AUTOMATIC CONTINUITY OF HIGHER DERIVATIONS ON JB^*-ALGEBRAS

S. HEJAZIAN AND T. L. SHATERY

Communicated by Fereidoun Ghahramani

Abstract. In this paper we study higher derivations from JB^*-algebras into Banach Jordan algebras. We show that every higher derivation $\{d_m\}$ from a JB^*-algebra A into a JB^*-algebra B is continuous provided that d_0 is a $*$-homomorphism. Also it is proved that every Jordan higher derivation from a commutative C^*-algebra or from a C^*-algebra which has minimal idempotents and is the closure of its socle is continuous.

1. Introduction

Let A and B be algebras (associative or non-associative). By a higher derivation of rank k (k might be ∞) we mean a family of linear mappings $\{d_m\}_{m=0}^k$ from A into B such that

$$d_m(ab) = \sum_{j=0}^{m} d_j(a)d_{m-j}(b), \quad (a, b \in A, \quad m = 0, 1, 2, \ldots, k).$$

It is clear that d_0 is a homomorphism. Higher derivations were introduced by Hasse and Schmidt [8], and algebraists sometimes call them Hasse-Schmidt derivations. The reader may find some of algebraic results concerning these mappings in [1, 4, 6, 14, 16, 17]. They are also studied in other contexts. In [19] higher derivations are applied to study...
generic solving of higher differential equations.

A standard example of a higher derivation of rank k is the family $\{\frac{D^{m}}{m!}\}_{m=0}^{k}$, where D is an ordinary derivation of an algebra \mathcal{A}.

If \mathcal{A} and \mathcal{B} are normed algebras then a higher derivation $\{d_{m}\}$ is said to be continuous, whenever every d_{m} is continuous. It is known that every derivation on a semisimple Banach algebra is continuous [13]. Ringrose [15] proved that every derivation from a C^{\ast}-algebra \mathcal{A} into a Banach \mathcal{A}-module is continuous. In [9] derivations from JB^{\ast}-algebras into Banach Jordan modules were studied and continuity of these mappings were proved in certain cases. Loy in [12] proved that if \mathcal{A} is an (F)-algebra which is a subalgebra of a Banach algebra \mathcal{B} of power series, then every higher derivation $\{d_{m}\} : \mathcal{A} \to \mathcal{B}$ is automatically continuous. Jewell [11], showed that a higher derivation from a Banach algebra onto a semisimple Banach algebra is continuous provided that $\ker(d_{0}) \subseteq \ker(d_{m})$, for all $m \geq 1$. Villena [20] proved that every higher derivation from a unital Banach algebra \mathcal{A} into \mathcal{A}/\mathcal{P}, where \mathcal{P} is a primitive ideal of \mathcal{A} with infinite codimension, is continuous. Also the range problem of continuous higher derivations was studied in [14].

In this paper we study automatic continuity of higher derivations from JB^{\ast}-algebras. Section 2 is devoted to some concepts which are needed in the sequel. In Section 3 we prove that a higher derivation from a JB^{\ast}-algebra into another JB^{\ast}-algebra is continuous provided that d_{0} is a \ast-homomorphism. Also we will show that every (Jordan) higher derivation from a commutative C^{\ast}-algebra or from a C^{\ast}-algebra which has minimal idempotents and is the closure of its socle (e. g. $K(\mathcal{H})$) into a Banach Jordan algebra is continuous. These are in fact generalizations of some results in [9].

2. Preliminaries

Let \mathcal{A} be a Jordan algebra and let \mathcal{X} be a vector space over the same field as \mathcal{A}. Then \mathcal{X} is said to be a Jordan \mathcal{A}-module if there is a pair of bilinear mappings (called module operations), $(a, x) \mapsto a.x$, $(a, x) \mapsto x.a$, from $\mathcal{A} \times \mathcal{X} \to \mathcal{X}$ such that for all $a, b \in \mathcal{A}$ and all $x \in \mathcal{X}$ the following conditions hold:

(i) $a.x = x.a$;
(ii) $a.(a^{2}.x) = a^{2}.(a.x)$;
(iii) $2((x.a).b).a + x.(a^{2}.b) = 2(x.a)(a.b) + (x.b).a^{2}$.
A linear subspace S of X is called a submodule if

$$\mathcal{A}S := \{a.x: a \in \mathcal{A}, x \in S\} \subseteq S.$$

If \mathcal{A} is a Banach Jordan algebra and X is a Banach space which is a Jordan \mathcal{A}-module then X is said to be a weak Jordan \mathcal{A}-module whenever the mapping $x \mapsto a.x$, from $X \rightarrow X$ is continuous, for all $a \in \mathcal{A}$; and X is called a Banach Jordan \mathcal{A}-module if the mapping $(a, x) \mapsto a.x$, from $A \times X \rightarrow X$ is continuous, or equivalently, if there exists $M > 0$ such that $\|a.x\| \leq M \|a\| \|x\|$ ($a \in \mathcal{A}, x \in X$).

