کارگاه‌های آموزشی مرکز اطلاعات علمی

مقاله نویسی علوم انسانی

اصول تنظیم قراردادها

آموزش مهارت های کاربردی در تدوین و چاپ مقاله
Occurrence of Aflatoxins Contamination in Brown Rice from Pakistan

*Muhammad Asif ASGHAR, Javed IQBAL, Aftab AHMED, Mobeen Ahmed KHAN

Food and Feed Safety Laboratory, Food and Marine Resources Research Centre, PCSIR Laboratories Complex, Karachi, Pakistan

*Corresponding Author: Tel: +92–21–34690350 Email: masif345@yahoo.com

(Received 23 Sep 2013; accepted 10 Dec 2013)

Abstract
Background: The objective of this study was to determine the distribution of an economically-important class of mycotoxins, the aflatoxins (AFs) in Pakistani Brown Rice.

Methods: A total of 262 of brown rice samples were collected from different vendors during July 2006 to June 2011. Samples were analyzed for the occurrence of aflatoxin B₁ (AFB₁), B₂ (AFB₂), G₁ (AFG₁) and G₂ (AFG₂) by thin layer chromatography (TLC) technique.

Results: AFB₁ was detected in 250 (95.4%) samples, whereas AFB₂ was detected in 20 (7.6%) samples. Furthermore, AFG₁ and AFG₂ were not found in any sample. The contamination range of AFB₁ and AFB₂ was found 1.07–24.65 µg/kg and 0.52–2.62 µg/kg, respectively. Total AFs were quantified in 250 (95.4%) samples with an average of 3.89 µg/kg and contamination range was noted to be between 1.07–27.27 µg/kg. The overall results indicated that in 12 (4.6%) samples, AFs were not found within detectable limits. Furthermore, in 188 (71.7%) samples, AFs level was found below than maximum tolerated levels (MTL) as recommended by the European Union (4 µg/kg). Moreover, in 61 (23.3%) samples, AFs range was found between 4–20 µg/kg, which were fit for human consumption as per MTL (20 µg/kg) assigned by USA (FDA and FAO) and Pakistan (PSQCA). While only one sample (27.27 µg/kg) exceeded the above mention regulation limits.

Conclusion: Low level of AFs occurs frequently in brown rice, and can be improved using proper harvesting practices, storage and transportation conditions. The small quantities of AFs warrant performing further investigation, monitoring and routine analysis on regular basis.

Keywords: Brown rice, Aflatoxins, TLC, Pakistan

Introduction
Rice (Oryza sativa L.) is one of the most important staple diets in the world. In Pakistan, rice is the third largest crop after wheat and cotton. Rice is cultivated on an area of more than 2.5 million hectares and accounts for 16% of the total cereals produced annually. In 2011–2012, the production of milled rice was about 6.16 million tones. This accounts for 5% of the total agriculture sector with 1.0% contribution in GDP (1). Brown rice often termed as hulled rice is a partly milled or un-milled form of whole natural grain. Brown rice is comparatively more nutritious than traditional white rice. The underlying reason is the preservation of essential nutrients and vitamins (usually 5–80%) which are destroyed during the milling and polishing process of white rice (2). Rice is highly vulnerable to fungal contamination owing to cultivation in wet-season. The pathogenic fungi such as Aspergillus sp., Fusarium sp. and/or Penicillium sp. might attack on the rice ker-
nel) during the cultivation of crop and/or (pre–
harvest) (ii) during the storage of matured crops
(post–harvest). Pre–harvest fungal contamination
generally occurs in the field and associated with
drought and high temperature during the grain–
fall. Post–harvest contamination usually de-
volved when grain is improperly managed during
the drying and storage process (3).

In general, warm and moist conditions along with
hygroscopic nature of rice kernel are believed to
be very favorable for the growth of toxigenic
fungi, associated with mycotoxins production.

Mycotoxins are low molecular weight secondary
eral metabolites. Fungal proliferation and myc-
toxins biosynthesis are highly susceptible to tem-
perature, moisture, water activity, pH and oxygen
concentration (4,5).

