کارگاه‌های آموزشی مرکز اطلاعات علمی جهاد دانشگاهی

کارگاه آنلاین بررسی مقابله ای منون (مقدماتی)

کارگاه آنلاین پروپوزال نویسی و پایان‌نامه نویسی

کارگاه آنلاین آشنایی با پایگاه های اطلاعات علمی بین‌المللی و ترفند های جستجو
CHARACTERISTIC FUNCTION OF A MEROMORPHIC FUNCTION AND ITS DERIVATIVES

J. WU AND Z. WU *

Communicated by Javad Mashreghi

ABSTRACT. In this paper, some results of Singh, Gopalakrishna and Kulkarni (1970s) have been extended to higher order derivatives. It has been shown that, if \(\sum a \Theta(a, f) = 2 \) holds for a meromorphic function \(f(z) \) of finite order, then for any positive integer \(k \), \(T(r, f) \sim T(r, f^{(k)}), r \to \infty \) if \(\Theta(\infty, f) = 1 \) and \(T(r, f^{(k)}) \sim (k + 1)T(r, f), r \to \infty \) if \(\Theta(\infty, f) = 0 \).

1. Introduction

Let \(f(z) \) be a meromorphic function in the complex plane \(\mathbb{C} \). Assume that basic definitions, theorems and standard notations of the Nevanlinna theory for meromorphic function (see [3], [10] or [12]) are known. We use the following notations of frequent use of value distribution (see [3]) with their usual meaning:

\[m(r, f), N(r, a), \overline{N}(r, a), \delta(a, f), \Theta(a, f), \cdots \]

As usual, if \(a = \infty \), we write \(N(r, \infty) = N(r, f), \overline{N}(r, \infty) = \overline{N}(r, f) \). We denote by \(S(r, f) \) any quantity such that

\[S(r, f) = o(T(r, f)), \quad r \to +\infty \]

MSC(2010): Primary: 30D30; Secondary: 30D35.

Keywords: Characteristic function, Nevanlinna’s deficiency, maximum deficiency sum.

Received: 20 July 2011, Accepted: 21 February 2012.

*Corresponding author

© 2013 Iranian Mathematical Society.

1117
without restriction if \(f(z) \) is of finite order and otherwise except possibly for a set of values of \(r \) of finite linear measure. The well known Nevanlinna’s deficiency relation states that
\[
\sum_a \delta(a, f) \leq \sum_a \Theta(a, f) \leq 2.
\]

If \(\sum_a \delta(a, f) = 2 \), then we say that \(f(z) \) has maximum deficiency sum (see [2]).

Let \(f(z) \) be a meromorphic scalar valued function in \(\mathbb{C} \). On the characteristic function of derivative of \(f(z) \) with maximum deficiency sum has been studied by Shan, Singh, Gopalakrishna, Edrei and Weitsman [1], [4]-[8]. For example, Edrei [1] and Weitsman [8] have proved

Theorem A Let \(f(z) \) be a transcendental meromorphic function of finite order and assume \(\sum \delta(a, f) = \eta \geq 1 \) and \(\delta(\infty) = 2 - \eta \). Then
\[
T(r, f') \sim \eta T(r, f), r \to +\infty.
\]

If \(\sum_a \delta(a, f) = 2 \) is replaced by \(\sum \Theta(a, f) = 2 \), Singh, Gopalakrishna [6] and Singh, Kulkarni [7] have proved

Theorem B Let \(f(z) \) be a transcendental meromorphic scalar valued function of finite order and assume \(\sum \Theta(a, f) = 2 \). Then
\[
\lim_{r \to +\infty} \frac{T(r, f')}{T(r, f)} = 2 - \Theta(\infty).
\]

Hence

1. if \(\Theta(\infty, f) = 1 \), \(T(r, f) \sim T(r, f') \) as \(r \to \infty \);
2. if \(\Theta(\infty, f) = 0 \), \(T(r, f') \sim 2T(r, f) \) as \(r \to \infty \).

We extend the above result to higher order derivatives as follows:

Theorem 1.1. Suppose that \(f \) is a transcendental meromorphic function of finite order and \(\sum \Theta(a, f) = 2 \). Then for any positive integer \(k \), we have

1. if \(\Theta(\infty, f) = 1 \), \(T(r, f) \sim T(r, f^{(k)}) \) as \(r \to \infty \);
(2) if $\Theta(\infty, f) = 0$, $T(r, f^{(k)}) \sim (k + 1)T(r, f)$ as $r \to \infty$.

