RESEARCH NOTES

Sensitivity of the Nematophagous Fungus *Arthrobotrys oligospora* to Fungicides, Insecticides and Crop Supplements Used in the Commercial Cultivation of *Agaricus bisporus*

E. Mohammadi Goltapeh¹, M. Shams-bakhsh¹ and B. S. Pakdaman²

ABSTRACT

The effect of various pesticides (diflubenzuro, malathion, mancozeb and carbendazim), disinfectants (calcium hypochlorite and formaldehyde) and oil cakes (sunflower and soybean oil cakes) commonly used as supplements in mushroom cultivation on the growth of the nematophagous fungus, *Arthrobotrys oligospora*, was studied under *in vitro* conditions. Carbenazim caused 99% inhibition of radial mycelial growth in Petri dishes at all concentrations tested (10-40 µg a. i. ml⁻¹) in comparison to non treated dishes. Mancozeb caused 43% and 23% inhibition at 250 and 500 µg a. i. ml⁻¹ respectively and 99% inhibition at concentration of 1000 µg a. i. ml⁻¹ and above. Diflubenzuro and malathion at 10-40 µg a. i. ml⁻¹ caused 30-41% and 24-54% inhibition, respectively. Formalin (0.5-2.0% v/v) inhibited growth of *A. oligospora* completely. However, calcium hypochlorite, sunflower and soybean oil cake at concentrations of up to 2.0% w/v caused less than 3.5% inhibition.

Keywords: *Agaricus bisporus*, *Arthrobotrys oligospora*, Biocontrol, Disinfectant and Oil cakes.

INTRODUCTION

White button mushroom [*Agaricus bisporus* (Lange Singer)], an edible fleshy fungus, is a commercially cultivated crop with a total world production of more than two million metric tonnes (Chang and Miles, 2004; Mohammadi Goltapeh and Pourjam, 2005). The annual production in Iran is approximately 30,000 metric tonnes (Mohammadi Goltapeh and Pourjam, 2005). Mushroom cultivation is adversely affected by many pests and diseases caused by various organisms, namely bacteria, fungi, viruses, insects and nematodes. Among all these natural enemies, nematodes are distinguished as the most destructive and harmful ones and, once introduced, they become the main limiting factors in the successful cultivation of the mushroom crop (Cayrol, 1967). Several cases have been reported where nematodes have limited mushroom productivity or resulted in total crop failures (Sharma *et al*., 1984; Garcha *et al*., 1986; Mohammadi Goltapeh and Rezaei Danesh, 2006; Sharma *et al*.,

¹ Department of Plant Pathology, College of Agriculture, Tarbiat Modares University, Tehran, Islamic Republic of Iran.
² Department of Microorganisms, Bio-resources and Biosafety, Agricultural Biotechnology Research Institute of Iran, Karaj, Islamic Republic of Iran.
* Corresponding author, email: emgoltapeh@modares.ac.ir
There is increasing awareness about the harmful effects of pesticides to human health, non-target organisms and the environment. Furthermore, the efficacy of the pesticides can be compromised by the development of resistance in pests. Pesticides can also lead to residue problems in food, especially in mushrooms where they have been shown to be translocated to the mushrooms from treated composts (Bahl and Agnihorti, 1989). There is therefore a need to reduce pesticide inputs and develop alternative strategies, such as cultural or biological control, such as with nematophagous fungi. *A. oligospora* is the most frequently associated nematophagous fungus encountered in the casing soils used in the commercial production of white button mushroom (Grewal, 1993). Species of *Arthrobotrys* have been commercially developed for the control of *Ditylenchus myceliophagus* in mushroom cultivation in France (Cayrol and Frankowski, 1979). *Arthrobotrys* forms adhesive hyphal networks to catch and kill the nematodes and can parasitize various nematodes parasitic on the mushroom crop, namely *D. myceliophagus*, *Aphelenchoïdes composticola*, *A. bicaudatus*, *Aphelenchus avenae* as well as saprophagous species like *Rhabditis* and entomoparasitic nematodes of the genus *Steinernema* (Grewal, 1993). Therefore, the fungus may have potential for incorporation into integrated control programs developed for mushroom cultivation. *A. oligospora* produces a range of nematicidal compounds, including linoleic acid (Anke et al., 1995) and oligosporons (4', 5'-dihydro-oligosporon, hydroxyoligosporon, and 10', 11'-epoxyoligosporon) (Anderson et al., 1995). However, for it to be successfully integrated into mushroom cultivation, there is a need to assess the compatibility of the nematophagous fungus *A. oligospora* with the various pesticides, disinfectants and crop supplements commonly used in a commercial mushroom production.