Example 2.1. (i) Every Banach Jordan algebra \mathcal{A} is a Banach Jordan \mathcal{A}-module whenever we consider its own product as the module operation.

(ii) If \mathcal{A} and \mathcal{B} are Jordan algebras and $\theta: \mathcal{A} \rightarrow \mathcal{B}$ is a homomorphism, then \mathcal{B} can be considered as a Jordan \mathcal{A}-module with module operation

$$a.b = \theta(a)b \quad (a \in \mathcal{A}, b \in \mathcal{B}).$$

In this case we will say that \mathcal{B} is an \mathcal{A}-module via the homomorphism θ. If \mathcal{A} and \mathcal{B} are Banach Jordan algebras then it is easy to see that \mathcal{B} is a weak Jordan \mathcal{A}-module.

(iii) The topological dual \mathcal{A}^* of \mathcal{A}, with module operation $(a, f) \mapsto a.f$ defined by

$$(a.f)(b) = f(ab) \quad (a, b \in \mathcal{A}, f \in \mathcal{A}^*),$$

is a Banach Jordan \mathcal{A}-module.

(iv) If \mathcal{A} is a Banach algebra and X is a Banach (respectively weak) \mathcal{A}-module, then we may consider \mathcal{A} as a Jordan algebra with Jordan product $(a, b) \mapsto \frac{ab + ba}{2}, \mathcal{A} \times \mathcal{A} \mapsto \mathcal{A}$. Then X with the module operation $a.x = \frac{ax + xa}{2}$, is a Banach (respectively weak) Jordan \mathcal{A}-module. Here the mappings $(a, x) \mapsto ax$ and $(a, x) \mapsto xa$, $\mathcal{A} \times X \rightarrow X$, denote the associative module operations of \mathcal{A} on X.

Let \mathcal{X} and \mathcal{Y} be Jordan \mathcal{A}-modules. Then a linear mapping $T : \mathcal{X} \rightarrow \mathcal{Y}$ is said to be a module homomorphism if $T(a.x) = a.T(x)$ ($a \in \mathcal{A}, x \in \mathcal{X}$). In Example 2.1 (ii), θ is a module homomorphism.

Let \mathcal{A} be a Jordan algebra and let \mathcal{X} be a Jordan \mathcal{A}-module. Then $\mathcal{A} \oplus \mathcal{X}$ with product $(a_1 + x_1)(a_2 + x_2) = a_1a_2 + a_1x_2 + a_2x_1$, is a Jordan algebra which is called the split null extension of \mathcal{A} and \mathcal{X}. In fact a linear space \mathcal{X} is a Jordan \mathcal{A}-module if and only if this split null extension is a Jordan algebra [10].
Corresponding to \((a, 0) \in \mathcal{A} \oplus \mathcal{X}\) with \(a \in \mathcal{A}\), as in any Jordan algebra, we define the linear operators \(R_a\) and \(U_a\) on \(\mathcal{A} \oplus \mathcal{X}\) as follows

\[R_a(u) = au, \quad U_a(u) = 2a(u) - a^2 u \quad (u \in \mathcal{A} \oplus \mathcal{X}). \]

We feel free to use the notation \(R_a\) and \(U_a\) for the same operators on \(\mathcal{A}\).

For every \(x, y\) in a Jordan algebra, set \([R_x, R_y] := R_x R_y - R_y R_x\). We recall that each \(x, y, z\) in a Jordan algebra satisfy

\[[R_{xy}, R_z] + [R_{xz}, R_y] + [R_{yz}, R_x] = 0, \tag{2.1} \]

which is the identity (O1) in Section 1.7 of [10]. For a submodules of \(\mathcal{X}\), set

\[
\mathcal{R}(S) := \{ a \in \mathcal{A}: R_a(x) = 0 \text{ for all } x \in S \}, \\
\mathcal{Q}(S) := \{ a \in \mathcal{A}: U_a(x) = 0 \text{ for all } x \in S \}, \\
\mathcal{I}(S) := \{ a \in \mathcal{R}(S): ab \in \mathcal{R}(S) \text{ for all } b \in \mathcal{A} \}.
\]

Note that if \(S\) is a submodule, then it is an ideal of \(\mathcal{A} \oplus \mathcal{X}\), and \(\mathcal{I}(S)\) is actually \(\text{ann}(S)\) in view of Zelmanov, which is an ideal by Lemma 3(b) of [21]. Here we give the proof for the sake of convenience.

