لینک های مفید

- عضویت در خبرنامه
- کارگاه های آموزشی
- سرویس ترجمه تخصصی
- فیلم های آموزشی
- بلاگ مرکز اطلاعات علمی
- سرویس های ویژه

40% 40% تخفیف به مناسبت سالروز تاسیس مرکز اطلاعات علمی
Introduction

Thalassemias are among the most common genetic disorders worldwide, occurring more frequently in the Mediterranean region and Southeast Asia. The disease causes anemia of variable severity depending on the type of disease and the causative mutation. β-thalassemia is the most prevalent genetic disorder in our region. Approximately 180 different mutations affecting the β-globin gene lead to reduction or absence of β-globin chain production, resulting in β-thalassemia.

As with numerous other countries in the Mediterranean region, thalassemia is a major health problem in Iran where it is more frequently seen in the northern and southern regions of the country. In Iran, a premarital screening program for the prevention of major β-thalassemia has been in effect since 1997. Prior to marriage, couples are tested to determine if they are carriers of the β-globin gene mutation or not. For those who are carriers, prenatal diagnosis is offered.

Hemoglobin D (Hb D), a hemoglobin variant, occurs mainly in north-west India, Pakistan and Iran. Hb D differs structurally from normal hemoglobin A (HbA) at the amino acid 121 position on the β chain, where glutamine replaces glutamic acid.

Materials and Methods

Subjects

During laboratory investigations on families referred to us as a result of the National Program for Prevention of Thalassemia in Iran, three families were referred to our lab for further analysis. In the first family, the propositus was a 29-year-old male from Ardebil, a northern city of Iran. The second family was from Kerman, a southern province, and the third case was a 31-year-old male from Khuzestan, a western province. All subjects had low MCV, MCH and high HbA2, with no normal HbA levels. All had no symp-
toms of profound anemia or any history of blood transfusions (Table 1).

DNA Analysis

After obtaining informed consents, blood samples were collected in tubes containing EDTA and transported to the laboratory for analyses. Two ml of each sample were used for complete blood count and Hb electrophoresis. Complete blood count was performed by Sysmex automated cell counter (Sysmex Kx-21 Germany), as recommended by the manufacturer. For Hb electrophoresis, erythrocyte lysates were analyzed by cellulose acetate electrophoresis. The lysates were also applied to column chromatography in order to quantitate HbA2 levels.

DNA was extracted from the blood samples (5 mL) with the salting out method. Amplification refractory mutation system PCR (ARMS-PCR) was used for the detection of common β-globin gene mutations in Iran. Primers were selected from a published report. For ARMS PCR, the thermal cycling regimen consisted of: 27 cycles, preheating at 94°C for 4 minutes, denaturing at 94°C for 1 minute, annealing at 67°C for 30 seconds and extension at 72°C for 1.5 minutes. The amplification reaction was performed in a MyCycler™ thermal cycler (BioRad, USA). A total of 10 µL of the PCR products were loaded on a 1.5% agarose gel and the amplicons were visualized under UV transillumination after staining with ethidium bromide. For molecular characterization of Hb D (codon 121), a region containing exon 3 of the β-globin gene was amplified with the following primers:

RE (5´-CAATGTATCATGCCTCTTTGCACC-3´) and RD (5´-GAGTCAAGGCTGAGAGATGCAGGA-3´). The 861 bp PCR product of this amplicon was digested by EcoRI restriction enzyme (Roche, Germany), according to manufacturer recommendations. In order to rule out other nucleotide changes in the β-globin gene and confirm the results; direct β-globin gene sequencing was performed in both directions, on an ABI3130 Genetic Analyzer (KBC, Iran).

Results

Here we report the results of hematological and molecular studies from three individuals referred to our lab for mo-
lecular characterization of the β-globin gene as a part of the National Premarital Screening Program for β-thalassemia carriers. For all three cases, in addition to low MCV and MCH levels in their complete blood counts, elevated HbA2 (4 – 5.6%) and an extra abnormal Hb peak (91 – 94%) in the Hb D/G/S position, with near zero Hb A was noted by Hb electrophoresis (Table 1).

PCR-RFLP showed that the three probands are carriers of Hb D (heterozygous). In Hb electrophoresis, the level of Hb D was greater than 91% and the mutation in the β-globin gene was IVSII-I (G to A), as confirmed by β-globin gene sequencing.

Molecular analysis of the probands showed that the mutations in their β-globin genes were IVSIInI 1(G to A) (two subjects) and IVSI nt 5 (C to G), respectively. In all three cases, the other nucleotide change was Cd121 GAA>GCC (known as Hb D-Punjab). Family studies indicated that the cases, the other nucleotide change was Cd121 GAA>GCC (known as Hb D-Punjab). Family studies indicated that the mothers of the first and third proband were heterozygous for Hb D. In the second case the father was a carrier of Hb D. In all cases, the other parent was a carrier of the β-globin mutation.

Discussion

Laboratory data suggested that in the first family, the propositus father was responsible for transmitting the defective β-globin gene to his son, while the mother proved to be the source of the Hb D allele. Indeed her Hb D level in electrophoresis was (40.6%). This showed that IVSII-1 mutation (IVSII-1 and IVSI-5) without production, there was no normal Hb A was detected. This report emphasizes the importance of careful molecular analysis in Iranian premarital β-thalassemia screening programs so that ambiguities in Hb electrophoresis can be resolved.

As indicated, none of the individuals in this report had profound anemia and their clinical presentations resembled β-thalassemia heterozygotes. However, some cases have been reported that have compound heterozygosity of Hb D/β-thalassemia who occasionally needed blood transfusions. To date, after screening more than 8000 β-thalassemia carriers, of which some were also Hb D carriers, we have not seen HbD/β-thalassemia carriers who required blood transfusions or were profoundly anemic.

Acknowledgements

This research was supported by the Pasteur Institute of Iran. We would like to appreciate the patients’ cooperation and we thank the staff of Mah-Shahr and Ramhormoz Healthcare Centers (in Khoozestan Province) as well as Farmanfarmaian Healthcare Center, Tehran for referring the patients.

Reference

لینک های مفید

عظیمت در خبرنامه
کارگاه‌های آموزشی
سری سه ترجمه تخصصی
فیلم‌های آموزشی
پلاگ مرکز اطلاعات علمی
بیش از

40% تخفیف
به مناسبت سالروز تاسیس مرکز اطلاعات علمی