High Expression of Minichromosome Maintenance Protein 6 in Classic Hodgkin's Lymphoma Points to a Cell Cycle Arrest in G1 Phase

Shirin Karimi MD*, Forouzan Mohammadi MD**, Kian Khodadad MD***, Habib Emami MSc*, Leila Seyfollahi MD*

Background: Minichromosome maintenance protein 6 (MCM6) is one of the six proteins of minichromosome maintenance family that are involved in the initiation of DNA replication and thus represent a marker for proliferating cells. The aim of this study was to determine the proliferation characteristics of neoplastic cells in patients with classic Hodgkin's lymphoma.

Methods: Paraffin-embedded blocks of lymph node, mediastinal, subcutaneous chest wall, and lung mass biopsies of 55 patients with classic Hodgkin's lymphoma were immunostained by the proliferation-associated monoclonal antibodies; Ki-S5 (Ki-67 antigen) and Ki-MCM6 (MCM6 antigen).

Results: High MCM6 antigen expression was a striking feature of Hodgkin's and Reed-Sternberg cells (median: 85%, range: 35 – 99%) in comparison with lower Ki-67 expression (median: 63.5%, range: 1 – 98%, P<0.001). This indicates that MCM6 is already expressed in the early G1 phase, a cell cycle fraction that is not covered by antibodies specific to the Ki-67 antigen. The proliferation rates were determined by two markers, independent of histologic subtype, stage, presence of B symptoms, and size.

Conclusion: These data show that a subset of Reed-Sternberg and Hodgkin's cells is arrested in the early G1 phase and the MCM6-positive cells do not necessarily represent the real proliferating compartment of Hodgkin's lymphoma. Clinical relevance of this marker in patients with Hodgkin's lymphoma should be investigated.

Keywords: Cell cycle • cell proliferation • Hodgkin's lymphoma • Ki-67 • MCM6

Introduction

The role of proliferation rate of neoplastic cells in non-Hodgkin’s lymphoma in classification and prediction of clinical course, survival, and response to chemotherapy has been well-documented. However, due to the lack of data from prospective trials and limited predictive power of the markers available so far (e.g., Ki-67), cell proliferation has rarely been used for clinical decision making in Hodgkin’s lymphoma.

Minichromosome maintenance (MCM) proteins play an important role in the replication of eukaryotic DNA by binding to chromatin before the initiation of DNA replication. MCM6 is one of the six members of the MCM family, and consists of 821 amino acids with a molecular mass of 105 kDa. A specific monoclonal antibody has been developed against MCM6 (Ki-MCM6) that enables the accurate detection of MCM6 in paraffin-embedded tissue. Using Ki-MCM6, it was shown that MCM6 is detectable in nucleolus or bound to nuclear chromatin during the entire cell cycle G1,
S, G2, and M phases, but it is absent in G0 phase.4,6 Despite this similar expression pattern of MCM6 and Ki-67 during the cell cycle phases (positive in G1, S, G2, and M phases), detailed cell cycle analysis reveals differences between both markers. During the early G1 phase, Ki-67 is undetectable, whereas MCM6 is expressed in the entire G1 phase. Therefore, a small subset of about 20% of proliferating cells in early G1 phase could be detected by MCM6 and not by Ki-67 in stimulated peripheral blood mononuclear cells.4

The clinical relevance of MCM proteins as proliferation markers has been investigated by immunohistochemistry in several different malignant tumors.7 For example, in nonsmall cell lung cancer,8 prostate cancer,9,10 oral squamous cell carcinoma,11 chondrosarcoma,5 oligodendrogial tumors,12,13 esophageal neoplasm,14 renal cell carcinoma,15 breast cancer,16 endometrial carcinoma,17 and thyroid carcinoma.18 Most of these studies focused on the detection of MCM2.7,11,19–21 So far only few investigations studied MCM6 expression.5,6

The aim of this study was to investigate MCM as a new proliferation marker in patients with Hodgkin’s lymphoma.

We investigated proliferation index (PI) immunohistochemically by MCM6 and compared it with PI by Ki-67 and assessed their correlation with clinical parameters including stage, subtypes, age, sex, symptoms, site, and the size of the mass.