Lemma 2.2. Let \(\mathcal{A}\) be a Jordan algebra and let \(\mathcal{X}\) be a Jordan \(\mathcal{A}\)-module. If \(S\) is a submodule then

(i) \(\mathcal{I}(S)\) is the largest ideal of \(\mathcal{A}\) contained in \(\mathcal{R}(S)\);

(ii) \(\mathcal{R}(S) \cap \mathcal{Q}(S) = \{ a \in \mathcal{A}: a^2 \in \mathcal{R}(S) \}\);

(iii) \(\mathcal{I}(S) \subseteq \mathcal{R}(S) \cap \mathcal{Q}(S)\).

Proof. (i) It is easy to see that each ideal of \(\mathcal{A}\) contained in \(\mathcal{R}(S)\) is a subset of \(\mathcal{I}(S)\). We show that \(\mathcal{I}(S)\) is an ideal. Suppose that \(a \in \mathcal{I}(S)\) and \(b \in \mathcal{A}\). Then by definition of \(\mathcal{I}(S)\), \(ab \in \mathcal{R}(S)\). Now to see that \(ab \in \mathcal{I}(S)\) it is enough to show that \((ab)c \in \mathcal{R}(S)\), for each \(c \in \mathcal{A}\). We consider (2.1) in the Jordan algebra \(\mathcal{A} \oplus \mathcal{X}\), for \(x = a, y = b, z \in \mathcal{S}\) and take \(c \in \mathcal{A}\). Since \(S\) is a submodule and \(a \in \mathcal{I}(S)\), it follows that \(R_z R_{ab}(c) = 0\), or equivalently, \((ab)c \in \mathcal{R}(S)\). Parts (ii) and (iii) are easily verified. \(\square\)

3. Automatic continuity of Higher derivations from \(JB^*-\)algebras

First of all we recall that a real Banach Jordan algebra \(\mathcal{A}\) is a \(JB\)-algebra whenever \(\|a^2\| = \|a\|^2\) and \(\|a^2\| \leq \|a^2 + b^2\|\), for all \(a, b \in \mathcal{A}\).
A. A complex Banach Jordan algebra A is said to be a JB^*-algebra whenever there is an algebra involution $*$ on A such that $\|a^*\| = \|a\| \text{ and } \|U_a(a^*)\| = \|a\|^2$, for all $a \in A$. For a subset C of a JB^*-algebra A, set $C_h := \{a \in C: a = a^*\}$. Then A_h is a JB-algebra and $A = A_h + iA_h$. If $a \in A_h$ then $C^*(a)$, the JB^*-subalgebra of A generated by a (or by $a, 1$ if A is unital), is a C^*-algebra. Clearly each C^*-algebra with respect to its Jordan product is a JB^*-algebra. The reader is referred to [7] for more details on JB-algebras and JB^*-algebras. From now on throughout this section we assume that A is a unital JB^*-algebra, B is a Banach Jordan algebra and $\{d_m\}$ is a higher derivation of infinite rank from A into B with continuous d_0. For each $m = 0, 1, 2, \ldots$, set

$$S_m := \{b \in B : \exists \{a_n\} \subseteq A \text{ s.t. } a_n \to 0 \text{ and } d_m(a_n) \to b\},$$

which is called the separating space of d_m. This is a closed linear subspace of B ([5], Theorem 5.1.2) and by the closed graph theorem d_m is continuous if and only if $S_m = \{0\}$. Therefore $\{d_m\}$ is continuous if and only if $S_m = \{0\}$, for all $m \geq 0$. If we consider B as a Jordan A-module via the homomorphism d_0 as in Example 2.1 (ii), then d_1 would be a derivation from A into B. With the assumption on d_0 we have $S_0 = \{0\}$ and it is easy to see that S_1 is a submodule of B. In general S_m is not a submodule for $m \geq 2$, but if $d_0, d_1, \ldots d_{m-1}$ are assumed to be continuous, then d_m would be an intertwining map and hence S_m is a submodule. Using the same notations as in Section 2, set $R_m := R(S_m)$, $Q_m := Q(S_m)$ and $T_m := T(S_m)$. If d_0, \ldots, d_{m-1} are continuous then we have

$$R_m = \{a \in A : R_a d_m \text{ is continuous } \} = \{a \in A : d_m R_a \text{ is continuous} \},$$

and

$$Q_m = \{a \in A : U_a d_m \text{ is continuous } \} = \{a \in A : d_m U_a \text{ is continuous} \}.$$

Before we prove the next lemma, we recall that a subalgebra C of a Jordan algebra A is said to be strongly associative if $[R_a, R_b] = 0$, for all $a, b \in C$. By Example 1.8.1 of [10], for each $a \in A$, the subalgebra of A generated by a, (or by $a, 1$ if A is unital) is strongly associative and by ([10] Lemma 1.8.8), if a, b lie in a strongly associative subalgebra, then $U_{ab} = U_a U_b$.

