Determination of Fiber Direction in High Angular Resolution Diffusion Images using Spherical Harmonics Functions and Wiener Filter

M. Hashemi Kamangar*^a, M. R. Karami Mollaie^a, R. Ghaderi^b

^aFaculty of Electrical and Computer Engineering, Babol University of Technology, Babol, Iran
^bFaculty of Control Engineering, Shahid Beheshti University, Tehran, Iran

Abstract

Diffusion tensor imaging (DTI) MRI is a noninvasive imaging method of the cerebral tissues whose fibers directions are not evaluated correctly in the regions of the crossing fibers. For the same reason, the high angular resolution diffusion images (HARDI) are used for estimation of the fiber direction in each voxel. One of the main methods to specify the direction of fibers is usage of the spherical deconvolution. The spherical deconvolution is a method which is very sensitive to noise and creates negative values in the orientation distribution function (ODF) of the fiber. To solve this problem, methods such as Laplace-Beltrami regularized spherical deconvolution (LB-SD), the gradient based spherical deconvolution (GB-SD) and the constrained spherical deconvolution (CSD) are used. In this paper, the method for SD based on Wiener filter (WB-SD) is presented. Regarding the results, the direction of the crossing fibers is specified correctly. The proposed algorithm has specified the direction of the fibers as zero degree with 4.9 standard deviation and 89.9 degree with 3.6 standard deviation against two crossing fibers with 90 degree angle.

1. INTRODUCTION

Demyelination causes loss of nerve fibers and therefore message could not be transmitted through the fiber and it causes diseases such as, multiple sclerosis, Alzheimer's and krabbe [1-3]. These diseases, for example Alzheimer's, is a progressive neurodegenerative disorder that impairs memory, cognitive function, thinking, behavior and language [4].

The diffusion tensor imaging (DTI) MRI is a noninvasive imaging method of the cerebral tissues in which the brain is imaged by exerting the gradient vector in different directions and it is useful for detection of demyelination in the brain [5]. In each taken image, in the fibers which are exerted in the same direction with the gradient vector, the signals are weakened faster and appear darker in the image and these images can be used for direction finding of the cerebral fibers. The Stejskal-Tanner imaging sequences are used to measure the spread of water molecules [6]. The usual form of Stejskal-Tanner formula under the Gaussian assumptions is as follows:

$$S = S_0 e^{-b g^T D g}$$

(1)

where b is the attenuation coefficient, S_0 diffusion signal without diffusion gradient (b=0), D diffusion tensor, and g the imaging gradient direction.

Due to the tensor model’s limitation in specifying the crossing and kissing fibers in each voxel [7], the high angular resolution diffusion imaging (HARDI) is used which take images of brain in 60 different gradient directions at least. While DTI method needs 6 gradient directions to specify diffusion tensor [8, 9], the higher angular resolution creates an exacter 3D pattern of water penetration inside the voxel [7]. Q-ball imaging is used to determine ODF of penetration [10]. Q-ball imaging (QBI) approximates ODF of penetration directly from HARDI raw measurements on the unit circle using Funk-Radon transform [11, 12], ODF of penetration that calculated by QBI is the blurred form of fiber.

*Corresponding Author’s Email: Me.hashemi@stu.nit.ac.ir (M. Hashemi Kamangar)
distribution [13]. To solve the blurring problem in QBI, spherical deconvolution is used. It assumes HARDI signal as spherical convolution of fiber response function and fiber function [13, 14]. The fiber direction is determined by spherical deconvolution. Due to the presence of noise in HARDI signal, spurious peaks and negative values appear in spherical deconvolution method. To solve this problem, methods such as FSD which uses low pass filter [15], GB-SD and LB-SD that use minimization of least square error with a square gradient constraint and square of Laplace-Beltrami operator [8, 16] and constraint spherical deconvolution method which uses repetitive method with imposing nonnegative constraint on ODF of renovated fiber [17, 18] are presented. In nonnegative Spherical Deconvolution (NNSD), non-negativity is achieved by representing the square root of the ODF as a linear combination of SH basis functions [19, 20]. In this paper, ODF of fiber is calculated by combining spherical deconvolution and Wiener filter without using repetitive methods and matrix operation, and only by simple division in calculating spherical harmonic expansion coefficients.

