Immunization of lambs against infection with *Echinococcus Granulosus* using protoscolices and hydatid fluid antigens

Hashemitabar, GH. R.1*, Razmi, GH. R.1, Naghibi, A.1

1Department of Pathobiology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad-Iran.

(Received 28 August 2005, Accepted 11 December 2006)

Abstract: In the present study, protoscolices and hydatid fluid were prepared from livers or lungs of sheep with hydatid cyst in sterile conditions. The protein concentration of samples was then measured by Bradford method. 12 lambs 4 - 6 months of age of mixed sex were randomly allocated to 3 groups of 4 lambs. Each lamb in groups 1 and 2 was immunized subcutaneously in the neck with a 2 - ml dose of vaccine (1 mg of protoscolex and hydatid fluid proteins dissolved in 1 ml of PBS) and emulsified with an equal volume of Freund's complete adjuvant (FCA) respectively. Control lambs were immunized with adjuvant in PBS. Lambs were boosted at day 28 with the same preparation except that FCA was replaced by Freund's incomplete adjuvant (FIA). Three weeks after the second immunization, each lamb received a challenge infection with 2000 protoscolices intraperitoneally and 10 adult *E. granulosus*. All lambs were euthanized after 7 months and examined for hydatid cysts. Results showed that, the number of cysts in immunized lambs with protoscolices were lower than in control group and also the number of cysts in immunized lambs with hydatid fluid antigen was significant (p<0.05). This result indicated that the protective immunity in lambs with protoscolices and hydatid fluid was 54.5% and 75.75% respectively.

Key words: *Echinococcus granulosus*, protoscolex, hydatid fluid, immunization, lamb.

Introduction

Hydatidosis is the parasitization of tissue by the larval stage of different cestodes of the *Echinococcus* genus and represents a public health problem with important economic implications (Gadea et al., 1999).

Hydatid disease is a common terminology for cysts of the dog tapeworm parasite. Cysts slowly grow in grazing animals that have eaten eggs of the tapeworm. Those eggs become infective to the dogs after 2-5 years. The life-cycle is completed when dogs eat infective cysts. Sheep become infected with the tapeworm eggs, and suffer hydatid disease (Heath et al., 2003). Although many species of domestic livestock and herbivorous wildlife species are potential hosts for *E. granulosus*, sheep play a major role in transmission of the parasite globally (Lightowlers et al., 1999). This parasite can potentially occur all over the world specially in Mediterranean and Middle East countries and some parts of Africa, Latin America and China which have major focus on human infections. New areas of infection are being reported, giving to Echinococcosis the status of an emerging zoonosis (Eckert et al., 2000).

The long-term evaluation of various control strategies against *E. granulosus* has produced a large amount of data, providing a scientific basis for the improvement of control schemes. A new option for the control of *E. granulosus* in the intermediate host population (mainly sheep and cattle) is vaccination (Eckert and Deplazes, 2004).

A vaccine candidate for the intermediate host has been tested in sheep, showing a high degree of
protection (Lightowlers et al., 1996; 1999; 2000; Woollard et al., 1998).

Materials and Methods

Preparation of Samples:
Hydatid fluid was isolated from livers or lungs of sheep with hydatid cyst in sterile conditions. Hydatid fluid was centrifuged at 5000 g for 30 min (4°C) to remove protoscolices and stored at -20°C until used. Isolated protoscolices were washed with Hank's solution for three times. The suspension was subjected to 3 cycles of freeze/thaw as follows: the tube was frozen in liquid nitrogen and thawed at 42°C, this cycle was repeated 2 more times. The suspension then mixed with four volumes of PBS, PH 7.4, containing sodium azide at 0.1 mg/ml. The sample was then sonicated in a 170 W ultrasonic for 3x15 sec pulses on ice at a high output setting until no intact protoscolices were visible. The preparation centrifuged for 30 min at 10,000 g and then filtered (0.22 μm) and stored at -20°C until used.