From Theorem 1.1, we can get

Corollary 1.2. [11] Suppose that f is a transcendental meromorphic function of finite order and $\sum a = 2$. Then for any positive integer k, we have

1. if $\delta(\infty, f) = 1$, $T(r, f) \sim T(r, f^{(k)})$ as $r \to \infty$;

2. if $\delta(\infty, f) = 0$, $T(r, f^{(k)}) \sim (k + 1)T(r, f)$ as $r \to \infty$.

2. Proof of Theorem 1.1

Proof. (1) We prove Theorem 1.1 (1) by induction. Since $\Theta(\infty, f) = 1$, by Theorem B, we have $T(r, f) \sim T(r, f')$ as $r \to \infty$. Assume that

\[T(r, f) \sim T(r, f^{(k)}), \quad r \to \infty. \]

(2.1)

Now we prove $T(r, f) \sim T(r, f^{(k+1)})$ as $r \to \infty$.

Without loss of generality we can assume that $q \geq 2$. Put

\[F(z) = \sum_{i=1}^{q} \frac{1}{f(z) - a_i}, \quad a_i \in \mathbb{C}. \]

Then (See [6])

\[\sum_{i=1}^{q} m(r, a_i) \leq m(r, F) + O(1). \]

So

\[\sum_{i=1}^{q} m(r, a_i) \leq m(r, F) + O(1) \]

\[= m \left(r, \frac{1}{f^{(k+1)}}f^{(k+1)} \right) + O(1) \]

\[\leq m \left(r, \frac{1}{f^{(k+1)}} \right) + m \left(r, \sum_{i=1}^{q} \frac{f^{(k+1)}(z) - a_i}{f(z) - a_i} \right) + O(1) \]

\[= m \left(r, \frac{1}{f^{(k+1)}} \right) + S(r, f). \]
Hence
\[
qT(r, f) \leq \sum_{i=1}^{q} N(r, a_i) + m \left(r, \frac{1}{f(k+1)} \right) + S(r, f)
\]
\[
= \sum_{i=1}^{q} N(r, a_i) + T \left(r, f^{(k+1)} \right) - N \left(r, \frac{1}{f(k+1)} \right) + S(r, f)
\]
\[
\leq \sum_{i=1}^{q} N(r, a_i) + T \left(r, f^{(k+1)} \right) - N \left(r, \frac{1}{f'} \right) + S(r, f)
\]
\[
= T \left(r, f^{(k+1)} \right) + \sum_{i=1}^{q} N(r, a_i) - N_0 \left(r, \frac{1}{f'} \right) + S(r, f).
\]

where \(N_0 \left(r, \frac{1}{f'} \right) \) is formed with the zeros of \(f' \) which are not zeros of any of the \(f - a_i, i = 1, 2, \cdots, q \). Since \(N_0 \left(r, \frac{1}{f'} \right) \geq 0 \), we have
\[
qT(r, f) \leq T \left(r, f^{(k+1)} \right) + \sum_{i=1}^{q} N(r, a_i) + S(r, f).
\]

Thus
\[
\sum_{i=1}^{q} \left(1 - \frac{N(r, a_i)}{T(r, f)} \right) \leq \frac{T \left(r, f^{(k+1)} \right)}{T(r, f)} + \frac{S(r, f)}{T(r, f)}.
\]

So
\[
\sum_{i=1}^{q} \Theta(a_i, f) \leq \lim inf_{r \to \infty} \frac{T \left(r, f^{(k+1)} \right)}{T(r, f)},
\]
holds for any \(q \geq 2 \). Letting \(q \to \infty \), we obtain
\[
(2.2) \quad 1 = \sum_{a \neq \infty} \Theta(a, f) \leq \lim inf_{r \to \infty} \frac{T \left(r, f^{(k+1)} \right)}{T(r, f)}.
\]