Lemma 3.1. Let A be a JB^*-algebra. Suppose that X is a Banach Jordan A-module, Y is a weak Jordan A-module and $T : X \to Y$ is
a module homomorphism. If \(a \in A \), and \(\{f_n\} \subseteq C^*(a) \) is such that
\(f_if_j = 0 \) \((i \neq j) \), then \(U_{f_n}T \) is continuous for all but a finite number of
\(n \)'s.

Proof. Suppose that \(U_{f_n}T \) is discontinuous for infinitely many \(n \)'s. By
considering a subsequence we may assume that \(U_{f_n}T \) is discontinuous
for each \(n \). Let \(M_n \) and \(K_n \) be the norms of the bounded linear operators
\(x \mapsto U_{f_n}(x), \mathcal{X} \longrightarrow \mathcal{X} \), and \(y \mapsto U_{f_n}(y), \mathcal{Y} \longrightarrow \mathcal{Y} \), respectively. Note
that \(M_n, K_n > 0 \) for each \(n \); otherwise \(U_{f_n}T = T U_{f_n} = 0 \) which is
continuous. Choose a sequence \(\{x_n\} \) in \(\mathcal{X} \) such that
\[
\|x_n\| \leq 2^{-n}/M_n, \\
\|U_{f_n}T(x_n)\| \geq nK_n.
\]
Take \(z = \sum_{n=1}^{\infty} U_{f_n}(x_n) \). By strong associativity of \(C^*(a) \) as a subalgebra
of \(A \oplus \mathcal{X} \) and \(A \oplus \mathcal{Y} \), we have \(U_{f_i}U_{f_j} = U_{f_if_j} = 0 \) \((i \neq j) \), on
\(A \oplus \mathcal{X} \) and \(A \oplus \mathcal{Y} \). Since \(T \) is a module homomorphism, \(K_n\|T(z)\| \geq
\|U_{f_n}T(z)\| = \|TU_{f_n}(z)\| = \|T(U_{f_n}^2(x_n))\| = \|U_{f_n}^2(Tx_n)\| \geq nK_n.
Therefore \(\|T(z)\| \geq n \) for each \(n \), which is impossible. So the result
holds. \(\square \)

Remark 3.2. Suppose that \(B \) is a Jordan algebra. Then \(B_m := \bigoplus_{m+1}^{m} B \) is a Jordan algebra with the product defined by
\[
(x_0, x_1, \ldots, x_m)(y_0, y_1, \ldots, y_m) = (x_0y_0, x_0y_1 + x_1y_0, \ldots, \sum_{i=0}^{m} x_iy_{m-i}),
\]
for all \((x_0, x_1, \ldots, x_m), (y_0, y_1, \ldots, y_m) \in B_m. \) Clearly, this product is
commutative. Suppose that \(\bar{x} = (x_0, x_1, \ldots, x_m), \bar{y} = (y_0, y_1, \ldots, y_m) \in B_m. \) Then the \(k^{th} \) entries of \(\bar{x}(\bar{x}^2\bar{y}) \) and \(\bar{x}^2(\bar{x}\bar{y}) \) are
\[
\sum_{l=0}^{k} x_l(\sum_{j=0}^{k-l} x_j x_{j-1}) y_{k-j-l}, \tag{3.1}
\]
and
\[
\sum_{l=0}^{k-1} x_l x_{l-1}(\sum_{j=0}^{k-l} x_j y_{k-j-1}), \tag{3.2}
\]
respectively. By identities \((O2)\) and \((O3)\) in Section 1.7 of [10], (3.1) and
(3.2) are equal, and hence \(B_m \) is a Jordan algebra. Furthermore, let \(B \) be
a Banach Jordan algebra. Define a norm on B_m by $\| (x_0, x_1, \ldots, x_m) \|_0 = \sum_{i=0}^{m} \| x_i \|$. Then $\| \cdot \|_0$ is a complete norm on B_m and it is easy to see that

$$\|(x_0, x_1, \ldots, x_m)(y_0, y_1, \ldots, y_m)\|_0 \leq \|(x_0, x_1, \ldots, x_m)\|_0 \|(y_0, y_1, \ldots, y_m)\|_0,$$

for all $(x_0, x_1, \ldots, x_m), (y_0, y_1, \ldots, y_m) \in B_m$. Therefore B_m is a Banach Jordan algebra.

Lemma 3.3. Suppose that A is a JB^*-algebra and B is a Banach Jordan algebra. Let $\{d_m\} : A \rightarrow B$ be a higher derivation with continuous d_0. Let $a \in A_h$ and let $\{f_n\} \subseteq C^*(a)$ be such that $f_if_j = 0$ ($i \neq j$). Then for each $m = 0, 1, 2, \ldots$, we have $f_n^2 \in Q_m$, for all but a finite number of n’s.