Protein Concentration and Dialysis:
Protein concentration of protoscolex and hydatid fluid samples was determined as described by Bradford (1976). In the case of low concentration, samples were dialyzed. The dialysis membrane (Millipore) was boiled for 5 min to remove a variety of chemicals introduced during manufacture. Enough space was left for expansion and the tubing was then closed with a knot at the top and concentrated by dialysis tube (cut off 12000 Da) and with polyethylenglycol (20000Da).

Immunization:
In this study, 12 lambs 4 - 6 months of age and also of mixed sex, were randomly allocated to 3 groups of 4 lambs. Each lamb in groups 1 and 2 was immunized subcutaneously in the neck with a 2 ml dose of vaccine (1 mg of protoscolices and hydatid fluid proteins dissolved in 1 ml of PBS) and emulsified with an equal volume of Freund’s complete adjuvant (FCA) respectively. Control lambs were immunized with a total volume of 2 ml of adjuvant in PBS. Lambs were boosted at day 28 with the same preparation except that FCA was replaced by Freund’s incomplete adjuvant (FIA).

Challenge:
Twenty-one days after the second immunization each lamb was challenged with 2000 protoscolices intraperitoneally and also with 10 gravid individuals of E. granulosus as described by Lightowlers et al. (1999). Worms were injected into the rumen via a 16G 10-cm syringe needle fitted with a disposable three-way stopcock. Prior to injection of the worms, a small amount of water was injected into the rumen via a second syringe connected to the stopcock and the fluid was immediately withdrawn to ensure that rumen contents were visible, indicating correct placement of the needle. After injection of the worms, the needle was flushed with approximately 20 ml water via a second syringe also fitted to the stopcock. This method ensured the delivery of the same dose of infective worms into the rumen of each lamb and prevented any possibility of contamination of the operators with E. granulosus.

Approximately 7 months after the experimental infection, the lambs were euthanized and examined for hydatid cysts. The carcasses were dressed and internal organs examined superficially for the presence of hydatid cysts. The heart and kidneys were sliced and the omentum and spleen were also examined. The liver and lungs were examined extensively. The liver was sliced at intervals of approximately 3 mm. The lungs were sliced at intervals of approximately 6-8 mm and palpated.

Measurement of Protective Immunity
In this study, protective immunity in lambs was determined with the method described by Dempster et al., (1995) which is as follows:

\[
\text{% protective immunity in vaccinated animals} = \frac{\text{No. of cysts in control group} - \text{No. of cysts in vaccinated group}}{\text{No. of cysts in control group}} \times 100
\]

Table1: Numbers of hydatid cysts in immunized and control groups of lambs.

<table>
<thead>
<tr>
<th>Groups</th>
<th>No. of cysts in individual lambs</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>12 12 7 2</td>
<td>8.2 ± 4.7</td>
</tr>
<tr>
<td>Protoscolices</td>
<td>4 2 3 6</td>
<td>3.7 ± 1.7</td>
</tr>
<tr>
<td>Hydatid fluid</td>
<td>15 1 1 *2 ± 2</td>
<td>*2 ± 2</td>
</tr>
</tbody>
</table>

* Significantly different from control group by Student’s t-test (p<0.05).
Statistical Analysis:
The results of these experiments were analyzed by Student's t-test. P values of 0.05 or lower were considered significant.

Results
After 7 months, all lambs were slaughtered and their internal organs were searched carefully for hydatid cysts. Results showed that in immunized lambs with protoscolices and also with hydatid fluid antigens, hydatid cysts either were not observed, or in comparison with the control group, smaller cysts with lower numbers were observed. The average size of hydatid cysts in hydatid fluid, protoscolex and control groups were 3.1 mm, 3.6 mm and 9.5 mm, respectively. The number of hydatid cysts in protoscolex (Fig. 4), hydatid fluid (Fig. 3) and control groups (Fig. 1, 3) were 15, 8 and 33, respectively (Table 1). The mean numbers of hydatid cysts in protoscolex, hydatid fluid and control groups were 3.7, 2 and 8.2, respectively. In this study, protective immunity in lambs immunized with protoscolex and hydatid fluid were 54.5% and 75.75% respectively (Table 1) and the result which was obtained in hydatid fluid group was significant (p< 0.05).