Aflatoxins (AFs) are the best known and most
widely studied mycotoxins. AFs are injurious to
the human health, livestock and poultry. Adverse
effects of AFs include growth impairment, de-
creased resistance to pathogens, hepato– and nen-
phrotoxicity (6). Aspergillus species particularly A.
flavus and A. parasiticus are ubiquitous and cosmo-
politan AFs producing fungi in various agricultural
commodities (7).

The most important AFs are aflatoxin B1 (AFB1),
B2 (AFB2), G1 (AFG1) and G2 (AFG2) (Fig. 1).

Considering aflatoxins, AFB1 is the most toxic
than other AFs such as AFB2, AFG1 and AFG2
and has been widely reported in rice (8–10).

Several countries including Pakistan have estab-
lished strict guidelines and acceptance limits for
AFs (11). In Pakistan, the climatic conditions are
usually very hot and humid. Thus, provide an ex-
cellent environment for fungal propagation and
AFs production. For instance, Sorensen et al. ex-
amined the effect of temperature on AFs produc-
tion in rice. It was observed that the suitable tem-
peratures for AFs production was 28 °C (12).

Together with AFs production, fungal invasion cause
organoleptic changes such as grain discol-
oration, shape, size and mustiness. Furthermore,
reduced germ–inability crop due to embryo destruction
during the storage phase (13).

Due to the toxicity of AFs, their effect in public
health and lack of available surveys on AFs con-
tent particularly in Pakistani brown rice. This
study was conducted to investigate AFs level in
brown rice that is sold in local supermarkets,
traditional bazaars and export to several countries.

Materials and Methods

Reagents and apparatus

Aflatoxin B1, B2, G1, and G2 standards (crystalline
powder) were purchased from Sigma–Aldrich (St.
Louis–MO, USA). Pre–coated TLC plates of silica
gel 60 (layer thickness 0.25 mm, 20 x 20 cm) on
glass or aluminum, without fluorescent indicator
were purchased from E. Merck (Darmstadt, Ger-
many). Analytical grade acetone, acetonitrile, ben-
zene, chloroform, cupric carbonate, ferric chloride,
potassium chloride, potassium hydroxide, sodium
hydroxide, sodium sulfate, sulfuric acid, xylene
and other solvents procured from BDH (Poole,
England).

Sampling

A total of 262 samples of brown rice were col-
lected from various vendors across the Pakistan
during July 2006 to June 2011. It is well docu-
mented that AFs are heterogeneously distributed
throughout most food and feed commodities. For
this reason, sampling procedures was based on the

![Fig.1: Chemical structures of aflatoxins. (A) aflatoxin
B1, (B) aflatoxin B2, (C) aflatoxin G1 and (D) aflatoxin
G2](http://ijph.tums.ac.ir)
method as described in AOAC official method no. 977.16 for the accurate estimation of AFs (14). Briefly, a minimum sample size of 500–1000 g was taken and thoroughly mixed for 10 min. Samples were pulverized into particles ≤ 1 mm by passing through sieve no. 20 in a sample grinder (Cyclotec 1093 mill, Sweden) to obtain a homogeneous and representative sample. Finally, pulverized samples were kept in air tight polyethylene bags and stored at -20 °C till further analysis.

Preparation of aflatoxins standards

The standard stock solutions (10 μg/ml) of each AFB₁, AFB₂, AFG₁ and AFG₂ were prepared by dissolving 1 mg crystalline powder in 100 ml benzene : acetonitrile (98 : 2; v/v). Final concentration of each AFs stock solution was thereafter determined by measuring the absorbance at 350 nm using Jenway Genova MK3 spectrophotometer (Dunmow–Essex, England).

Working standard solution of each AFB₁ and AFG₁ (1 μg/ml) was individually prepared by combining 100 μl of each stock solution (10 μg/ml) and 900 μl of benzene : acetonitrile (98 : 2; v/v). Whereas, working standard solutions of each AFB₂ and AFG₂ (0.5 μg/ml) were separately prepared by adding 50 μl of each stock solution (10 μg/ml) in 950 μl of benzene : acetonitrile (98 : 2; v/v).