Proof. Consider a fixed m, and let B_m be as in Remark 3.2. We define $\theta_m : A \rightarrow B_m$, $a \mapsto (d_0(a), d_1(a), \ldots, d_m(a))$.

Then θ_m is a homomorphism and B_m is a weak Jordan A-module via the homomorphism θ_m. Also as in Example 2.1 (ii), θ_m is a module homomorphism. We have $U_fU_{f_i} = U_{f_i}U_f = 0$ ($i \neq j$), on the split null extension of A and B_m. Hence by Lemma 3.1, $U_f^2\theta_m$ is continuous for all but a finite number of n’s. Thus for such n’s, $U_f^2d_1, \ldots, U_f^2d_m$ are continuous and it follows that $f_n^2 \in Q_m$, for all but a finite number of n’s. □

Theorem 3.4. Let A be a JB^*-algebra and let B be a Jordan Banach algebra. Suppose that $\{d_m\}$ is a higher derivation from A into B with continuous d_0. Then the following assertions hold.

(i) If $a \in A_h$ and Δ is the maximal ideal space of $C^*(a)$, then for every $m = 1, 2, \ldots$, the set $F_m = \{ \lambda \in \Delta : \lambda(Q_m \cap C^*(a)) = \{0\} \}$ is finite.

(ii) If I is a closed ideal of A containing Q_m, then every element in the JB-algebra $(A\Delta^m)_h$ has finite spectrum.

(iii) If d_1, \ldots, d_{m-1} are continuous and K is a closed ideal of A contained in Q_m, then $d_m|_K$ is continuous.

(iv) If d_1, \ldots, d_{m-1} are continuous and L is an ideal of A such that $d_m|_L$ is continuous, then $L \subseteq I_m \subseteq Q_m$.
Proof. (i) If F_n is infinite, then we may find an infinite sequence \(\{\lambda_k\} \subseteq \Delta \) and a sequence \(\{V_k\} \) of open subsets of \(\Delta \) such that \(V_j \cap V_k = \emptyset \) \((j \neq k)\), and \(\lambda_k \in V_k \), for each \(k \). For every \(k \in \mathbb{N} \), choose \(f_k \in C^*(a) \) such that \(f_k(\lambda_k) \neq 0 \) and \(f_k(\Delta \backslash V_k) = \{0\} \). Then \(f_k f_j = 0 \) \((k \neq j)\), and \(f_k^2 \notin \mathcal{Q}_m \) which contradicts Lemma 3.3.

(ii) Let \(I \) be a closed ideal in \(\mathcal{A} \) such that \(\mathcal{Q}_m \subseteq I \), for all \(m = 0, 1, 2, \ldots \).

For each \(a \in \mathcal{A}_h \), we have
\[
\{ \lambda \in \Delta : \lambda(\mathcal{I} \cap C^*(a)) = \{0\} \} \subseteq \{ \lambda \in \Delta : \lambda(\mathcal{Q}_m \cap C^*(a)) = \{0\} \}.
\]
Hence by (i) the left hand side is a finite set and as in Theorem 12.2 of [18], \(\frac{C^*(a)}{\mathcal{C}^*(a) / \mathcal{I}} \) is finite dimensional, and since the closed *-subalgebra of \(\mathcal{A} / \mathcal{I} \) generated by \(a \) and \(1 \) is isomorphic to \(\frac{C^*(a)}{\mathcal{C}^*(a) / \mathcal{I}} \), the result holds.

(iii) We show that \(d_m \) is bounded on bounded subsets of \(\mathcal{K}_h \). On the contrary suppose that there is a sequence \(\{a_n\} \subseteq \mathcal{K}_h \) such that \(a_n \to 0 \) and \(\| d_m(a_n) \| \to \infty \). We may assume that \(\sum_{n=1}^{\infty} \| a_n \|^2 \leq 1 \). Let \(b = (\sum_{n=1}^{\infty} a_n^2)^{1/8} \). Then \(b \geq 0 \), \(\| b \| \leq 1 \) and \(a_n^2 \leq b^8 \) \((n \in \mathbb{N})\).

By [9] Lemma 1.7, for each \(n \in \mathbb{N} \) there exists \(u_n \in \mathcal{K}_h \) such that \(\| u_n \| \leq 2 \), \(\| b^{1/4} \| \leq 2 \) and \(a_n = U_b(u_n) \). Hence \(d_m(a_n) = d_m U_b(u_n) \). Since \(\mathcal{K} \subseteq \mathcal{Q}_m \), we have \(b \in \mathcal{Q}_m \) and so \(d_m U_b \) is continuous. Now it follows that \(\| d_m(a_n) \| \leq \| d_m U_b \| \| u_n \| \leq 2 \| d_m U_b \| \), which is a contradiction.