Materials and Methods

Paraffin-embedded blocks of lymph node, mediastinal, subcutaneous chest wall, and lung mass biopsies of patients with Hodgkin’s lymphoma that referred to our pathology department, were studied. There were 56 paraffin-embedded samples from 55 patients; one patient had recurrence.

Study design

We performed an analytical cross-sectional study in which the proliferation indices of two proliferative markers, MCM6 and Ki-67, were compared with each other and their correlation with stage and subtypes of Hodgkin’s lymphoma was assessed in 55 patients.

Patients and samples

Biopsies from 55 patients (22 men and 33 women) with proved classic Hodgkin’s lymphoma (CHL) who had a mean age of 26 years (SD=11, range: 13 – 68) were investigated. Clinical data including sex, age, site, stage, B symptoms, and the size of the mass were available on oncology department of our center. The clinicopathologic characteristics of the patients are shown in Table 1.

Histology and immunohistochemistry

All of the biopsy specimens were reviewed in the pathology department of our center. The diagnosis was made based on both hematoxylin and eosin (H&E)-stained slides and previous immunohistochemistry staining for CD30, CD15, LCA, CD20, and CD3 from the archive. They were classified according to the Rye classification,22 and modified according to the WHO criteria.23

The specimens were investigated by immunohistochemistry with monoclonal antibodies against MCM6 and Ki-67. Monoclonal antibody against MCM6 had been prepared from Department of Hematopathology and lymph node registry, Kiel, Germany (with the permission of Professor R. Parwaresch), and Ki-S5 was prepared from DAKO (DakoCytomation Company, Denmark). For immunohistochemistry 4 – 5 µm thick sections of paraffin-embedded, formalin-fixed tissue were mounted on 3-amino-propyl-
triethoxy-silane pretreated slides. After deparaffinization and peroxidase pretreatment blocking, antigen retrieval was achieved by boiling the sections in Tris buffer, pH=9 in autoclave (1.1 atmosphere, 121°C for 10 min). Then the slides were incubated for 60 min at room temperature with the primary antibodies: Ki-S5, directed against Ki-67 antigen (supernatant, dilution 1:30) and Ki-MCM6 directed against MCM6 protein (supernatant, dilution 1:25). Staining was completed with the LSAB2 kit (DAKO, DakoCytomation Company, Denmark) and visualized with diaminobenzidine.24 The previously stained slides for CD30 of these blocks were reviewed for unequivocal identification of neoplastic cells.

To evaluate the proliferation rate, the number of Ki-S5 or Ki-MCM6-positive tumor cells in a minimum of 10 high-power fields was counted. In each stained section at least 50 cells were counted. The number of positively immunostained Hodgkin’s and Reed-Sternberg cells was compared with the total number of Hodgkin’s and Reed-Sternberg cells. The tumor cell distribution within the lymphoid tissue was heterogeneous; for example partial infiltration in CHL of mixed cellularity type and in all of the cases, the background lymphocytes and histiocytes were shown to be positive for both these antibodies. To more accurately determine the number of proliferating cells, the expression ratio of Ki-MCM6 to Ki-S5 was calculated based on immunopositivity for both the antibodies. The Hodgkin’s and Reed-Sternberg cells with any degree of clear nuclear staining, were counted as positive and the percentage was calculated blindly. Tonsil tissue was used as positive controls. Negative control samples were incubated with serum instead of the primary antibody.

Statistical analysis

For the statistical analysis, the Wilcoxon test was used to compare MCM6 and Ki-67 distribution. For categorical variables, the χ^2 test was used. Student’s t-test, variance analysis, and Mann-Whitney test were used for comparison between the mean percentile of MCM6 and Ki-67. P value ≤ 0.05 was considered significant.

Results

MCM6 and Ki-67 nuclear expression was detectable in Hodgkin’s and Reed-Sternberg cells in all 55 cases with median proliferation rate of 85% (range: 35 – 99%) and 63.5% (range: 1 – 98%), respectively. A major finding of this study was that the expression of MCM6 protein was significantly higher than that of Ki-67 antigen, with median growth fraction of 21.5% (Figure 1). As is seen in all analyses performed, the Ki-67 expression shows more dispersion than MCM6 expression.

The median proliferation rate (MCM6 antigen) in nodular sclerosis was 81% (range: 40 – 99%). This rate was 89% (range: 35 – 96%) in the mixed cellularity subtype. This difference was not statistically significant.