2. METHODS

Spherical harmonics is appropriate mathematical tool to represent spherical data [21, 22]. Spherical harmonics transform is the equivalent of Fourier transform in the 3D space. Since HARDI images are spherical, spherical harmonics series is used for expansion of HARDI images [23].

2.1. Spherical Harmonic Functions

Each signal in spherical coordinates is written as the linear combination of spherical functions

\[S(\theta, \phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} c_{lm} Y_{lm}(\theta, \phi) \]

in which \(c_{lm} \) is coefficients of expansion and \(Y_{lm}(\theta, \phi) \) the spherical harmonic function of order \(l \) and degree \(m \) as is follows:

\[Y_{lm}(\theta, \phi) = \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} P_{lm}(\cos\theta)e^{im\phi} \]

\(P_{lm}(\cdot) \) is the Legendre function of order \(l \) and degree \(m \) [24]. Since the diffusion images are real, the modified spherical harmonics, which are real as well, are used to expand the diffusion signals [8].

\[Y_{lm} = \begin{cases} \sqrt{2}(-1)^{m} Im(Y_{lm}) & m < 0 \\ Y_{lm} & m = 0 \\ \sqrt{2}(-1)^{m} Re(Y_{lm}) & m > 0 \end{cases} \]

Also regarding the antipodal symmetric property of the diffusion images, and since only the harmonic functions with even order have the antipodal symmetric property, therefore, the spherical harmonics with even order are used to expand signals:

\[S(\theta, \phi) = \sum_{l=0,2,4,...} \sum_{m=-l}^{l} s(l,m) Y_{im}(\theta, \phi) \]

The ODF of diffusion images are computed by projection of signal on the unit sphere in different directions by usage of Funk-Radon transform (FRT).

To calculate FRT, the diffusion signal \(S(\omega) \) is replaced by spherical harmonics series, and FRT can be calculated in terms of spherical harmonics coefficients.

\[ODF(u) = \frac{1}{\|S\|} \int \delta(u^T \omega) S(\omega) d\omega = \sum_{l=0,2,4,...} \sum_{m=-l}^{l} \frac{2l+1}{2\pi} \int s(l,m) Y_{im}(u) \]

where \(S_0 \) is signal without diffusion \(b=0 \) and \(P_l(0) \) is Legendre function with order \(l \) evaluated at zero.

2.2. Spherical Deconvolution

In diffusion images, the signal received in each voxel can be assumed as the convolution of symmetric response function and impulse function [15,17]. The impulse functions specify the direction of fibers in that voxel. In Figure 1, \(R(\theta) \) is the symmetric impulse response function and \(F(\theta, \phi) \) is direction of fibers and diffusion signals which are shown as convolution \(R(\theta) \) and \(F(\theta, \phi) \).

If response function, diffusion signal, and spherical impulse function have respectively the spherical harmonic coefficients \(r(l,m), s(l,m) \) and \(\delta(l,m) \), the fiber direction is computed using the following equations [8, 15, 17] :

\[\delta(l,m) = Y_{l,0} \]

\[f(l,m) = s(l,m)/R(l,m) \]

\[R(l,m) = \frac{r(l,0)}{\delta(l,m)} \]

2.3. Retrieval of Fiber Direction For Noise Signal

In common MRI system, data are considered as the real and imaginary sections of a complex value. The amplitude of this value is used as the MRI signal. Noise of the real and imaginary sections has the Gaussian distribution and thus MRI signal noise is modeled as Rician noise [25, 26].

Noise creates spurious peaks and negative values on the unit sphere which cause making unreal directions. To reduce the noise effect, the filtered spherical deconvolution (FSD) is used. Spherical harmonic coefficients \(s(l,m) \) in the Equation (8) of order \(l \) are multiplied in a number less than or equal to 1. As the order \(l \) increases, the number gets smaller. For example orders 0, 2 and 4 are multiplied by 1, and orders 6 and 8 multiplied by 0.8 and 0.1, respectively [15, 17].
In the method of gradient based spherical deconvolution (GB-SD), a constrained function is defined as square of gradient norm fiber ODF and in the method of Laplace-Beltrami regularized spherical deconvolution is defined as square of Laplace transform function and A constant number. The definition of Wiener filter in spherical deconvolution is used to retrieve fiber direction in HARDI images (see appendix A1).

\[
f(l,m) = \frac{1}{\text{snr}} \frac{|h(l,0)|^2}{|H(f)|^2 + A}
\]

where \(r(l,m) = 2\pi \frac{1}{\sqrt{2\pi r^2 + 1}} h(l,0) \), \(A \) is constant value and \(|\cdot| \) the amplitude operator.