Aflatoxins analysis

A modified Romer method based on bi–directional thin layer chromatography (TLC) was used for the detection of AFs as described in the AOAC official method no. 975.36/968.22 (14). The whole analytical procedure could be sub-divided into two major steps as mentioned below: 1. Sample purification and aflatoxins extraction 2. Thin layer chromatography

Sample purification and aflatoxins extraction

Fifty grams of each grinded brown rice sample was weighed accurately and dispersed in 250 ml of acetone : water (85 : 15; v/v). Sample suspension was blended for 3 min at 5000 rpm using Eberbach 8017 explosion–proof blender (Haverhill–Massachusetts, USA). The blended extract was filtered through Whatman no. 4 filter paper. An aliquot of 150 ml of sample extract was taken and mixed with 3 g of cupric carbonate for 20 s. The sample mixture was then added into a conical flask already contained 170 ml sodium hydroxide (0.2 M) and 30 ml ferric chloride (0.41 M), mixed well and filtered through Whatman no. 4 filter paper. An aliquot of 250 ml filtrate was taken into a separating funnel, vigorously shake in the presence of 150 ml sulfuric acid (0.03%; v/v) and 10 ml chloroform and allowed to settle–down for 2 min. The lower layer of chloroform was transferred into another separating funnel already contained 1 g potassium chloride and 100 ml potassium hydroxide (0.02 M) solution. After a gentle swirling of 30 s, the lower chloroform layer was separated and re–collected into a graduated cylinder after passing through a bed of anhydrous Sodium sulfate (1 g). Finally 8 ml of chloroform extract was evaporated to dryness at 45 °C under gentle stream of nitrogen and stored at -20 °C till the further quantification by TLC.

Thin layer chromatography

Dried extracts were solubilized in 100 μl benzene : acetonitrile (98 : 2; v/v) and vortexed. Finally, spots of 2, 5 and 10 μl of samples and standards were individually applied on the TLC plate. Chromatographic plates were developed in un-lined tank containing 20 ml chloroform : xylene : acetonitrile (6 : 3 : 1; v/v). TLC Plates were dried and observed under long wavelength UV light (λ = 254 and 366 nm) in an enclosed Camag 2930 UV visualizer (Germany). The retention factor (Rf) of each AFs (B₁, B₂, G₁ and G₂) was calculated in accordance with the equation (i).

\[
R_f = \frac{distance \ moved \ by \ compound}{distance \ moved \ by \ solvent}
\]

Furthermore, the concentration of individual AFB₁, AFB₂, AFG₁ or AFG₂ was calculated according to the following equation (ii).

\[
Concentration \ of \ AFB_1, AFB_2, AFG_1 \ or \ AFG_2 \ in \ \mu g/kg = \frac{S \times Y \times V}{X \times W}
\]

Where:
- S = Volume (μl) of AFB₁, AFB₂, AFG₁ or AFG₂ standard equal to unknown
- Y = Concentration (μg/ml) of AFB₁, AFB₂, AFG₁ or AFG₂ standard

Available at: http://ijph.tums.ac.ir
V = Volume (μl) of final dilution of sample extract
X = Volume (μl) of sample extract spotted to give fluorescent intensity equal to S
W = Weight (g) of sample contained in final extract.

The concentration of Total AFs (B_1, B_2, G_1 and G_2) was calculated as mentioned in equation (iii).

\[
\text{Total AF} = \text{Concentration of AFB}_1 + \text{AFB}_2 + AFG_1 + AFG_2 \quad (\text{iii})
\]

All positive findings of AFs, naturally present in rice samples were confirmed by spraying the TLC plates with H$_2$SO$_4$ (50%; v/v) and making the derivative with trifluoroacetic acid.

Method validation and analytical quality assurance

The accuracy of the analytical procedure was verified by performing the analysis in triplicate. Furthermore, method validation was done through the analysis of control samples. Briefly, homogenized control rice samples ($n = 20$) were analysed five times per day for four successive days. Results were incorporated in a control chart with an upper and lower warning ($\pm 2\sigma$; 95% confidence limit) and control limits ($\pm 3\sigma$; 90% confidence limit). Additionally, at least two control samples were tested with each series of routine samples ($n = 25$) and results were compared with the previous control measurements. Results of control samples were found within $\pm 2\sigma$ range. The accuracy of procedure was determined by the recoveries of AFB$_1$, AFB$_2$, AFG$_1$ and AFG$_2$ from spiked samples. Furthermore, the recovery studies were performed by the analysis of uncontaminated (blank) rice samples before and after the addition of 2, 5 and 10 μg/kg of each AFs standard. The average recoveries rate for the four AFs was from 83.3% to 91.8%. Results from the recovery studies are presented in Table 1. The limit of detection (LOD) for AFB$_1$ and AFG$_1$ was 1 μg/kg and for AFB$_2$ and AFG$_2$ was 0.50 μg/kg, respectively.