(iv) Suppose that \(d_m \mid \mathcal{L} \) is continuous. Take \(a \in \mathcal{S}_m \). Then there is a sequence \(\{a_n\} \subseteq \mathcal{A} \) such that \(a_n \to 0 \) and \(d_m(a_n) \to a \). Let \(b \in \mathcal{L} \). Since \(d_1, \ldots, d_{m-1} \) are continuous it follows that
\[
d_m(ba_n) = d_0(b)d_m(a_n) + d_1(b)d_{m-1}(a_n) + \ldots + d_m(b)d_0(a_n) \to ba.
\]
Since \(ba_n \in \mathcal{L} \) and \(d_m \mid \mathcal{L} \) is continuous, \(ba = 0 \). This means that \(b \in \mathcal{R}_m \) and hence \(\mathcal{L} \subseteq \mathcal{R}_m \). But \(\mathcal{I}_m \) is the largest ideal of \(\mathcal{A} \) contained in \(\mathcal{R}_m \), so we have \(\mathcal{L} \subseteq \mathcal{I}_m \subseteq \mathcal{Q}_m \).

Corollary 3.5. Let \(\mathcal{A} \) be a JB*-algebra and let \(\mathcal{B} \) be a Banach Jordan algebra. Suppose that \(\{d_m\} \) is a higher derivation from \(\mathcal{A} \) into \(\mathcal{B} \) with continuous \(d_0 \). If \(\mathcal{K} \) is a closed ideal of \(\mathcal{A} \) contained in \(\bigcap \mathcal{Q}_m \), then \(d_m \mid \mathcal{K} \) is continuous for all \(m \).

Proof. Similar to the proof of Theorem 3.4 (iii).

Theorem 3.6. Let \(\{d_m\} \) be a higher derivation of a JB*-algebra \(\mathcal{A} \) into a Banach Jordan algebra \(\mathcal{B} \) such that \(d_0 \) is continuous. Then \(\{d_m\} \) is
continuous if and only if \((Q_m)_h := \{a \in Q_m: \ a = a^*\}\) is a real linear subspace of \(A_h\), for all \(m \in \mathbb{N}\).

Proof. If \(\{d_m\}\) is continuous then \(Q = A\), and so \((Q_m)_h\) is real linear. Conversely let \((Q_m)_h\) be real linear. Since \(d_1\) is a derivation, by ([9] Theorem 2.2), \(d_1\) is continuous. Suppose by induction that each \(d_i\) \((i < m)\) is continuous. Then \(S_m\) is a submodule of \(B\), and \(U_{A_h}(Q_m)_h \subseteq (Q_m)_h\), hence \((Q_m)_h\) is an ideal of \(A_h\). By Theorem 3.4 (iii), \(d_m\) is continuous on \((Q_m)_h + i(Q_m)_h\). Hence \((Q_m)_h + i(Q_m)_h \subseteq I_m \subseteq Q_m\) and so \(I_m = (Q_m)_h + i(Q_m)_h\). Let \(\pi: A \to \frac{A}{I_m}\) be the canonical quotient map. By Theorem 3.4 (ii) every element in \((\frac{A}{I_m})_h\) has finite spectrum. But \((\frac{A}{I_m})_h = \frac{A_h}{(I_m)_h}\) is a semisimple real Banach Jordan algebra in which every element has non-empty finite spectrum and by [2] it is reduced, that is, there exist idempotents \(\pi(e_1), \ldots, \pi(e_n) \in (\frac{A}{I_m})_h\) such that \(\pi(e_i)\pi(e_j) = 0, (i \neq j)\), \(\sum_{i=1}^n \pi(e_i) = 1\), and \(U_{\pi(e_i)}(\frac{A}{I_m})_h = \mathbb{R}\pi(e_i), (i = 1, \ldots, n)\). Since each \(\pi(e_i)\) is self-adjoint, \(\pi(e_i^*e_i) = \pi(e_i)\), \(i = 1, \ldots, n\), and so \(\pi(e_i^*e_i), \ldots, \pi(e_n^*e_n)\) are idempotents in \((\frac{A}{I_m})_h\) with sum 1 such that \(\pi(e_i^*e_i)\pi(e_j^*e_j) = 0, (i \neq j)\). Hence by replacing \(e_i\) with \(e_i^*e_i\), if necessary, we may assume that each \(e_i\) is self-adjoint. Suppose that \(\{a_k\} \subseteq A_h\) and \(a_k \to 0\). Then \(\pi(a_k) \to 0\), and for each \(i = 1, \ldots, n\), and each \(k \in \mathbb{N}\), there exists \(\lambda_{ik} \in \mathbb{R}\) such that

\[
U_{\pi(e_i)}(\pi(a_k)) = \lambda_{ik} \pi(e_i).
\]

