A Modified van der Waals Mixture Theory for Associating Fluids: Application to Ternary Aqueous Mixtures

Aghamiri, Seyed Foad*
Chemical Engineering Department, Faculty of Engineering, University of Isfahan, Isfahan, I.R. IRAN

Modarress, Hamid
Chemical Engineering Department, Amirkabir University of Technology, Tehran, I.R. IRAN

Nickmand, Zahra; Taheri, Hammed
Chemical Engineering Department, Faculty of Engineering, University of Isfahan, Isfahan, I.R. IRAN

ABSTRACT: In this study a simple and general chemical association theory is introduced. The concept of infinite equilibrium model is re-examined and true mole fractions of associated species are calculated. The theory is applied to derive the distribution function of associated species. As a severe test the application of presented theory to the van der Waals mixture model is introduced in order to perform Vapor-Liquid Equilibrium (VLE) calculations of aqueous ternary mixtures. The calculations are shown to be consistently improving the prediction over the non-associating case. Also, well known empirical models of NRTL and UNIQUAC are applied on the studied systems and their results are compared with proposed model.

KEY WORDS: Association, van der Waals, van Laar, NRTL, UNIQUAC, VLE.

INTRODUCTION
Thermodynamic properties of pure associating fluids and their mixtures are significantly different from non-associating solutions, due to strong attractive (chemical) interactions. The well known molecular association is hydrogen bonding. Considerable theoretical and experimental studies have been devoted to association because it affects the physical and chemical properties of pure fluids and their mixtures [1-3]. Hydrogen bonding causes the special properties of water on which the life is based on. As water is the most common solvent in chemical, biochemical, and environmental processes, for predicting its properties, more information about hydrogen bonding is required [4,5]. In the pure associating fluid, it is commonly accepted that hydrogen bonding causes a distribution of associated species formed by self-association between molecules which have at least two bonding sites per molecule. It means an associating fluid can be regarded as a mixture of associated species with different sizes or degree of association [6-9]. In dealing with associating fluids, the main problem has been calculation of mole

* To whom correspondence should be addressed.
+ E-mail: aghamiri@petr.ui.ac.ir
fractions of different species in the mixture, which could be obtained by a suitable chemical associating theory. Therefore it is usual to use a combination of a well-established mixture theory for thermodynamics properties and a chemical theory for calculating mole fractions of species [7,8,10,11]. Several models have been proposed to describe the thermodynamic properties of associating solutions [7]. Probably the oldest of such models is the chemical theory of Dolzalek in 1908 [7]. According to this theory a pure associated fluid is considered as an ideal solution of the monomer and higher associated species. In other words, all the non-ideality of the system is described by the chemical effects due to hydrogen bonding. Dolzalek’s theory was successful in describing solution properties for many real systems. New versions of the chemical theory are also used to model the associated systems in which physical forces are appreciable [5,7,8,12]. Breitholz et al., examined the nonrandom lattice equation of state (NLF-HB EOS) with hydrogen bonding to correlate Liquid-Liquid Equilibrium (LLE) of binary alcohol and hydrocarbon system. They compared the accuracy of this model with those of PR equation of state. The results showed that both equations of state had similar degree of accuracies while NLF-HB EOS had fewer adjustable parameters [13].

Perfetti et al. proposed an Equation Of State (EOS) based on statistical association fluid theory and mean spherical approximation to model liquid-vapor-equilibrium of pure water and hydrogen sulfide. They took into account the association by hydrogen bonding and dipolar interactions. Their results showed good agreement with experimental data [14]. Nickmand & Aghamiri modified van Laar theory and derived a general model for binary associating fluids. In this modifications they added two new steps to van Laar cycle. They simplified their model for two interesting cases: (i) just one fluid is associating, (ii) two fluids are associating but only self-associated species exist in the mixture. They used the new model for VLE calculation of 16 binary associating systems. Their results showed that the accuracy of CSAFT model to correlate vapor pressure and liquid density data of pure associating fluids and for LLE prediction of associating mixtures is higher than original SAFT equation of state [16].