MATERIALS AND METHODS

The sensitivity of *A. oligospora* was tested *in vitro* to the insecticides diflubenzuron (Dimlin 25% WP) and malathion (Malathion 50% EC), the fungicides carbendazim (Bavistin 50% WP) and mancozeb (Indofl M-45) and the disinfectants formaldehyde (Formalin 37%) and bleaching powder (calcium hypochlorite). In addition, *A. oligospora* was tested against sunflower cake and soybean cake which are commonly used for compost supplement in mushroom crop production. Carbendazim was tested at 10, 20, 30 and 40 µg a.i. ml⁻¹, Indofl M-45 at 500, 1,000 and 2,000 µg a.i. ml⁻¹, diflubenzuron at 10, 20, 30 and 40 µg a.i. ml⁻¹ and Malathion at 10, 20, 30 and 40 µg a.i. ml⁻¹. Stock solutions of the chemicals were prepared in sterilized distilled water and volumes added under aseptic conditions into 250 ml flasks, containing half-strength CMA (corn meal agar), so as to achieve the required final concentrations. Formalin was tested at 1, 2, 3 and 4% v/v and calcium hypochlorite at 0.5, 1, 1.5 and 2% w/v, and the required amount of the chemical was directly added to the medium (CMA) in the flasks. For the sunflower and soybean oil cakes, either 0.5, 1, 1.5 and 2.0g of the crushed cake was added to 100 ml media (corn meal broth), and this was then churned in a Waring blender for 2-3 minutes. Agar was added to the churned media and autoclaved at 15 psi for 45 minutes. The amended media were poured into 9 cm sterilized Petri dishes, under aseptic conditions and allowed to cool. Plates were inoculated in the center with a 5 mm mycelial disc, taken from the edge of an actively growing three day-old *A. oligospora* culture. Petri dishes containing non-amended medium served as the control (check). For each concentration and treatment there were three replicate Petri dishes. The inoculated Petri dishes were incubated at 25±1°C. The colony diameter was recorded daily until colonies had grown to the edge of the Petri dish. The diameter of growth zone was measured in treated and untreated cultures, and inhibi-
Sensitivity of Nematophagous Fungus Arthrobotrys Oligospora...

...tion percentages were recorded daily (every 24 hours) by comparing the growth rates according to the following equation (Vincent, 1947):

\[
\text{Percentage of fungal growth inhibition} = \left(\frac{C-T}{C} \right) \times 100
\]

Where: \(C \) = Growth of the fungus in control and \(T \) = Growth of the fungus in treatment

Data were subjected to transformation (arcsin+0.1) and analysed by analysis of variance using MSTATC, SAS and means separated by Duncan's multiple range test.

RESULTS AND DISCUSSION

Effect of Pesticides on the Growth of \(A. \) oligospora

At all concentrations tested, the pesticides diflubenzuron, malathion, mancozeb and carbendazim caused significant (\(P=0.05 \)) growth inhibition of \(A. \) oligospora in comparison to the control (Table1). Carbendazim at all the concentrations tested (10-40 \(\mu \)g a. i. ml\(^{-1} \)) caused almost complete inhibition of fungal growth, with significantly (\(P=0.05 \)) greater inhibition than all other pesticides except for mancozeb at 1,000 and 2,000 \(\mu \)g a. i. ml\(^{-1} \). Diflubenzuron and malathion caused the maximum inhibition of 41.2% and 54.1%, respectively at the highest concentration tested (40 \(\mu \)g a. i. ml\(^{-1} \)) and mancozeb caused 49.4% inhibition at the lowest concentration tested (250 \(\mu \)g a.i. ml\(^{-1} \)). These results suggest that low concentrations of carbendazim (10 \(\mu \)g a. i. ml\(^{-1} \)) are almost completely inhibitory to \(A. \) oligospora, as are higher concentrations of mancozeb (>1000 \(\mu \)g a. i. ml\(^{-1} \)). However, concentrations of diflubenzuron and malathion of 40 \(\mu \)g a. i. ml\(^{-1} \) caused only moderate inhibition of radial growth (<54%).

The nematicidal effect of some insecticides has been known, and used practically in agriculture. For example, Diazinon is listed as a means of foliar nematode control in greenhouse florist crops (LaMondia, 2004). Furthermore, it has been shown that some fungicides, like Maneb, and Mancozeb are toxic to certain nematode species, such as \textit{Caenorhabditis elegans}, whereas their potentially toxic metabolite, ethylenethiourea (ETU) had of minimal anti-nematode toxicity only at high concentrations (Easton \textit{et al.}, 2001). Additionally, there is some information in the literature indicating the anti-fungal activity of some insecticides, such as Thiodan, Diazinon and Basudin that inhibit mycelial growth of the white button mushroom; however, others such as Dimilin, and Trigard do not show any mycotoxic effect on mycelial growth of the mushroom (Dmoch \textit{et al.}, 1989). Here, we have indicated the antifungal activity of two insecticides, namely Malathion and Diflubenzuron, of which the former showed a greater inhibitory effect against growth of the biocontrol agent, \(A. \) oligospora. Dimilin (Benzuran) is believed to inhibit chitin synthase activity through deactivation of its activator proteases in insects, and the same mechanism of action may also be true for protease (B) in fungi. Also, inhibition of DNA synthesis has been attributed to this insecticide that may also be true for fungi (Matsumura, 1985).

