Which Information Resources are used by General Practitioners for Updating Knowledge Regarding Diabetes?

Ozra Tabatabaei-Malazy MD MPH1-2, Sahamaz Nedjat MD PhD2-3, Reza Majdzadeh PhD2-3

Abstract

Background: Little is known about the degree of utilization of information resources on diabetes by general practitioners (GPs) and its impact on their clinical behavior in developing countries. Such information is vital if GPs’ diabetes knowledge is to be improved.

Methods: This cross-sectional study recruited 319 GPs in the summer of 2008. Questions were about the updates on diabetes knowledge in the previous two years, utilization of information resources (domestic and foreign journals, congresses, the Internet, reference books, mass media, and peers), attitude toward the importance of each resource, and impact of each resource on clinical behavior.

Results: A total of 62% of GPs had used information resources for improving their knowledge on diabetes in the previous two years. Domestic journals accounted for the highest utilization (30%) and the highest importance score (83 points from 100); with the importance score not being affected by sex, years elapsed after graduation, and numbers of diabetic visits. Clinical behavior was not influenced by the information resources listed; whereas knowledge upgrade, irrespective of the sources utilized, had a significantly positive correlation with clinical behavior.

Conclusion: Domestic journals constituted the main information resource utilized by the GPs; this resource, however, in tandem with the other information resources on diabetes exerted no significant impact on the GPs’ clinical behavior. In contrast to the developed countries, clinical guidelines do not have any place as a source of information and or practice. Indubitably, the improvement of diabetes knowledge transfer requires serious interventions to improve information resources as well as the structure of scientific gatherings and collaborations.

Keywords: Behavior of general practitioners, information resources, knowledge translation

Introduction

Research in the field of knowledge translation and innovation at large underlines a deep incongruence between knowledge production and its application.1-2 The domain of health is no exception as is evident by the gap between new knowledge and its utilization in chronic diseases, in particular diabetes.1 Indeed, for all the advances in the treatment of diabetes in the past three decades, the treatment outcome of this medical condition in developed and developing countries is still far from optimal,3 with approximately only one third of patients achieving acceptable levels of blood sugar control.4 A variety of reasons such as non-adherence of patients to treatment protocols and inappropriate treatment prescribed by physicians have been suggested as the causes of failure to achieve treatment goals.5 Iran is also faced with this disparity between knowledge production and knowledge use or, in other words, between what is known and what is actually practiced.6-7 Enhancing knowledge utilization necessitates novel approaches to forge a link between research and practice.7 There are currently several methods for effecting a change in the clinical behavior of health-care providers, but we should first determine which of these methods are given preference by each particular audience.

In most societies, general practitioners (GPs) represent a high proportion of health knowledge consumers as they are by and large the first line of treatment for patients.8 Medical information resources vary from country to country due to a whole host of reasons, the most prominent of which is perhaps accessibility. Therefore, decision-makers should be furnished with information on the most utilized resources with the highest impact on diabetes care by GPs if they are to design appropriate intervention measures for furthering knowledge transfer in this important group.

The main objective of this study was to seek the most effective information resources on the clinical behavior of GPs in the field of diabetes at Iran as an example of developing countries in the Middle East.

Materials and Methods

Study population

This cross-sectional study was conducted in the summer of 2008. In this study, we recruited 319 GPs who had a minimum of two years’ clinical experience. GPs employed in centers that directly dealt with diabetics, such as specialized clinics or diabetes clinics affiliated with research centers, as well GPs who worked in clinics where diabetes was less likely to be encountered (i.e., clinics affiliated with the Blood Transfusion Organization) were excluded from the present study.

The study was conducted in two stages: a pre-test stage, where
In the past two years, attitudes toward the importance of each information resource (domestic or foreign journals, congresses, the Internet, reference books, mass media, and peers) on diabetes in the previous two years, attitude toward the importance of each information resource in knowledge transfer, and the impact of the information resources on clinical behavior.

Given the important role that patient education plays in the control of diabetes and its complications, this factor was considered to be a positive clinical behavior alongside diabetes medication. Accordingly, the provision and non-provision of at least two educational recommendations to patients for better control of hyperglycemia were selected as the criterion for suitability and unsuitability of clinical behavior.

Three research assistants were initially trained and sent to a general refresher course for GPs, where their performance was subjected to imperceptible monitoring by two of the course participants. Before the study commencement, the research assistants fully explained the objectives and methods of the study to the participants. Participants completed the questionnaire, which included information about demographics, utilization of information resources (domestic or foreign journals, congresses, the Internet, reference books, mass media, and peers) on diabetes in the previous two years, attitude toward the importance of each information resource in knowledge transfer, and the impact of the information resources on clinical behavior.

