COMPLEMENT OF SPECIAL CHORDAL GRAPHS AND VERTEX DECOMPOSABILITY

M. ALIZADEH* AND A. GOODARZI

Communicated by Ebadollah S. Mahmoodian

ABSTRACT. In this paper, we introduce a subclass of chordal graphs which contains d-trees and show that their complement are vertex decomposable and so is shellable and sequentially Cohen-Macaulay. This result improves the main result of Ferrarello who used a theorem due to Fröberg and extended a recent result of Dochtermann and Engström.

1. Introduction

Let k be a field. To any finite simple graph G with vertex set $V = [n] := \{1, \cdots, n\}$ and edge set $E(G)$ one associates an ideal $I(G) \subset k[x_1, \cdots, x_n]$ generated by all monomials $x_i x_j$ such that $\{i, j\} \in E(G)$. The ideal $I(G)$ and the quotient ring $k[x_1, \cdots, x_n]/I(G)$ are called the edge ideal of G and the edge ring of G, respectively. The independence complex of G is defined by

$$\text{Ind}(G) = \{A \subseteq V | A \text{ is an independent set in } G\},$$

A is said to be an independent set in G if none of its elements are adjacent. Note that $\text{Ind}(G)$ is precisely the simplicial complex with the Stanley-Reisner ideal $I(G)$. We denoted by Δ_G the clique complex of G, which is the simplicial complex with vertex set V and with faces

Keywords: sequentially Cohen-Macaulay, vertex decomposable, chordal graphs.
Received: 8 March 2011, Accepted: 25 May 2011.
*Corresponding author
© 2013 Iranian Mathematical Society.
the cliques of G. It is easy to see that $\Delta_G = \text{Ind}(\overline{G})$, where \overline{G} is the complement of G.

A simplicial complex Δ is recursively defined to be vertex decomposable if it is either a simplex, or has some vertex v so that:

- both $\Delta \setminus v$ and $\text{link}_\Delta v$ are vertex decomposable, and
- no face of $\text{link}_\Delta v$ is a facet of $\Delta \setminus v$.

A vertex v which satisfies the second condition is called a shedding vertex.

A simplicial complex Δ is called shellable if the facets (maximal faces) of Δ can be ordered a F_1, \ldots, F_s such that for all $1 \leq i < j \leq s$, there exists some $v \in F_j \setminus F_i$ and some $l \in \{1, \ldots, j-1\}$ with $F_j \setminus F_l = \{v\}$, cf [1]. The notion of shellability was discovered in the context of convex polytopes, cf. [8].

The dimension of a face F is $|F| - 1$. Let $d = \max\{|F| : F \in \Delta\}$ and define the dimension of Δ to be $\dim(\Delta) = d - 1$. A simplicial complex is pure if all of its facets are of the same dimension. The k-skeleton of Δ is the complex generated by all the k-dimensional faces of Δ. A complex is sequentially Cohen-Macaulay if its k-skeleton is Cohen-Macaulay for each k, $k < \text{dimension of the complex}$. Any shellable complex is sequentially Cohen-Macaulay.

We have the following chains of strict implications:

- vertex decomposable $\overset{(i)}{\implies}$ shellable $\overset{(ii)}{\implies}$ sequentially Cohen-Macaulay
- pure vertex decomposable $\overset{(iii)}{\implies}$ pure shellable $\overset{(iv)}{\implies}$ Cohen-Macaulay

Where (i) comes from [12, Lemma 6], (ii) from [10, p. 87], (iii) from [9, Theorem 2.8] and (iv) from [7].

In recent years there have been a flurry of work investigating how the combinatorial properties of G appear within the algebraic properties of $R/I(G)$, and vice versa. (Sequentially) Cohen-Macaulay rings are of great interest. As a consequence, one particular stream of research has focused on the question of what graph G has the property that $R/I(G)$ is (Sequentially) Cohen-Macaulay.

We can recursively define a generalized d-tree in the following way:

1. A complete graph with $d+1$ vertices is a generalized d-tree;
2. Let G be a graph on the vertex set $V(G)$. Suppose that there is some vertex $v \in V(G)$ such that the followings hold:
 (i) the restriction G_1 of G to $V_1 = V \setminus \{v\}$ is a generalized d-tree;
(ii) there is a subset V_2 of V_1, where the restriction of G to V_2 is a clique of size j with $0 \leq j \leq d$;
(iii) G is the graph generated by G_1 and the complete graph on $V_2 \cup \{v\}$.

In particular, we say that G is a (d, j)-tree if in the above recursive definition j is fixed. A (d, d)-tree is called a d-tree.

A graph G is called chordal if every cycle of length > 3 has a chord. Recall that a chord of a cycle is an edge which joins two vertices of the cycle but is not itself an edge of the cycle. In [2] Dirac proved that the generalized d-trees are exactly the chordal graphs and so (d, j)-trees are chordal.

Many authors are interested in the case when G or its complement is chordal (in particular d-tree) for example see [4], [5], and sections 3 and 4 of [3].

Ferrarello in [4] showed that the complement of a d-tree is Cohen-Macaulay and Dochtermann and Engström in [3] extended this result by showing that the complement of a d-tree is pure shellable.