General laboratory performance (GLP) was verified by participation in the FAPAS® proficiency testing program via test no. 0488/2006, 0490/2006, 0493/2006, 04109/2007, 04113/2007, 04132/2008 and 04169/2011. Results were found within the range ($\pm 2\sigma$ Z score) and showed in Table 2. Food and feed safety laboratory has an ISO–17025 accreditation status with Pakistan National Accreditation Council (PNAC).

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Test No.</th>
<th>Z–Score</th>
<th>Assigned Value</th>
<th>Lab. Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>0488/2006</td>
<td>-0.1</td>
<td>5.59</td>
<td>5.44</td>
</tr>
<tr>
<td>2.</td>
<td>0490/2006</td>
<td>-0.9</td>
<td>7.92</td>
<td>6.33</td>
</tr>
<tr>
<td>3.</td>
<td>0493/2006</td>
<td>0.9</td>
<td>7.53</td>
<td>8.96</td>
</tr>
<tr>
<td>4.</td>
<td>04109/2007</td>
<td>-1.4</td>
<td>7.01</td>
<td>7.18</td>
</tr>
<tr>
<td>5.</td>
<td>04113/2007</td>
<td>0.4</td>
<td>13.70</td>
<td>14.82</td>
</tr>
<tr>
<td>6.</td>
<td>04115/2008</td>
<td>1.2</td>
<td>7.83</td>
<td>9.82</td>
</tr>
<tr>
<td>7.</td>
<td>04132/2008</td>
<td>0.2</td>
<td>16.70</td>
<td>17.29</td>
</tr>
<tr>
<td>8.</td>
<td>04169/2011</td>
<td>-0.1</td>
<td>13.70</td>
<td>13.59</td>
</tr>
</tbody>
</table>

Table 1: Summary of FAPAS® Proficiency Testing Program during 2006–2011

<table>
<thead>
<tr>
<th>Concentration added (μg/kg)</th>
<th>AFB$_1$</th>
<th>AFB$_2$</th>
<th>AFG$_1$</th>
<th>AFG$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recovery concentration (%)</td>
<td>Mean recovery (%)</td>
<td>Recovery concentration (%)</td>
<td>Mean recovery (%)</td>
<td>Recovery concentration (%)</td>
</tr>
<tr>
<td>2</td>
<td>1.83 ± 0.11</td>
<td>91.8</td>
<td>1.70 ± 0.11</td>
<td>85.2</td>
</tr>
<tr>
<td>5</td>
<td>4.39 ± 0.45</td>
<td>87.8</td>
<td>4.16 ± 0.49</td>
<td>83.3</td>
</tr>
<tr>
<td>10</td>
<td>8.85 ± 0.59</td>
<td>88.5</td>
<td>8.65 ± 0.34</td>
<td>86.5</td>
</tr>
</tbody>
</table>

Table 2: Recovery of AFB$_1$, AFB$_2$, AFG$_1$ and AFG$_2$ from spiked samples of brown rice. All measurements were done in triplicate.

Available at: http://ijph.tums.ac.ir
Results

Relevant data regarding AFs contamination is summarized in Table 3. AFB1 was detected in 250 (95.4%) samples. The average concentration of AFB1 was 3.80 µg/kg with a range of 1.07–24.65 µg/kg. In contrast, AFB2 was found only in 20 (7.6%) samples with an average of 0.09 µg/kg. The range of AFB2 was found between 0.52–2.62 µg/kg. AFG1 and AFG2 contaminations were not detected in any rice sample. Altogether, 250 (95.4%) rice samples were found contaminated with AFs (B1+B2) with an average of 3.89 µg/kg. The range of AFs (B1+B2) contamination was found between 1.07–27.27 µg/kg. The overall results showed that AFs were not found within detectable limits (≥ 1 µg/kg) in 12 (4.6%) samples. Furthermore, 188 (71.7%) samples contained AFs level below than maximum tolerated level (MTL) of 4 µg/kg as assigned by the European Union. Moreover, 61 (23.3%) samples retained AFs levels ranged between 4–20 µg/kg. These rice samples were fit for human consumption as per MTL (20 µg/kg) assigned by USA (FDA and FAO) and Pakistan (PSQCA). Only one sample was found unfit for human consumption owing to AFs contamination of 27.27 µg/kg.