Hence \(\lambda_{ik} \pi(e_i) \to 0\) as \(k \to \infty\), and so \(\lambda_{ik} \to 0\) as \(k \to \infty\). By (3.3) we have

\[
U_{e_i}(a_k) - \lambda_{ik} e_i \in I_m, \quad (i = 1, \ldots, n, \ k \in \mathbb{N}),
\]
and by continuity of \(d_m\) \(|I_m|\), \(\lim_{k \to \infty} d_m(U_{e_i}(a_k) - \lambda_{ik} e_i) = 0\). Since \(\lim_{k \to \infty} \lambda_{ik} = 0\), we have \(\lim_{k \to \infty} d_m U_{e_i}(a_k) = 0\). Therefore \(d_m U_{e_i}\) is continuous for \(i = 1, \ldots, n\), and \(e_1, \ldots, e_n \in (Q_m)_h\). So \(e_1 + \ldots + e_n \in I_m = (Q_m)_h + i(Q_m)_h\). Since \(\pi(e_1 + \ldots + e_n)\) is the identity of \((\frac{A}{I_m})_h\), \(A = I_m\) and \(d_m\) is continuous on \(A\).

Lemma 3.7. Let \(A\) and \(B\) be \(JB^*\) -algebras and let \(\phi: A \to B\) be a \(*\)-homomorphism, that is \(\phi(a^*) = (\phi(a))^*\) \((a \in A)\). Consider \(B\) as a Banach Jordan \(A\)-module via the homomorphism \(\phi\). If \(S\) is a submodule of \(B\), then \(Q(S) = \mathbb{I}(S)\).
Proof. We show that \((Q(S))_h = (I(S))_h\). Consider the identities
\[
(U_x(y^2))^2 = U_x U_y U_y (x^2), \quad (3.4)
\]
\[
(xy)^2 = \frac{1}{2} y U_x (y) + \frac{1}{4} U_x (y^2) + \frac{1}{4} U_y (x^2), \quad (3.5)
\]
which are valid in any Jordan algebra, see [10], p. 37 for the first one. The second holds by the fact that any Jordan algebra generated by two elements is special, see Shirsov-Cohen’s theorem, [7] Theorem 2.4.14. Now, if \(a \in Q(S)_h\) then by setting \(x = \phi(a) \in B_h\) in (3.4) and (3.5), we have
\[
(\phi(a)b)^2 = 0 \quad (a \in Q(S), \ b \in S).
\]
Therefore \(a \in R(S)\) and it follows that \((Q(S))_h \subseteq (R(S))_h\). So \((Q(S))_h = (Q(S))_h \cap (R(S))_h = (I(S))_h\), by ([9], Theorem 1.4).

Corollary 3.8. Let \(A\) and \(B\) be JB*-algebras, and let \(\{d_m\} : A \rightarrow B\) be a higher derivation for which \(d_0\) is a *-homomorphism. Then \(\{d_m\}\) is continuous.

Proof. Since \(d_0\) is a *-homomorphism, it is automatically continuous. Note that \(S_1\) is a submodule of \(B\), thus by Lemma 3.7, \(Q_1\) is a linear subspace of \(A\) and hence by ([9] Theorem 2.2), \(d_1\) is continuous. Fix \(m\), suppose that each \(d_i\) (\(i < m\)) is continuous. Therefore \(S_m\) is a submodule and again by Lemma 3.7, \(Q_m\) is a linear subspace of \(A\), and hence by Theorem 3.6, \(d_m\) is continuous.\(\square\)

In the next few results, by a Jordan higher derivation from a C*-algebra \(A\) we mean a higher derivation from \(A\), with its Jordan product, into a Banach Jordan algebra. Obviously each higher derivation (with respect to the associative product) is also a Jordan derivation. As a consequence of Corollary 3.8 each higher derivation, or each Jordan higher derivation between C*-algebras, is continuous provided that \(d_0\) is a *-homomorphism. In the next results \(d_0\) is not assumed to be a *-homomorphism.

Theorem 3.9. Let \(A\) be a commutative C*-algebra, and let \(B\) be a Banach Jordan algebra. If \(\{d_m\} : A \rightarrow B\) is a Jordan higher derivation such that \(d_0\) is continuous, then \(\{d_m\}\) is continuous.