3. DATA

The synthetic data of HARDI signal in one voxel is created by using multi-tensor model [29] \(S(g) = S_0 \sum \lambda_i p_i e^{-b g^T D g} \) with \(b=3000 \text{s/mm}^2 \), \(\lambda_1=0.0015 \), \(\lambda_2=\lambda_3=0.0003 \) and \(S_0=100 \) in 64 gradient directions with 2 crossing fibers of angle 75, 90, \(\theta=60 \) and \(p_i \) is volume fraction of jth fiber (\(p_i=p_j=0.5 \)). The Rician noise with signal to noise ratio \(\text{SNR} = \frac{S_0}{\sigma} \), \(\text{SNR} = 5, 10, 15, 20 \) is added to signal \(S \).

The general phantom data [30] with \(b=1500 \text{s/mm}^2 \) and spatial resolution 3mm are being used.

4. RESULTS

The methods SD, FSD, LB-SD with constant \(\lambda \) equal to \(5 \times 10^{-2} \), GD-SD, GD-SD with constant \(\lambda \) equal to \(5 \times 10^{-2} \) and Wiener-SD have been carried out on the synthetic data 100 times. Since LB-SD and GD-SD methods are sensitive to the value of \(\lambda \), this value should be correctly selected. In this article the reference values [8] are used. In Wiener-SD method, the value of \(A \) is determined from the following equation:

\[
A = 0.01 \times (|h(l,0)|)^2
\]

\(\text{<<} \) is average operator. In Figures 2, 3 and 4 fiber orientation distribution (FOD) are shown respectively for angles 60 degrees, 75 degrees and 90 degrees and results of 100 noise trials have been extracted.
The opaque and transparent surfaces corresponding to the average FOD are plus twice as much of standard deviation. The red lines are ground true fiber directions and blue lines are computed directions (maximum value in ODF).

In all methods to eliminate negative values in orientation distribution function, the negative values of obtained ODF are equaled to zero. As seen from the results, in SD and FSD methods with reduction of signal to noise ratio, spurious peaks are increased but in WB-SD method without using any regularization parameter, spurious peaks are eliminated, while GB-SD and LB-SD methods use regularization parameter.

In Figures 5, 6 and 7, fiber average computed direction and its standard deviation against 100 trials, for synthetic data with 2 crossing fibers with zero and 60, 75 and 90 degree, respectively with respective to xy plane are shown. θ is the angle with x axis and φ the angle with xy plane in the spherical coordinates.

According to Figures 5 - 7, it is observed that there are not any significant differences between the calculated directions of WB-SD method and GB-SD, LB-SD methods. It is seen that with increasing the angle between crossing fibers, the accuracy of the calculation increases and at low signal-to-noise ratio (SNR=5), calculation of standard deviation increases in each of the
three methods and at low signal-to-noise ratio (SNR=5), standard deviation is minimum in WB-SD method.

Figure 5. The fiber computed direction and its standard deviation for the fiber with true angles $\theta=60$ (right figure) and $\phi=0$ (left figure) in synthetic data with two 60 degrees crossing fibers (θ is the angle with x axis and ϕ angle with xy plane).

Figure 6. The fiber computed direction and its standard deviation for the fiber with true angles $\theta=75$ (right figure) and $\phi=0$ (left figure) in synthetic data with two 75 degrees crossing fibers (θ is the angle with x axis and ϕ is angle with xy plane).

In Table 1, fiber average computed direction and its standard deviation against 100 trials for synthetic data with 2 crossing fibers with zero and 75 degree angles with respective to xy plane are shown (corresponding to Figure 6). θ is the angle with x axis and ϕ the angle with xy plane in the spherical coordinates.