Table 3: Distribution of AFB1, AFB2 and Total AFs in brown rice during 2006–2011. All measurements were done in triplicate

<table>
<thead>
<tr>
<th>Toxins</th>
<th>Tested samples</th>
<th>Positive samples</th>
<th>Number of samples in concentration range, µg/kg</th>
<th>Mean (µg/kg)</th>
<th>Range (µg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>NF<sup>a</sup></td>
<td>< 4<sup>b</sup></td>
<td>4 to 20<sup>c</sup></td>
</tr>
<tr>
<td>AFB1</td>
<td>262</td>
<td>250 (95.4%)</td>
<td>12 (4.6%)</td>
<td>188 (71.7%)</td>
<td>61 (23.3%)</td>
</tr>
<tr>
<td>AFB2</td>
<td>262</td>
<td>20 (7.6%)</td>
<td>242 (92.4%)</td>
<td>20 (7.6%)</td>
<td>0</td>
</tr>
<tr>
<td>Total AFs</td>
<td>262</td>
<td>250 (95.4%)</td>
<td>12 (4.6%)</td>
<td>188 (71.7%)</td>
<td>61 (23.3%)</td>
</tr>
</tbody>
</table>

^a Not found within detectable limit (≥ 1 µg/kg)
^b Below than EU MTL (≤ 4 µg/kg)
^c Below than FDA, FAO and PSQCA MTL (≤ 20 µg/kg)

Discussion

AFB1 and AFB2 were observed as the most common contaminant in the tested rice samples. However, none of the tested rice sample showed AFG1 and AFG2 contamination. The underlying reason is that the optimal temperature for AFs production ranged between 20–35 °C. Elevation of temperature up to 40 °C or decline up to 10 °C could result in reduced AFs production. The high temperature within the optimal range favors the production of aflatoxin B (B1 and B2). In contrast, low temperature favors the production of aflatoxin G (G1 and G2) (15).

Pakistan is situated in a region which has a tropical climate, with high temperatures averaging 23.9 °C and a double maxima rainfall pattern (489 mm) (16). These hot and humid climatic conditions are supposed to be very favorable for the production of AFs (17). The findings of the current study support the above mentioned facts and figures.

In early 2006, the export of Pakistani brown rice to the European Union was reduced abruptly. The reason was the high moisture (≥ 30%) in paddy rice. As a result, AFs contamination was significantly enhanced and consignments were rejected (18). The current study found that the average AFs contamination in brown rice was 5.63 µg/kg in the year 2006.

In this circumstance, rice exporters urged the government to establish strict regulations for the permitted AFs levels in various food commodities. Furthermore, it was demanded to provide peer to peer testing facilities for AFs in Pakistan as currently practiced in the EU counterparts. Consequently, government of Pakistan took the immedi-
In Pakistan, AFs contamination in rice varies with their place of origin. This is due to the variable temperature, humidity, microbial flora, soil type and diverse agricultural practices. Unfortunately, to date no systematic survey is available on the occurrence of AFs particularly in brown rice. However, few comparative studies are reported. For instance, Asghar et al. investigated AFs contamination in 2047 samples comprising basmati rice. About 73.3% samples were contaminated with AFB₁ ranging from 1.17–6.91 µg/kg and a mean of 1.15 µg/kg. In 70.6% samples, AFB₁ level was found lower than MTL as recommended by European Union. Moreover, all the samples were found below than MTL of as assigned by the authorities in United State (FDA and FAO) and Pakistan (PSQCA) (11). Shamma Firdous analyzed of 599 samples comprising white, brown and sella rice. About 49% samples were found positive with AFs. Mean concentrations of AFB₁/AFB₂ were 0.56/0.03 µg/kg for brown rice, 0.49/0.03 µg/kg for white rice and 0.73/0.02 µg/kg for sella rice, respectively. The highest concentration of AFB₁ and AFB₂ was 16.65 and 2.64 µg/kg.