No preference towards a histologic subtype was observed (Table 2).

The staining intensity was generally stronger for Ki-MCM6, but positive and negative Hodgkin’s, Reed-Sternberg, lymphocytic, and histiocytic cells could be differentiated in all cases (Figure 2). Another important finding was that the background small lymphocytes and histiocytes showed stronger Ki-67 positivity than MCM6 (Figure 3). The positive staining for Ki-MCM6 was also more homogeneous in neoplastic population (Figure 4). Similar to the staining results with the Ki-S5 antibody, no differences were detectable between different histologic subtypes.

The clinical data of 55 patients were evaluated. With regard to the growth fraction, no differences were observed between male and female patients. The proliferation rates in this study did not differ between the patients with localized (stage I/II) and advanced (stage III/IV) forms of the disease (Table 3).

Median percentages of Ki-MCM6-positive
Hodgkin’s and Reed-Sternberg cells, and Ki-67 expression according to the stage of disease, patients’ symptoms, size, and site of the mass are shown in Table 3.

Discussion

Tumoral cells in Hodgkin’s lymphoma display an increased growth fraction and diminished apoptosis. High Ki-67 antigen expression has been repeatedly described in Hodgkin’s and Reed-Sternberg cells, which are the putative neoplastic cells of this lymphoma, comprising less than 1% of all cells of the tumor.

This finding, however, contrasts with the paucicellular nature and clinical behavior of this enigmatic lymphoma.

For the assessment of proliferation, the antigens under investigation must be restricted to proliferating cells or there must be a cell cycle-induced increase in their expression.

Immunohistochemistry has an advantage over flowcytometry in that cellular morphology and histology can be more accurately interpreted. The scarcity of Hodgkin’s and Reed-Sternberg cells and the high proliferation rate of bystander cells make a reliable assessment of proliferation data difficult by means of flowcytometry technique.

Since the development of monoclonal antibodies against formalin-resistant epitopes of Ki-67 antigen, the previously reported difficulties with poor morphology due to frozen tissues have been overcome. The most available antibody that is directed against proliferation-associated antigens (Ki-67) does not express in the early G1 phase of the cell cycle. In contrast, the monoclonal antibody Ki-MCM6 detects nuclear protein (MCM6) that is expressed in the G1, G2, S, and M phases, completely.

We chose MCM6 for our analysis because
highly reliable monoclonal antibody against this member of MCM family was available.

Our study revealed that MCM6 expression was more than Ki-67 expression in neoplastic cells. For explaining this finding, we should consider other previous studies about the proliferation markers in CHL. The most important one is about Ki-S2. The monoclonal antibody Ki-S2 detects a nuclear protein (repp86) that is expressed in the G2, S, and M phases, but not in the G1 phase. It enables the interpretation of individual cell cycle phase.35 Tiemann et al. revealed that repp86 expression provided more accurate evidence of proliferating Hodgkin’s and Reed-Sternberg cells than Ki-67 expression in serial sections of the same diagnostic lymph node (median Ki-67: 80%, median repp86: 20%, P<0.001). They evaluated the PI both in neoplastic cells and background small lymphocytes and histiocytes, but we studied PI only in neoplastic cells.33

Comparison between these two above studies in neoplastic cells in CHL, could be possibly explained by G1 phase especially early G1 arrest which is of variable duration.33

These data are also in line with the results of the study on MCM6 and repp86 in a large series of patients with mantle cell lymphoma.36,37 The MCM expression in peripheral B-cell lymphomas was investigated for the first time by Obermann et al. who could demonstrate that also in mantle cell lymphomas (MCLs), the majority of lymphoma cells resided in the cell cycle phase G1, but not in S,G2, and M phases.38

Some authors believe that the discrepancy between high proliferation indices determined by proliferation markers and genuine growth factor of neoplastic cells in CHL, could be explained by occurrence of endomitoses, resulting in complex and variable karyotype abnormalities.39,40

Sequential analyses of chromosomal aberrations reveal an increasing chromosomal instability of the genome, but no arithmetic doubling of the chromosomes.41,42 Also, they believed that endomitosis does not play a central role in proliferation of Hodgkin’s and Reed-Sternberg cells.41,42 If the process of endomitosis is of minor influence only, more attention should be focused on early G1 arrest as a possible underlying pathogenetic mechanism.