Combining (2.1) and (2.2) we have
\[
(2.3) \quad 1 \leq \lim inf_{r \to \infty} \frac{T \left(r, f^{(k+1)} \right)}{T(r, f)} \leq \lim sup_{r \to \infty} \frac{T \left(r, f^{(k+1)} \right)}{T(r, f(k))}.
\]
On the other hand, since $N(r, f^{(k)}) = N(r, f), \Theta(\infty, f) = 1$ and (2.1), we have
\[
\limsup_{r \to \infty} \frac{N(r, f^{(k)})}{T(r, f^{(k)})} \leq \limsup_{r \to \infty} \frac{N(r, f)}{T(r, f)} = 0.
\]
So
\[
\Theta(\infty, f^{(k)}) = 1.
\]
Thus
\[
T(r, f^{(k+1)}) = m(r, f^{(k+1)}) + N(r, f^{(k+1)}) \leq m(r, f^{(k)}) + N(r, f^{(k+1)}) + N(r, f^{(k)}) + S(r, f).
\]
Hence
\[
(2.4) \quad \limsup_{r \to \infty} \frac{T(r, f^{(k+1)})}{T(r, f^{(k)})} \leq 2 - \Theta(\infty, f^{(k)}) = 1.
\]
(2.1) and (2.3)-(2.4) together imply $T(r, f) \sim T(r, f^{(k+1)})$ as $r \to \infty$.

We can prove (2) of Theorem 1.1 by using the same method as that in [11]. As [11] may not be abundantly available, we give the following proof. From Nevanlinna’s second fundamental theorem, we have
\[
(q - 1)T(r, f) \leq T(r, f) + \sum_{i=1}^{q} \overline{N}(r, a_i) + N(r, f) + S(r, f).
\]
Thus
\[
\sum_{i=1}^{q} \Theta(a_i, f) \leq 1 + \liminf_{r \to \infty} \frac{\overline{N}(r, f)}{T(r, f)} \leq 1 + \limsup_{r \to \infty} \frac{\overline{N}(r, f)}{T(r, f)} \leq 2.
\]
Letting $q \to \infty$, we obtain
\[
2 = \sum_{a \neq \infty} \Theta(a, f) \leq 1 + \liminf_{r \to \infty} \frac{\overline{N}(r, f)}{T(r, f)} \leq 1 + \limsup_{r \to \infty} \frac{\overline{N}(r, f)}{T(r, f)} \leq 2.
\]
So
\[
(2.5) \quad T(r, f) \sim N(r, f) \sim \overline{N}(r, f), r \to \infty.
\]
Since
\[(k + 1)\overline{N}(r, f) \leq N(r, f) + k\overline{N}(r, f) = N\left(r, f^{(k)}\right)\]
\[\leq T\left(r, f^{(k)}\right)\]
\[\leq m(r, f) + m\left(r, \frac{f^{(k)}}{f}\right) + N\left(r, f^{(k)}\right)\]
\[= T(r, f) + k\overline{N}(r, f) + S(r, f).\]
From this and (2.5), we get \(T(r, f^{(k)}) \sim (k + 1)T(r, f)\) as \(r \to \infty\). \(\square\)

3. Proof of Corollary 1.2

Proof. Since \(\delta(a, f) \leq \Theta(a, f)\) for every \(a \in \mathbb{C} \cup \{\infty\}\), if \(\sum a \delta(a, f) = 2\), then \(\sum a \Theta(a, f) = 2\) and \(\delta(a, f) = \Theta(a, f)\) for every \(a \in \mathbb{C} \cup \{\infty\}\). Hence Corollary 1.2 follows by Theorem 1.1. \(\square\)

Acknowledgments
This research was partially supported by the NNSF of China (Grant No. 11201395) and by NSF of Educational Department of the Hubei Province (Grant No. Q20132801, D20132804).

References

Jia Wu
Xianning Vocational and Technical College, P.O. Box 437100, Xianning, P. R. China
Email: 44976882@qq.com

Zhaojun Wu
School of Mathematics and Statistics, Hubei University of Science and Technology, P.O. Box 437100, Xianning, P. R. China
Email: wuzj52@hotmail.com
کارگاه‌های آموزشی مرکز اطلاعات علمی جهاد دانشگاهی

کارگاه آنلاین بررسی مقابله ای فنون (مقدماتی)

کارگاه آنلاین پروپوزال نویسی و پایان نامه نویسی

کارگاه آنلاین ترفند های جسجو

پروپوزال نویسی و پایان نامه نویسی

فیلم‌های آموزشی

سامانه ویرایشی STES

پروپوزال نویسی و پایان نامه نویسی

سرویس ترجمه

کارگاه های تخصصی آموزشی

سرویس های وب‌هایی