Table 4: Annual distribution of AFB₁, AFB₂ and total AFs content in brown rice

<table>
<thead>
<tr>
<th>Years</th>
<th>Toxins</th>
<th>Positive samples (%)</th>
<th>Concentration in µg/kg</th>
<th>Mean</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jun–Dec</td>
<td>AFB<sub>1</sub></td>
<td>12 (92.3)</td>
<td>5.19</td>
<td>3.15–14.16</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>AFB<sub>2</sub></td>
<td>2 (15.4)</td>
<td>0.18</td>
<td>0.94–1.42</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total AFs</td>
<td>12 (92.3)</td>
<td>5.37</td>
<td>3.15–15.58</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>AFB<sub>1</sub></td>
<td>67 (85.9)</td>
<td>5.45</td>
<td>1.12–24.65</td>
<td></td>
</tr>
<tr>
<td>(n = 78)</td>
<td>AFB<sub>2</sub></td>
<td>8 (10.2)</td>
<td>0.17</td>
<td>1.42–2.62</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total AFs</td>
<td>67 (85.9)</td>
<td>5.63</td>
<td>1.12–27.27</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>AFB<sub>1</sub></td>
<td>36 (100)</td>
<td>3.91</td>
<td>1.99–11.34</td>
<td></td>
</tr>
<tr>
<td>(n = 36)</td>
<td>AFB<sub>2</sub></td>
<td>2 (5.6)</td>
<td>0.07</td>
<td>1.12–1.32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total AFs</td>
<td>36 (100)</td>
<td>3.98</td>
<td>1.99–12.66</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>AFB<sub>1</sub></td>
<td>44 (100)</td>
<td>2.72</td>
<td>1.29–11.59</td>
<td></td>
</tr>
<tr>
<td>(n = 44)</td>
<td>AFB<sub>2</sub></td>
<td>3 (6.8)</td>
<td>0.054</td>
<td>0.52–1.30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total AFs</td>
<td>44 (100)</td>
<td>2.78</td>
<td>1.29–12.89</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>AFB<sub>1</sub></td>
<td>49 (100)</td>
<td>2.80</td>
<td>1.38–13.77</td>
<td></td>
</tr>
<tr>
<td>(n = 49)</td>
<td>AFB<sub>2</sub></td>
<td>3 (6.1)</td>
<td>0.06</td>
<td>0.56–1.42</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total AFs</td>
<td>49 (100)</td>
<td>2.86</td>
<td>1.38–15.19</td>
<td></td>
</tr>
<tr>
<td>Jan–Jun</td>
<td>AFB<sub>1</sub></td>
<td>42 (100)</td>
<td>2.47</td>
<td>1.07–7.89</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>AFB<sub>2</sub></td>
<td>3 (7.1)</td>
<td>0.04</td>
<td>0.52–0.74</td>
<td></td>
</tr>
<tr>
<td>(n = 42)</td>
<td>Total AFs</td>
<td>42 (100)</td>
<td>2.51</td>
<td>1.07–7.89</td>
<td></td>
</tr>
</tbody>
</table>
μg/kg, respectively (21). In another study, Iqbal and colleagues pointed that about 65, 38, 33, 42 and 50% samples comprising paddy, parboiled, brown, white and broken rice were found contaminated with AFs with an average of 16.35, 14.20, 9.85, 7.10 and 8.50 μg/kg, respectively (22).

The results of present study revealed that the quality of Pakistani brown rice is far better than rice produced in other countries of the same region such as Sri Lanka and India. For instance, In Sri Lanka, the AFB₁ and AFG₁ contents were found significantly higher in parboiled rice than in raw milled rice. The highest AFB₁ and AFG₁ content were 185 and 963 μg/kg, respectively (23). In India, the incidence of AFB₁ was found at level of 5 μg/kg in 38.5% samples. Whereas, about 17% samples exceeded the Indian regulatory limit of 30 μg/kg. The average concentration of AFB₁ in rice samples collected Assam, Bihar and Tripura states was 15 μg/kg (24). Another study from India indicated that out of 1200 rice samples, about 67.8% samples were found contaminated with AFB₁ ranging between 0.1–308 μg/kg (10).