Three research assistants were initially trained and sent to a general refresher course for GPs, where their performance was subjected to imperceptible monitoring by two of the course participants. Before the study commencement, the research assistants fully explained the objectives and methods of the study to the participants. Participants completed the questionnaire, which included information about demographics, utilization of information resources (domestic or foreign journals, congresses, the Internet, reference books, mass media, and peers) on diabetes in the previous two years, attitude toward the importance of each information resource in knowledge transfer, and the impact of the information resources on clinical behavior.

Given the important role that patient education plays in the control of diabetes and its complications, this factor was considered to be a positive clinical behavior alongside diabetes medication. Accordingly, the provision and non-provision of at least two educational recommendations to patients for better control of hyperglycemia were selected as the criterion for suitability and unsuitability of clinical behavior. Although this variable was selected to show the patient care of health-care providers, who may spend more time on their patients, it was a surrogate measure for “appropriate clinical behavior.”

Table 1. Comparison of background variables according to “updating diabetes knowledge during last two years” in general practitioners.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Updating during last two years</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>Gender Female</td>
<td>122 (61.6)</td>
<td>71 (58.7)</td>
</tr>
<tr>
<td></td>
<td>76 (38.4)</td>
<td>50 (41.3)</td>
</tr>
<tr>
<td>Elapsed years after graduation</td>
<td>(mean ± SE)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.3±0.5</td>
<td>10±0.6</td>
</tr>
<tr>
<td>Number of monthly diabetic visits</td>
<td>(mean ± SE)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25.7±2.2</td>
<td>24.9±3.2</td>
</tr>
</tbody>
</table>

Table 2. Utilization of information resources and relationship between independent variables.

<table>
<thead>
<tr>
<th>Information resources</th>
<th>Utilization</th>
<th>Odds Ratio (P-value)</th>
<th>Number of monthly diabetic visits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Percentage</td>
<td>Male/female</td>
<td>(95% CI)</td>
</tr>
<tr>
<td>Domestic journals</td>
<td>29.8 (24.8–35.1)</td>
<td>0.97 (0.89)</td>
<td>1.01 (0.71)</td>
</tr>
<tr>
<td>Reference books</td>
<td>26.3 (21.6–31.5)</td>
<td>1.06 (0.83)</td>
<td>0.98 (0.22)</td>
</tr>
<tr>
<td>Congresses</td>
<td>16.6 (12.7–21.2)</td>
<td>1.60 (0.12)</td>
<td>1.04 (0.05)*</td>
</tr>
<tr>
<td>Internet</td>
<td>14.1 (10.5–18.4)</td>
<td>0.82 (0.56)</td>
<td>0.99 (0.79)</td>
</tr>
<tr>
<td>Mass media</td>
<td>7.8 (5.1–11.3)</td>
<td>0.85 (0.71)</td>
<td>1.01 (0.59)</td>
</tr>
<tr>
<td>International journals</td>
<td>5.3 (3.3–8.4)</td>
<td>2.29 (0.10)</td>
<td>1.05 (0.05)*</td>
</tr>
<tr>
<td>Peers</td>
<td>5.0 (2.9–8.0)</td>
<td>1.20 (0.72)</td>
<td>0.99 (0.75)</td>
</tr>
</tbody>
</table>

Table 3. Attitudes of general practitioners toward the importance of different information resources for updating diabetes knowledge and its determinant factors.