In Figure 8 the result of algorithm WB-SD on the phantom presented in 2009 MICCAI conference is shown. In the left side figure the fiber ODF for HARDI signal and in the right side figure the fiber ODF with WB-SD method is shown. Also, Figure 9 indicates the result of proposed algorithm on the region of interest (crossing fibers region) which in left and right figures, the main fiber ODF and ODF with WB-SD are shown respectively. As seen in Figure 9, the orientations of crossed fibers are determined correctly.

![Figure 7. The fiber computed direction and its standard deviation for the fiber with true angles $\theta=90$ (right figure) and $\phi=0$ (left figure) in synthetic data with two 90 degrees crossing fibers (θ is the angle with x axis and ϕ is angle with xy plane).](image-url)

<table>
<thead>
<tr>
<th>ϕ</th>
<th>std(ϕ)</th>
<th>θ</th>
<th>std(θ)</th>
<th>ϕ</th>
<th>std(ϕ)</th>
<th>θ</th>
<th>std(θ)</th>
<th>ϕ</th>
<th>std(ϕ)</th>
<th>θ</th>
<th>std(θ)</th>
<th>ϕ</th>
<th>std(ϕ)</th>
<th>θ</th>
<th>std(θ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD</td>
<td>-1.2</td>
<td>25.2</td>
<td>70.5</td>
<td>31</td>
<td>2.4</td>
<td>25.6</td>
<td>78.9</td>
<td>31.8</td>
<td>-0.2</td>
<td>32.9</td>
<td>74.9</td>
<td>36.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISD</td>
<td>-0.4</td>
<td>3.4</td>
<td>73.8</td>
<td>3.6</td>
<td>-0.3</td>
<td>8.4</td>
<td>72.9</td>
<td>8.9</td>
<td>-1.1</td>
<td>13.5</td>
<td>72.2</td>
<td>18.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GB-SD</td>
<td>-0.2</td>
<td>2.4</td>
<td>74.9</td>
<td>2.1</td>
<td>-0.2</td>
<td>3.6</td>
<td>75.1</td>
<td>3</td>
<td>-0.9</td>
<td>5.6</td>
<td>74.6</td>
<td>4.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LB-SD</td>
<td>-0.2</td>
<td>1.9</td>
<td>78.0</td>
<td>1.5</td>
<td>-0.2</td>
<td>2.6</td>
<td>78.2</td>
<td>2.1</td>
<td>-0.4</td>
<td>3.8</td>
<td>77.9</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB-SD</td>
<td>-0.2</td>
<td>1.8</td>
<td>77.5</td>
<td>1.5</td>
<td>-0.2</td>
<td>2.5</td>
<td>77.7</td>
<td>2.1</td>
<td>-0.3</td>
<td>3.6</td>
<td>77.5</td>
<td>3</td>
<td>-0.2</td>
<td>10.5</td>
<td>77.4</td>
</tr>
</tbody>
</table>
5. CONCLUSION

In this article, the proposed method of WB-SD was compared with the methods SD, fSD, LB-SD and GB-SD. In all methods, the omission of noise to improve the SNR has not been done and noisy values of signal are used to compute ODF. Also, in all methods for eliminating negative values in orientation distribution function, the negative values obtained for ODF are equaled to zero. In the proposed method, the Wiener filter was used in spherical deconvolution and every spherical harmonic expansion coefficient has been computed independently (Equation (15)). As the results show, in SD and FSD methods spurious peaks are increased with signal to noise reduction, but in WB-SD method without using any regularization parameter they are omitted while in GB-SD and LB-SD methods regularization parameter is used. The results indicate that the proposed method correctly evaluates the fiber angles against the different values of signal to noise.

The results of algorithm upon the phantom data show that the WB-SD method recognizes the fiber crossing direction correctly which the angles are modeled as two fibers. Moreover, it recognizes correctly the direction in the ellipsoid regions which are modeled as one fiber.