Proof. By ([9], Theorem 2.4) of, \(d_1\) is continuous. Suppose that \(d_1, \ldots, d_{m-1}\) are continuous. Then \(S_m\) is a submodule. We show that \((Q_m)_h =

\["www.SID.ir"]
Automatic Continuity of Higher Derivations on JB*-algebras

Let \(a \in (Q_m)_h \). We have \(a^2A = aAa = U_aA \subseteq Q_m \), and hence \(a^2A \subseteq Q_m \). Since \(I_m \) is the largest ideal of \(A \) contained in \(Q_m \), \(a^2A \subseteq I_m \). Therefore \(a^4 \in I_m \) and since \(a = a^* \), we have \(a \in I_m \). □

Before proving the next result, we recall that if \(A \) is an associative algebra with associative product \((a, b) \mapsto ab \), and the Jordan product \((a, b) \mapsto ab + ba^2\), then \(U_a(b) = aba \) \((a, b \in A)\).

Theorem 3.10. Let \(A \) be a C*-algebra with minimal idempotents, and let \(\{d_m\} \) be a Jordan higher derivation from \(A \) to a Banach Jordan algebra \(B \). If \(d_0, \ldots, d_{m-1} \) are continuous on \(A \), then \(\{d_m\} \) is continuous on \(\text{soc}(A) \).

Proof. By ([3], Theorem 30.10), \(\text{soc}(A) \) exists. Let \(M \) denote the set of all minimal idempotents of \(A \). Then

\[
\text{soc}(A) = \sum_{e \in M} eA = \sum_{e \in M} Ae, \tag{3.6}
\]

where by \(\sum \) we mean the algebraic sum. Since \(d_0, \ldots, d_{m-1} \) are continuous, we have

\[
Q_m = \{a \in A : U_ad_m \text{ is continuous}\} = \{a \in A : d_mU_a \text{ is continuous}\}. \tag{3.7}
\]

Suppose that \(a \in \text{soc}(A)_h \), then there exist \(b_1, \ldots, b_n \in A \), and \(e_1, \ldots, e_n \in M \) such that \(a = e_1b_1 + \ldots + e_nb_n \), and hence \(a^* = b_1^*e_1^* + \ldots + b_n^*e_n^* = a \).

So

\[
U_a(b) = aba = \sum_{i=1}^{n} \sum_{j=1}^{n} e_ib_ib_j^*e_j^* \quad (b \in A). \tag{3.8}
\]

We know that the adjoint of a minimal idempotent is also a minimal idempotent, hence by ([3], Theorem 31.6), \(\dim(e_iAe_j^*) \leq 1 \), for \(i, j = 1, \ldots, n \). By (3.8) we have, \(U_a(A) \subseteq \sum_{i=1}^{n} \sum_{j=1}^{n} e_iAe_j^* \), thus \(\dim(U_a(A)) < \infty \) and \(d_m \) is continuous on \(U_a(A) \). This shows that \(d_mU_a \) is continuous on \(A \), and hence by (3.7), \(a \in Q_m \). It follows that \(\text{soc}(A)_h \subseteq Q_m \), and since \(Q_m \) is closed, \(\overline{\text{soc}(A)_h} \subseteq Q_m \). By (3.6) \(\text{soc}(A) \) is an \(* \)-ideal, hence \(\overline{\text{soc}(A)} = \overline{\text{soc}(A)_h} \). Now the same argument as in Theorem 3.4 (iii) implies that \(d_m \) is continuous on \(\text{soc}(A) \). □

Corollary 3.11. If \(A \) is a C*-algebra with minimal idempotents such that \(\text{soc}(A) = A \), then each Jordan higher derivation from \(A \) into a Banach Jordan algebra \(B \) with continuous \(d_0 \) is continuous. In particular,
if $\mathcal{A} = \mathcal{K}(\mathcal{H})$, the C^*-algebra of all compact operators on a Hilbert space \mathcal{H}, then every Jordan higher derivation from \mathcal{A} into a Banach Jordan algebra \mathcal{B} with continuous d_0, is continuous.

Proof. By the hypothesis, d_0 is continuous on \mathcal{A}. Suppose by induction that d_0, \ldots, d_{m-1} are continuous on \mathcal{A}. Then by Theorem 3.10, d_m is continuous on $\text{soc}(\mathcal{A}) = \mathcal{A}$. The last assertion follows by the fact that $\text{soc}(\mathcal{K}(\mathcal{H}))$ is $\mathcal{F}(\mathcal{H})$, the ideal of finite rank bounded operators on \mathcal{H}, which is dense in $\mathcal{K}(\mathcal{H})$. □

Acknowledgment
The authors sincerely thank the referee for valuable comments and suggestions.

References

Shirin Hejazian
Department of Mathematics
Ferdowsi University
P. O. Box 1159
Mashhad 91775, Iran
and
Banach Mathematical Research Group (BMRG)
Mashhad, Iran

e-mail: hejazian@ferdowsi.um.ac.ir

Taiebe Lal Shatery
Department of Mathematics
Ferdowsi University
P. O. Box 1159
Mashhad 91775, Iran

e-mail: ta_sh@stu-mail.um.ac.ir