<table>
<thead>
<tr>
<th>Information resources</th>
<th>Importance†</th>
<th>Male/female</th>
<th>Years elapsed after graduation</th>
<th>Number of monthly diabetic visits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ±SD</td>
<td></td>
<td>(95% CI)</td>
<td></td>
</tr>
<tr>
<td>Domestic journals</td>
<td>83.15 ± 25.24</td>
<td>-1.34 (0.64)</td>
<td>-0.14 (0.48)</td>
<td>0.001 (0.98)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-7.03–4.36)</td>
<td>(-0.53–0.25)</td>
<td>(-0.09–0.09)</td>
</tr>
<tr>
<td>Congresses</td>
<td>79.34 ± 28.11</td>
<td>1.82 (0.57)</td>
<td>0.41 (0.06)</td>
<td>0.04 (0.45)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-4.55–8.19)</td>
<td>(-0.02–0.84)</td>
<td>(-0.06–0.13)</td>
</tr>
<tr>
<td>Peers</td>
<td>70.77 ± 32.90</td>
<td>3.39 (0.37)</td>
<td>-0.50 (0.05)*</td>
<td>0.06 (0.27)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-4.03–10.80)</td>
<td>(-1.00–0.00)</td>
<td>(-0.05–0.18)</td>
</tr>
<tr>
<td>Internet</td>
<td>69.57 ± 34.28</td>
<td>3.66 (0.35)</td>
<td>-0.51 (0.06)</td>
<td>0.03 (0.66)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-4.08–11.41)</td>
<td>(-1.03–0.02)</td>
<td>(-0.14–0.09)</td>
</tr>
<tr>
<td>International journals</td>
<td>58.36 ± 33.77</td>
<td>5.88 (0.13)</td>
<td>-0.12 (0.64)</td>
<td>0.00 (0.99)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-1.73–13.49)</td>
<td>(-0.64–0.40)</td>
<td>(-0.12–0.12)</td>
</tr>
<tr>
<td>Mass media</td>
<td>51.88 ± 39.95</td>
<td>-13.60 (0.003)**</td>
<td>-0.16 (0.61)</td>
<td>-0.23 (0.001)**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-22.49–4.71)</td>
<td>(-0.78–0.46)</td>
<td>(-0.36–0.09)</td>
</tr>
<tr>
<td>Reference books</td>
<td>48.34 ± 46.58</td>
<td>10.37 (0.05)*</td>
<td>0.35 (0.33)</td>
<td>0.07 (0.41)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-0.15–20.88)</td>
<td>(-0.37–0.17)</td>
<td>(-0.09–0.23)</td>
</tr>
</tbody>
</table>

* Because there was no statistically significant relationship between the variables in the adjusted analysis, only crude results are presented.
† Possible minimum and maximum score, range: 0 to 100. * P<0.05 was considered statistically significant. ** P<0.01 was considered statistically significant.
Data analysis
Linear and logistic regression was performed for analysis. Utilization or non-utilization of information resources as the predictor (dependent) variable and sex, time lapse after graduation, and number of diabetic visits per month as the independent variables were entered in the logistic regression (Enter Model).

The importance of each single information resource on diabetes knowledge during the previous two years. Table 1 depicts the results of the analysis of the variables relating to “updating diabetes knowledge”. The time lapse after graduation was between 2 and 55 years with a mean of 10 years (SD = 7). The number of diabetic patients visited per month was between 1 and 200 persons, with a mean of 25 persons/month (SD = 32).

Ethical consideration
The proposal of this research was submitted to the process of Research Project Evaluation at Tehran University of Medical Sciences and included the approval of the university Ethics Committee. Verbal consent was obtained from the participants.

Results
From a total of 349 GPs who were initially invited to participate in the present study, 319 persons met the inclusion criteria and consented. There were 25 persons who did not meet the inclusion criteria and 5 persons who did not consent to be enrolled into the study. Thus, 319 (91.4%) GPs responded to our questions.

Characteristics of the study population
The study population comprised 193 (60.5%) women and 126 (39.5%) men. The mean age of the participants was 38 years (standard deviation (SD) = 7.7) with a range of 27 – 82 years. The time lapse after graduation was between 2 and 55 years with a mean number of 10 years (SD = 7). The number of diabetic patients visited per month was between 1 and 200 persons, with a mean of 25 persons/month (SD = 32).

Updating diabetes knowledge
Regardless of information resource
There were 62% of participants who sought to update their diabetes knowledge during the previous two years. Table 1 depicts the results of the analysis of the variables relating to “updating diabetes knowledge”; there was no significant relationship between the variables.

Utilization of information resources
Table 2 illustrates the results of the analysis of “utilization of information resources” as the dependent variable and the effect of the independent factors, which was conducted to be used in the crude and adjusted analyses. From information resources listed, domestic medical journals (30%), reference books (26%), and congresses (17%) were the most popular sources.

Crude analysis showed that with each elapsed year from graduation, increased utilization of the congresses (1.04 times) and international journals (1.05 times) did not significantly impact the adjusted analysis.
Importance of information resources

The assessment of the GPs’ attitudes toward the importance of each information resource in Table 3 revealed that domestic medical journals scored the highest at 83.1 (SD = 25.2), followed by congresses at 79.3 (SD = 28.1) and peers at 70.8 (SD = 32.9). The crude analysis was indicative of the effect of the independent factors on some information resources, while the adjusted linear regression demonstrated no such effect.