In our study, high Ki-67 and MCM6 antigen expressions in Hodgkin’s and Reed-Sternberg cells were related to neither advanced clinical stages nor the presence of B symptoms, may reflect that these markers could not indicate growth fraction in tumoral cells and emphasize the possible role of unregulated cytokine production in Hodgkin’s lymphoma.

Our findings offer another strong evidence of

Table 2. MCM6 and Ki-67 expression and MCM6/Ki-67 ratio in relation to histologic subtypes in all 55 patients with Hodgkin’s lymphoma.

<table>
<thead>
<tr>
<th>Histology</th>
<th>N</th>
<th>MCM6 median (range)</th>
<th>Ki-67 median (range)</th>
<th>MCM6 / Ki-67 median (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LR</td>
<td>2</td>
<td>76 (56 – 96)</td>
<td>45 (1 – 89)</td>
<td>—</td>
</tr>
<tr>
<td>MC</td>
<td>16</td>
<td>89 (35 – 96)</td>
<td>62 (11 – 91)</td>
<td>1.2 (0.84 –7.9)</td>
</tr>
<tr>
<td>NS</td>
<td>38</td>
<td>81 (40 – 99)</td>
<td>63.5 (1 – 98)</td>
<td>1.33 (0.8 – 82)</td>
</tr>
</tbody>
</table>
| LR=lymphocytic rich; MC=mixed cellularity; NS=nodular sclerosing.

Table 3. MCM6 and Ki-67 expression and MCM6/Ki-67 ratio related to clinical stages, symptoms, and mass size in patients with Hodgkin’s lymphoma.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>MCM6 median (range)</th>
<th>Ki-67 median (range)</th>
<th>MCM6/Ki-67 median (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I/II</td>
<td>22</td>
<td>85.5 (1 – 94)</td>
<td>71.5 (40 – 96)</td>
<td>1.1 (0.8 – 80)</td>
</tr>
<tr>
<td>III/IV</td>
<td>30</td>
<td>82 (35 – 99)</td>
<td>61 (1 – 98)</td>
<td>1.3 (0.84 – 82)</td>
</tr>
<tr>
<td>Symptoms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>6</td>
<td>89 (63 – 94)</td>
<td>64.5 (6 – 92)</td>
<td>1.3 (1.02 – 10.5)</td>
</tr>
<tr>
<td>B</td>
<td>46</td>
<td>82 (35 – 99)</td>
<td>64 (1 – 98)</td>
<td>1.2 (0.8 – 82)</td>
</tr>
<tr>
<td>Size</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonbulky</td>
<td>24</td>
<td>86.5 (35 – 99)</td>
<td>79.5 (5 – 98)</td>
<td>1.2 (0.8 – 15.8)</td>
</tr>
<tr>
<td>Bulky</td>
<td>28</td>
<td>81 (38 – 96)</td>
<td>46 (1 – 91)</td>
<td>1.4 (0.84 – 82)</td>
</tr>
<tr>
<td>Site</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymph node</td>
<td>39</td>
<td>85 (38 – 98)</td>
<td>58 (1 – 98)</td>
<td>1.3 (0.84 – 82)</td>
</tr>
<tr>
<td>Mediastinum</td>
<td>12</td>
<td>81 (65 – 99)</td>
<td>77.5 (1 – 97)</td>
<td>1.1 (0.8 – 80)</td>
</tr>
<tr>
<td>Others</td>
<td>4</td>
<td>89 (35 – 92)</td>
<td>59 (29 – 79)</td>
<td>1.2 (1.1 – 1.7)</td>
</tr>
<tr>
<td>(Lung, subcutaneous)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
the importance of early G1 arrest in the pathogenesis of CHL and suggest that MCM6 is not a real proliferation marker in this type of lymphoma. These findings including high proliferative activity as well as G1 phase arrest could possibly explain the clinical behavior of Hodgkin’s lymphoma resembling a low-grade lymphoma rather than a high-grade non-Hodgkin’s lymphoma.

Further research has to combine different markers of proliferation (e.g., repp86) and cell cycle arrest (e.g., MCM6) with markers of apoptosis to get insight in to biology and explain the heterogeneous therapeutic response of this disease.

References

