in 1997, but continues his association with the University of Sydney’s School of Physics as an Honorary Senior Lecturer.

During his tenure at the University of Sydney, Dr. Falconer has traveled overseas to continue his researches at the University of Hull (UK), the MIT Plasma Fusion Center, the JET Joint Undertaking at Culham (UK), and the Laboratoire de Spectrometrie Physique in Grenoble. He has also worked for a period of several months at the CSIRO’s Division of Applied Physics in Sydney.

Dr. Falconer’s research interests are based around the application of laser and spectroscopic techniques to the measurement of the characteristics of plasmas ranging from fusion plasma to the dielectric barrier discharges that form the pixels of plasma screen TVs.