Factors influencing clinical behavior

As self-reported by the GPs, 85.3% fulfilled the criterion for appropriate clinical behavior in diabetes care, i.e., providing patients with at least two educational recommendations for improving control of hyperglycemia. The results of the impact of the variables and utilization of information resources on Iranian GPs’ clinical behavior on diabetic patients are shown respectively in Tables 4 and 5. Of all factors, only “updating diabetes knowledge” had an increasing impact (3.72, $P < 0.001) on clinical behavior in the adjusted analysis.

Discussion

In the present study, 62% of the GPs reported having updated their diabetes knowledge in the two previous years. We did not investigate the barriers to knowledge utilization; be that as it may, the fact that 38% of our study population had failed to bring their knowledge of diabetes and its complications up to date in at least the two-year period leading up the commencement of our study might have been the result of a lack of an appropriate milieu conducive to up-to-the-minute learning.

Domestic journals, followed by reference books and congresses comprised the most widely used medical information resources on diabetes amongst our study population. Logistic regression analysis has demonstrated that the probability of the utilization of these resources was not correlated with the independent variables. The accessibility of domestic journals and the fact that the utilization of these resources does not require much time or special skills seems to have contributed to their favorability.

Given the priority accorded to domestic medical journals by our study population, drawing upon these information resources for the totality of monthly diabetic visits. By contrast, the importance of medical information resources on diabetes to domestic journals in the U.S. and Canada has reported the most utilized medical information resources on diabetes amongst our study population. Logistic regression analysis was indicative of the effect of the independent factors in the adjusted analysis. Previous studies have shown that values and attitudes can impact knowledge utilization rates.

Table 4 shows that around 85% of study subjects reported that they have made recommendations to their patients. This finding does not agree with the results of a study on the quality of diabetes management in Iran between the years 2005 and 2007. The said study has evaluated the quality of diabetes management in 2,456 diabetics in all 25 Iranian provinces and found that only 22% of them had received appropriate diabetes education. As this variable was self-reported in the present study, the majority of GPs claimed that they had offered educational recommendations to their diabetic patients in combination with medication. The validity of this variable to reflect reality of clinical practice has limitations. The ‘percentage of the diabetic patients’ and especially ‘ratio of new diabetic patients over follow up patients’ could be considered as complementary variables for better assessment of the appropriateness of clinical practice. Since the purpose of the present study was comparison of the different sources of knowledge on the GPs behaviors, we considered the feasibility of data gathering and selected the present variable (giving educational recommendation). This should be considered as a surrogate measurement, although it is of value for the analytical objectives of the present study, it is just a proxy of giving appropriate care to the patients and not appropriate to be used for a description of the appropriateness of the clinical practice.

None of the personal variables or information resources with the exception of “update their diabetes knowledge” exerted a significant influence on the GPs’ behavior in the present study. These findings highlight the need for the provision of other information resources such as standard clinical practice guidelines, although there is no guarantee that sufficient attention will be paid to clinical guidelines. It should be noted that the present study predated the publication of the clinical diabetes guideline, so “Clinical Guideline” was not on the options of local information resource. Ecartet efforts have been underway recently to formulate national clinical guidelines based on "Appraisal of Guidelines for Research and Evaluation” (AGREE)
the field of diabetes and its complications in Iran entitled “National/ Regional Diabetic Foot Guideline” has been published in print24 and electronic formats (http://emri.tums.ac.ir).

An evaluation of 43 published diabetes guidelines between 1980 and 2000 has shown that these guidelines failed to meet the methodological standards of formulating clinical guidelines.24 There is ample evidence that the traditional approach to the enhancement of knowledge, with is merely facilitating access and introducing new information resources, leaves too much to be desired.25,26 It is deserving of note that for all the foregoing measures, knowledge derived from research could still fail to reach its audience and that necessitates structures 27–29 or individuals to forge a link between researchers and policy makers with a view to conveying the research message. 30–32

Given the importance of studying as a significant factor in updating diabetes knowledge of the GPs in our study on the one hand and the non-correlation between the available information resources and clinical behavior of the GPs on the other, it seems that these information resources are devoid of the requisite quality for updating diabetes knowledge. We would, therefore, recommend that in conjunction with a mass distribution of resources such as clinical guidelines, earnest interventions be made in order to alter GPs’ attitude toward available information resources and to improve the quality of the knowledge presented in these resources. To that end, simultaneous use of several well-structured information resources and introduction of these resources through existing channels can also be advantageous.

Acknowledgments

This study was a Master of Public Health thesis in the School of Public Health and funded jointly by this School and the Endocrinology and Metabolism Research Center of Tehran University of Medical Sciences.

References

Archives of Iranian Medicine, Volume 15, Number 4, April 2012