Grewal and Sohi (1988) evaluated the effect of commonly used pesticides on the mycelial growth of \textit{Arthrobotrys conoides} and \(A. \) oligospora, and found that most of the pesticides inhibited the mycelial growth of both of the fungi.

Pullen \textit{et al.} (1990) reported that benomyl at the rates of 5 and 10 \(\mu \)g a. i. ml\(^{-1} \) completely inhibited hyphal growth of the nematophagous fungus \textit{Hirsutella rhossiliensis}; similarly, Chauhan \textit{et al.} (2002) reported 80 percent growth inhibition with \(A. \) musiformis by carbendazim at 2.0 \(\mu \)g ml\(^{-1} \) on water agar.

Based on the findings given in Table 1, it seems that the application of diflubenzuron instead of malathion will lead to improved survival of the \(A. \) oligospora populations, although the population of other fungi, including mushrooms, and parasitic fungi may also increase in the absence of strong chemical growth inhibitors. Also, considering the antifungal impact imposed by the tested insecticides, the application of slightly higher doses of these insecticides can lead to eco-
nomical control of fungal parasites, in addition to the control of other target pests of importance in third world countries where farmers do not have access to most agrochemicals. However, many more studies are needed in relation to the effects of higher doses on human health and the environment.

It can be concluded that the first application of a low doses of malathion followed by the inoculation with *A. oligospora* propagules after some days can lead to the suppression of the parasitic nematodes.

Effects of Disinfectants and Oil Cakes on the Growth of *Arthrobotrys oligospora*

Calcium hypochlorite, sunflower oil cake and soybean oil cake caused little inhibition in the growth of *A. oligospora* at all the three concentrations (Table 2) without showing any significant difference among them. However, formalin completely inhibited the growth of the fungus at all the four rates tested. The interactions between disinfectant/oil cakes and their concentrations were not significant.

Kerry and Crump (1998) reported that soil drenching with formalin reduced significantly the population of the nematophagous fungi *Verticilium chlamydosporium* and *Nematopthora gynopohila*.

The disinfectant, calcium hypochlorite was found compatible with *A. oligospora* and oil cakes did not inhibit the growth of *A. oligospora* compared to non-amended controls. The reduction of fungal growth through soil amendment with oil cakes (groundnut, mustard, sesameum, and binola/cotton seed) has been reported with some fungi such as *Fusarium oxysporum* f. sp. *lycopersici*, where a positive correlation is found between the magnitude of fungal growth inhibition and...
the increase in decomposition over a 45 day period (Raj and Kapoor, 1996). Among the four oil cakes, groundnut and mustard at 2.0% concentration of soil (w/w) were the most effective in reducing pathogen population (> 70%) and disease incidence. However, groundnut seed was found superior to mustard seed, as it not only controlled the disease better, but also improved plant growth (Raj and Kapoor, 1996). Similar effects have been reported with other filamentous pathogenic fungi, such as *Thielavipsis basicola*, *Rhizoctonia solani*, and *Sclerotinia sclerotiorum* (Papavizas et al., 1970; Singh, 1968).

REFERENCES

حسافته قارچ نمادن خواره Arthrobotrys oligospora، جهش و کتک آن در آگاریک Agaricus bisporus به وسیله واداردگی در نظر گرفته می‌شود (Arthrobotrys oligospora) در درون شیشه‌ای و در نمایی فلزه‌ای کاربردی (100 تا 40 میکروگرم در میلی لیتر) (µg a.i. ml⁻¹) در مقایسه با نمونه‌های تیمار نرده سبب 99% بی‌کاره‌گی از رشد شیعجی می‌باشد. بی‌کاره‌گی در نظر گرفته شد و در نظر گرفته شد (µg a. i. ml⁻¹) به ترتیب باعث 31-41 و 100-1000 میکروگرم و بیشتر نیز سبب 99% بی‌کاره‌گی شد. دیفلمیزور و مالاتین نیز در غلظت 10-40 میکروگرم به ترتیب باعث 44-47 و 47-57/5% بی‌کاره‌گی شدند. در حالی که، هیپوکاریت کلسیم، کنکاله آفت‌بگردان و سویا در غلظه‌ای بیش از 90/2% بی‌کاره‌گی و سبب می‌شود.

1 - µg a.i. ml⁻¹

2 - µg a. i. ml⁻¹

3 - %