Several studies from other countries reported detectable levels of AFs in rice as well. For instance, Sales and Yoshizawa from Philippines investigated that out of 78 samples, about 94 and 100% of polished and brown rice samples were found contaminated with AFs, respectively. The contamination range in polished and brown rice was found 0.025–2.7 and 0.03–8.7 μg/kg, respectively (25). Similarly, J. Feizy et al. from Iran reported that out of 261 rice samples, about 68.9% samples were found contaminated with AFB₁ ranged between 0.20–4.3 μg/kg (26). Another study from Iran reported that out of 71 rice samples, 59 (83%) samples were found contaminated with AFs. The mean concentration of AFs was 2.09 μg/kg. Furthermore, about 12.7% samples exceeded the EU MTL (27). Furthermore, Reiter et al. from Iran reported that 24 out of 81 samples were found positive with AFs. AFB₁ was quantified in 15 samples and AFB₂ was detected only in one sample. However, AFG₁ and AFG₂ were not found in any of the tested rice samples. The range of AFB₁ and AFB₂ was found 0.45–9.86 and 1.5 μg/kg, respectively. The maximum concentration of AFB₁ was found 9.86 μg/kg (28).

All the above mentioned surveys indicated that AFs contamination in rice is quiet frequent. In order to achieve low level of AFs, it is essential to conduct regular training programs to create awareness about the toxicity potential of AFs. Furthermore, good manufacturing and storage practices should be adapted along with implementation on Hazard Analysis and Critical Control Points (HACCP) based safety program. It is also prerequisite to carry on further investigations, regular monitoring and performing routine AFs analysis as per food quality control measures. Numerous techniques are currently in practice nowadays to control AFs contamination. For instance, Nkama et al. introduced the use of light intensity for reduction in AFs contamination. It was observed that rate of destruction of AFs was found directly proportional to the light intensity. About 63 to 95% reduction in AFs level was achieved in the presence of different light intensities (29). Moreover, Hussain reduced AFB₁ contamination by utilizing different cooking methodologies. AFB₁ level was significantly reduced up to 87.5 % when rice samples were cooked in excess water (30).

Indeed, AFs contamination could be reduced by adapting good processing and storage practices. Therefore, it is needed to take proper actions such as the use of better harvesting practices, handling, packaging, storage and as well as transportation. AFs have a high impact in human health. Thus, storage conditions should be controlled and widespread. The industry and government should continue to take steps and bound the farmers, growers and other stakeholders to keep AFs levels in food and animal feed as low as possible. Growers and processors, for instance, follow voluntary "Good Manufacturing Practices" that include monitoring of mold growth and testing of the samples for AFs.

A comprehensive plan is required to deliver the food and feed safely that engaged to full fill the requirement regarding the issues of not only rice, but also all other foods, feed and their ingredients. On the other hand, substantial work has been put forth on methodologies for the detection and
quantification of aflatoxins, however, sampling is of prime importance as to have a representative sample of the total lot under assessment, secondarily sample handling and finally the analysis. It is very unfortunate that sampling, sample handling and analysis is not standardized on part of growers, farmers, producers and ultimately the consumers whom are at great risk. Care must be taken in the elucidation and evaluation of results.

Conclusion

The present status of the aflatoxins (AFs) level in Pakistani brown rice does not concurrently present a potential risk to the human health. Nevertheless, the detection of small quantities of AFs warrants further investigation, regular monitoring and performing routine analysis, as per food quality control measure. The initial approach to control AFs is to take precaution and proper action such as better harvesting practices, handling, packaging, storage and as well as transportation.

Ethical Consideration

All Ethical issues (such as informed consent, conflict of interest, plagiarism, misconduct, co-authorship, double submission, etc.) have been considered carefully.

Acknowledgements

The authors declare that there is no conflict of interests.

References

کارگاه‌های آموزشی مرکز اطلاعات علمی

مقاله نویسی علوم انسانی

اصول تنظیم قراردادها

آموزش مهارت های کاربردی در تدوین و چاپ مقاله