Discussion
A range of different antigens including cyst fluid (De Rosa et al., 1977; Dada and Belino 1981; Heath et al., 1992) and protoscolex antigen (Hernandez and Nieto, 1994) has been used as prototype vaccines
against *E. granulosus*. A mouse model has been developed to evaluate potential protective antigens which could render intermediate hosts resistant to a challenge infection with *Echinococcus granulosus* eggs (Dempster *et al.*, 1991).

We used lambs to evaluate resistance against subsequent challenge following vaccination with protoscolices antigen and hydatid cyst fluid. Haghpanah *et al.*, (2003) reported that the protective immunity induced with protoscolices in mice was 76.6 - 79.7 percent. Results of this study showed that surface protein of protoscolices emulsified in Freund incomplete adjuvant probably can be used for immunization of intermediate host in future. Molan and Saeed (1988) immunized mice against *E. granulosus* secondary infection with protoscolices, by injecting protoscolices subjected to ultraviolet irradiation. The best results were obtained when the protoscoleces used for vaccination were damaged but not killed by the irradiation. Stagni *et al.*, (1986), using a model of Balb/c mice infected with secondary *E. granulosus* cysts by transplantation, found that immunization with ammonium sulphate fraction of protoscolices had an inhibitory effect on the growth of cysts.

Acknowledgements

The authors thank Dr. Rajabiyouq, Dr. Sardari and Mr. Azari for affording their time and help. We also thank to the Ferdowsi University of Mashhad for financial support.

References

ایمن سازی بر ها عليه اکینو کوس گرانولوژوس با استفاده از پروتوواسکولکسها و مایع هیدادات

غلامرضا هاشمی تیار، غلامرضا رزمی، ابراهیم قطبی
گروه پاتیولوژی دانشگاه دامیر شکی، دانشگاه فردوسی مشهد، مشهد، ایران.
(دریافت مقاله: 20 شهریور ماه 1382، پذیرش نهایی: 20 اردیبهشت 1383)

در مطالعه حاضر، پروتوواسکولکسها و مایع هیدادات از کبد و ویه گوشتندان مبتلا به کست هیدادات در شرایط استریل جداگردید. قلب از ترپین نومنه با استفاده از روشنی به افزودن اندازه گیری شد. 3 بره 6 ماهه از چنس نر و ماده به طور تصادفی به سه گروه چهار تایی تقسیم شدند. هر یک از گروه های گروه 2 (گروه های آزمایش) به ترتیب با یک میلی گرم پروتوواسکولکس و مایع هیدادات مخلوط شده از کبد میلی لیتر با فلز گرفتن مخلوط با یک میلی لیتر آب مصرف شد. و گروه های گروه کنترل با مخلوط با فلز گرفتن و مخلوط کنترل با آب مصرف شدند. چهار هفته بعد تمام بره ها دوباره مورد تزریق قرار گرفتند. این تفاوت که از تاثیر شدت فروند استفاده گردید. به هنگام پس از تزریق 4 هفته با 2000 واحد پروتوواسکولکس از طریق داخل معده و نزدیک 10عدد با 15میلی لیتر از آنتی بیوتیک شکمی که در گرفتن. تمام بره های مادی از گروه کنترل به وانت استفاده گردید. دامداران داشتند که زمان داد که همدلی هیدادات در بره های این شرایط پروتوواسکولکسها و مایع هیدادات داشته باشد. در این مطالعه در بره ها به ترتیب پوست بلور پروتوواسکولکسها و مایع هیدادات 1/50 و 1/55 درصد بود.

واژه های کلیدی: اکینو کوس گرانولوژوس، پروتوواسکولکس، مایع هیدادات، ایمن سازی، بره.