ON THE APPROXIMATION OF PSEUDO LINEAR SYSTEMS BY LINEAR TIME VARYING SYSTEMS

M. Samavat
Department of Electrical Engineering, Shaheed Bahonar University of Kerman
Kerman-Iran

A. Khaki. Sedigh
Department of Electrical Engineering, K.N. Toosi University of Technology
16314, Tehran, Iran, sedigh@eed.kntu.ac.ir

S. P. Banks
Department of Automatic Control and Systems Engineering, University of Sheffield
Mappin Street, Sheffield, S1 4DU, U.K.

(Received: January 10, 1998 – Accepted in Final Form: October 25, 2003)

Abstract This paper presents a modified method for approximating nonlinear systems by a sequence of linear time varying systems. The convergence proof is outlined and the potential of this methodology is discussed. Simulation results are used to show the effectiveness of the proposed method.

Key Words Pseudo Linear Systems, Iterative Method, Time Varying Systems

1. INTRODUCTION
The theory of nonlinear systems has been an important area of research for many years [2,5,6,10]. Pseudo linear systems are an important class of nonlinear systems. The stability and robustness of these systems are considered in references 2 and 3. The approximation of bilinear systems by a sequence of linear time varying systems has recently attracted much attention [1,8,9]. This paper presents a new method for approximating nonlinear systems by a sequence of linear time varying systems. It is shown that, by updating the initial conditions based on the closeness of the approximation and the exact solution, and dividing the settling time of the system into small intervals, faster convergence is achieved. The convergence proof of the algorithm is also provided and the nonlinear Van Der-Pol example is used to show the effectiveness of the proposed method.

2. STATEMENT OF THE PROBLEM
Consider the pseudo linear systems governed by the following nonlinear differential equation [3]:

\[
\dot{x} = A(x)x
\] \hspace{1cm} (1)

where \(A(\cdot) : \mathbb{R}^n \rightarrow \mathbb{R}^{n^2} \) is a continuously differentiable matrix valued function. A method for approximating the non-linear system given by Equation 1 by a
sequence of linear time varying systems is developed in this paper.
Consider the approximating sequence
\[\dot{x}^{[i]}(t) = A(x^{[i-2]}(t))x^{[i]}(t) \] (2)
with \(x^{[0]}(t) = A(x_0)x^{[0]}(t) \), \(x^{[i]}(0) = x_0 \).

It will be shown in the next section that, the solution of equations given in Equation 2, converges to the exact solution of the nonlinear system given by Equation 1. Let
\[x^{[i]}(t) = \phi^{[i-1]}(t,0)x^{[i]}(0) \] (3)
represent this solution, where it converges in \(C([0,T]; \mathbb{R}^n) \) and \(C([0,T]; \mathbb{R}^n) \) denotes the space of continuous functions on \([0,T]\) with values in \(\mathbb{R}^n \).

3. PROOF OF CONVERGENCE

It is obvious that from Equation 2, we have
\[\dot{x}^{[i]} - x^{[i-2]} = A(x^{[i-1]}(t))x^{[i]}(t) - A(x^{[i-1]}(t))x^{[i]}(t) \]
\[= A(x^{[i-1]}(t))[x^{[i]}(t) - x^{[i-1]}(t)] \]
\[+ [A(x^{[i-1]}(t)) - A(x^{[i-2]}(t))][x^{[i-1]}(t) \]
\[\tag{4} \]
consider the following lemma which is used in the development of the proof.

Lemma 3.1 Assume that
\[\| x^{[i]}(0) \| \leq \psi \]
\[\| A(x) - A(y) \| \leq \alpha \| x - y \| \]
\[\mu(A(x)) \leq \mu \]
for all \(x, y \in \mathbb{R}^n \) and for some \(\alpha, \psi, \mu > 0 \) where, \(\| \cdot \| \) denotes the norm and
\[\mu(A) = \lim_{h \to 0^+} \frac{\| I + hA \| - 1}{h} \]
is the logarithmic norm of \(A \) [4].

Proof Let
\[\xi^{[i]}(t) = x^{[i]}(t) - x^{[i-1]}(t) \]
therefore
\[\xi^{[i]}(t) = \phi^{[i-1]}(t,0)\xi^{[i]}(0) \]
\[+ \int_0^t \phi^{[i-1]}(t,s)[A(x^{[i-1]}(s)) \]
\[- A(x^{[i-2]}(s))]x^{[i-1]}(s)ds \]
where \(\phi^{[i-1]}(t,x) \) is the transition matrix generated by \(A(x^{[i-1]}(t)) \) and
\[\xi^{[i]}(0) = x^{[i]}(0) - x^{[i-1]}(0) \]

It is well known that [4]
\[\| \phi^{[i-1]}(t,s) \| \leq \exp[\int_s^t \mu(A(x^{[i-1]}(\tau))d\tau] \]
and so
\[\| \phi^{[i-1]}(t,s) \| \leq \exp[\mu(t-s)]. \]

Hence taking norm from Equation 5 and by Lemma 3.1 we get
\[\| \xi^{[i]}(t) \| \leq e^{\mu T} \| \xi^{[i]}(0) \| + \alpha \psi \int_0^T e^{2\mu T - \mu s} \| \xi^{[i-1]}(s) \| ds \]
\[\tag{6} \]
Let
\[\eta_i = \sup_{[0,T]} \| \xi^{[i]}(t) \| \quad t \leq T \]
Therefore
\[\eta_i \leq e^{\mu T} \| \xi^{[i]}(0) \| + \alpha \psi \int_0^T e^{2\mu T - \mu s} ds\eta_{i-1} \]
Let
\[e^{\mu T} \| \xi^{[i]}(0) \| \leq c_i \quad \int_0^T e^{2\mu T - \mu s} ds = c(T) \]
Then
\[\eta_i \leq c_i + \alpha \psi c(T) \eta_{i-1} \]
\[\eta_{i-1} \leq c_{i-1} + b \eta_{i-2} \]
where
\[b = \alpha \psi c(T). \]
Using the recursive method we get
\[\eta_i \leq \sum_{k=0}^{i-1} b^k c_{i-k} + b^i \eta_0 \]
If we choose \(c_i \) such that
\[c_i \leq \frac{1}{2^i} \]
then
\[\eta_i \leq \sum_{k=0}^{i-1} b^k \frac{1}{2^{i-k}} + b^i \eta_0 \]
\[\eta_i \leq \frac{1}{2^i} \left(1 - 2b \right) + b^i \eta_0 \]

if \(b < \frac{1}{2} \) then \(\eta_i \to 0 \) as \(i \to \infty \).

The above results are summarized in the following theorem.

Theorem 3.1 Under the assumptions of Lemma 3.1, if \(b < \frac{1}{2} \), then the approximating solution given by 2 converges to the exact solution of the nonlinear system described by 1.

4. ILLUSTRATIVE EXAMPLE

The modified method is applied to approximate the van der pol oscillator given by
\[\dot{x} = Ax \]
where
\[A(x) = \begin{bmatrix} 1 - x_2^2 & -1 \\ 1 & 0 \end{bmatrix} \]
\[x_0 = [0 \quad 1.2]^T \]
the simulation results are shown in Figure 1.

5. CONCLUSION

It is shown that the pseudo linear systems can be considered as limits of linear time varying systems. Therefore, the linear techniques can be used for such plants. A numerical example is used to show the speed of convergence of the proposed method.

6. REFERENCES