6. REFERENCES

APPENDIX

Two signals convolution in the spherical coordinates with added noise has the spherical harmonic expansion as in the Equation E1. The noise is independent of the signal.

\[
S(\theta, \varphi) = H(\theta, \varphi) \ast F(\theta, \varphi) + N(\theta, \varphi) \quad \text{E1}
\]

\[
S(\theta, \varphi) = \sum_l \sum_m s(l, m) Y_l^m(\theta, \varphi) \quad \text{E2}
\]

\[
s(l, m) = 2\pi \sqrt{\frac{4\pi}{2l+1}} h(l, m) f(l, m) + n(l, m) \quad \text{E3}
\]

where, \(f(l, m), h(l, m), s(l, m)\) and \(n(l, m)\) are the spherical harmonic expansion coefficients of the signals.
\[F(\theta, \phi) \] (fibers orientations) and \(H(\theta, \phi) \) (response function), diffusion signal and noise respectively.

We can recover the spherical harmonic coefficients of the diffusion signal with usage of deconvolution as below:

\[
\hat{f}(l, m) = 2\pi \sum_{m} \frac{4\pi}{2l+1} k(l, 0)s(l, m)
\]

\[\hat{F}(\theta, \phi) = \Sigma \Sigma \hat{f}(l, m)Y_l^m(\theta, \phi) \]

\[\hat{F}(\theta, \phi) \] can be calculated with usage of least square optimization problem as

\[
e = E \{ (F(\theta, \phi) - F(\theta, \phi)) (F(\theta, \phi) - F(\theta, \phi)) \} = E \{ (\hat{F}(\theta, \phi) - F(\theta, \phi)) (\hat{F}(\theta, \phi) - F(\theta, \phi)) \} = E \{ (\hat{F}(\theta, \phi) - F(\theta, \phi)) (\hat{F}(\theta, \phi) - F(\theta, \phi)) \}
\]

Each term of right hand side of equation is expanded with use of spherical harmonics function

\[
E \{ F(\theta, \phi) \hat{F}(\theta, \phi) \} = E \{ \Sigma \Sigma f(l, m)Y_l^m(\theta, \phi) \Sigma \Sigma \hat{f}(l', m')Y_{l'}^{m'}(\theta, \phi) \} = \Sigma \Sig
Determination of Fiber Direction in High Angular Resolution Diffusion Images using Spherical Harmonics Functions and Wiener Filter

M. Hashemi Kamangara, M.R. Karami Mollaeiaa, R. Ghaderib

aFaculty of Electrical and Computer Engineering, Babol University of Technology, Babol, Iran
bFaculty of Control Engineering, Shahid Beheshti University, Tehran, Iran

PAPER INFO

Paper history:
Received 12 May 2015
Received in revised form 28 February 2016
Accepted 03 March 2016

Keywords:
Diffusion Tensor MRI
High Angular Resolution Diffusion Imaging
Spherical Deconvolution
Wiener Filter
Orientation Distribution Function

چکیده

روش تصویربرداری دیفیوژن تانسور ام آر آی (DTI) یک روش تصویربرداری غیرمخرب از بافت‌های مغزی است که در ناحیه‌ای از فیبرهای مواج سطح دارای فیبرهایی است که در هر وکخل آنها فیبرهای مواج وجود دارند. در این مقاله روش تصویربرداری با فرکانس بالا (HARDI) برای ارزیابی سیستم فیبر در هر وکخل استفاده می‌گردد. یکی از روش‌های عمده برای مشخص نمودن راستای فیبرها در هر وکخل استفاده از دی‌کانولوشن کروی (CSD) دی‌کانولوشن کروی می‌باشد. دی‌کانولوشن کروی روشی است که به نمای بردار حساسیت دارد که در ناحیه‌ای از فیبرهایی مانند دی‌کانولوشن کروی لاپلاس-بلتراجی (LB-SD) و دی‌کانولوشن کروی گرادیان (GD-SD) استفاده می‌شود. در این مقاله، روشی برای دی‌کانولوشن کروی مبتنی بر فیلتر واینر (WB-SD) معرفی می‌شود. این روش با توجه به نتایج، راستای فیبرهای فیبرهایی است که در وکخل مشخص می‌گردد. برای ارزیابی دی‌کانولوشن کروی را به

doi: 10.5829/idosi.ije.2016.29.03c.07

www.SID.ir