It is not hard to show that the complement of a d-tree is pure of dimension d [see Proposition 2.4], but in general the complement of a chordal graph is not pure so it is natural to ask whether the complement of a chordal graph is sequentially Cohen-Macaulay. By giving an example we show that the answer is negative. We show that if G is the complement of a (d, j)-tree, then $\text{Ind}(G)$ is vertex decomposable and so shellable and sequentially Cohen-Macaulay. This result is a generalization of [4, Theorem 3.3] and [3, Proposition 3.6].

2. Main Results

The definition of vertex decomposable complexes translates nicely to independence complexes as follows:

Lemma 2.1. [13, Lemma 2.2]. An independence complex $\text{Ind}(G)$ is vertex decomposable if G is a totally disconnected graph (with no edges), or if

(i) $G \setminus v$ and $G \setminus N[v]$ are both vertex decomposable, and
(ii) An independent set in $G \setminus N[v]$ is not a maximal independent set in $G \setminus v$.

We say that a graph G is vertex decomposable if its independence complex $\text{Ind}(G)$ is vertex decomposable. Let $N(v)$ denotes the open
neighborhood of \(v \), that is, all vertices adjacent to \(v \). Let \(N[v] \) denotes the close neighborhood of \(v \), which is \(N(v) \) together with \(v \) itself, so that \(N[v] = N(v) \cup \{v\} \).

Theorem 2.2. Let \(G \) be the complement of a \((d, j)\)-tree, then \(\text{Ind}(G) \) is vertex decomposable and so it is shellable and sequentially Cohen-Macaulay.

Proof. We use induction on \(|V(G)| \). If \(|V(G)| = d + 1 \), then \(G \) is totally disconnected and there is nothing to prove.

Let the statement be true for complement of \((d, j)\)-trees of size \(< n \) and let \(G \) be a \((d, j)\)-tree with \(|V(G)| = n \).

It is easy to see that there is a vertex \(v \) in \(G \) such that \(G[N_G(v)] \) is a clique and \(G[N_G(v)] \) is not a maximal clique in \(G \setminus v \). Now \(G \setminus N[v] \) is a totally disconnected graph, so it is a vertex decomposable graph. On the other hand \(G \setminus v \) is a chordal graph so by the induction hypothesis \(G \setminus v \) is vertex decomposable.

Now it suffices to show that no independent set in \(G \setminus N[v] \) is a maximal independent set in \(G \setminus v \), but it holds obviously, because \(G[N_G(v)] \) is not a maximal clique in \(G \setminus v \).

\(\square \)

Note that in general it is not the case that the complement of a chordal graph is vertex decomposable. See the following example:

Example 2.3. Let \(G \) be the graph in figure 1:

![Figure 1](image)

Here \(G \) is a chordal graph but \(\overline{G} \) is bipartite and does not have any end vertex (a vertex of degree 1). Thus by [11, Lemma 3.9] \(\overline{G} \) is not sequentially Cohen-Macaulay and so it is not vertex decomposable.
By using a result of Fröberg, Ferrarello in [4] showed that the complement of a d-tree is Cohen-Macaulay and Dochtermann and Engström in [3] extended this result by showing that the complement of a d-tree is pure shellable. We state the following result as a generalization:

Corollary 2.4. Let G be the complement of a d-tree, then $\text{Ind}(G)$ is pure vertex decomposable (pure shellable and Cohen-Macaulay).

Proof. Using Theorem 2.2, it remains to prove the purity. The facets of $\text{Ind}(G)$ are the maximal independent sets of G, which are in fact the maximal cliques of \overline{G}. So it suffices to show that every maximal clique of a d-tree, H, is of size $d+1$. We use induction on $|V(H)|$, if $|V(H)| = d + 1$ then $H = K_{d+1}$, and there is nothing to prove. Let the statement be true for every d-tree of size $< n$ and let $|V(H)| = n$. It is easy to check that there is a vertex in $V(H)$, say v, such that $\deg v = d$ and $H[N[v]]$ is a clique. Let C be a maximal clique in H if $v \notin C$ then C is a maximal clique in $H \setminus v$, so by the induction hypothesis, $|C| = d + 1$. And if $v \in C$ the desired statement holds obviously. □

In the following we give some examples of (pure and non-pure) vertex decomposable graphs.

By using the mentioned theorem of Dirac, one can show that chordal graphs are vertex decomposable, see [3] and [13]. The following example shows that the converse is not true in general.

Example 2.5. Our first example is $T = P_n$ (a path with n vertices). When $n \geq 5$, \overline{T} is pure vertex decomposable but not chordal. (Note that the complement of a tree T is chordal if and only if $\text{diam}(T) \leq 3$, where $\text{diam}(G) = \max\{d(u,v) | u, v \in V(G)\}$.

The complement of a tree T is chordal if and only if $\text{diam}(T) \leq 3$. In the following example we show that this is not true for d-trees when $d > 1$.

Example 2.6. The graph G in Figure 2 is a 2-tree with diameter 2. \overline{G} is pure vertex decomposable and has an induced cycle of length 4.
Example 2.7. The graph G in Figure 3 is a $(3, 2)$-tree which is not a d-tree. Therefore \overline{G} is vertex decomposable but not pure.

References

Complement of special chordal graphs

Majid Alizadeh
School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
Email: malizadehkhayam.ut.ac.ir

Afshin Goodarzi
School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
Email: af.goodarz@gmail.com