The chemical theory of association

The main assumption in present theory is that only linear association species are present in an associating fluid. Association in a pure fluid may be described by the following set of reactions, according to chemical theory, for molecules with at least two bonding sites:

\[p_i + p_{i-1} \rightleftharpoons p_i \quad i=2, 3, \ldots, L \quad (1) \]

In the above equations \(p_i \) is the \(i \)-th associated species (containing \(i \) monomers) and \(K_{pi}(T) \) is the equilibrium constant for association of \((i-1) \) molecules of \(p \) with one molecule (monomer) of \(p \). It should be pointed out that \(K_{pi} \) defined as unity \((K_{pi} = 1) \). According to the set of reactions (1), a pure associating compound actually consists of a mixture of various species with different associated compounds. Considering the above set of reaction for systems when non-idealities are due to the physical as well as chemical interactions, \(K_{pi} \) may be written in terms of the chemical activities of the species [7-9,17,18].

\[K_{pi}(T) = \frac{x_{pi}^T \gamma_{pi}^T}{x_{pi-1}^T x_{pi}^T \gamma_{pi-1} \gamma_{pi}} \quad i=2, 3, \ldots, L \quad (2) \]

Where \(x_{pi}^T \) and \(\gamma_{pi} \) are true mole fraction and activity coefficient of \(i \)-th associated species, respectively. This definition is general enough to be applied to all possible classes of associations. By rearranging Eq. (2), one can obtain the following expression for the true mole fraction of \(i \)-th associated species:

\[x_{pi}^T = K_{pi}(T) x_{pi-1}^T \gamma_{pi-1} x_{pi}^T \gamma_{pi} / \gamma_{pi} \quad i=2, 3, \ldots, L \quad (3) \]

When the above equation is applied to the all associated species, the following equation results:

\[x_{pi}^T = \prod_{j=1}^{i} K_{pj}(T) \left(\frac{x_{pj}^T \gamma_{pj}}{\gamma_{pj}} \right) / \gamma_{pi} \quad i=2, 3, \ldots, L \quad (4) \]
In principle, the ratio \(\frac{\gamma_{pi}}{\gamma_{pi}} \) is a function of temperature, pressure and composition in the system. This ratio may be calculated using an expression of the excess Gibbs function. But for a pure associating fluid, the composition of associated species is a function of temperature and pressure, only. Therefore, the ratio \(\frac{(\gamma_{pi})}{\gamma_{pi}} \) in Eq. (4) can be defined by \(\Gamma_p(T,P)^{-1} \) in the following form:

\[
\Gamma_p(T,P)^{-1} \equiv \frac{(\gamma_{pi})}{\gamma_{pi}}
\]

(5)

In Eq. (4) the true mole fraction of all associated species are expressed with respect to the true mole fraction of monomer species \(x_{p1} \). Therefore by substituting Eq. (5) in Eq. (4) and considering the normalizing condition, \(\sum_{i} x_{pi} = 1 \), we get:

\[
x_{pi}^T = \frac{\sum_{i} x_{pi} \prod_{j=1}^{i} K_p(T) \left[x_{pi} \Gamma_p(T,P)^{-i+1} \right]^{-1}}{L_p(T,P) - \Gamma_{pi}}
\]

(6)

Eq. (6) can be solved for \(x_{pi}^T \) provided the functionalities of \(K_p(T) \) for \(j \geq 2 \) with (j) are known \((K_{pi} = 1) \). It needs to be pointed out that \(K_p(T) \) is a function of temperature and the number of the same monomers in an associated species (j):

\[
K_p(T) = K_p(j,T) \quad j = 2, 3, 4, \ldots, L_p
\]

(7)

When Eq. (7) is joined with Eq. (6) one can solve the latter equation for \(x_{pi}^T \) . One special case of interest is when the limit of association approaches infinity, which, in this case Eq. (6) can be written as the following:

\[
x_{pi}^T = \frac{\sum_{i} x_{pi} \prod_{j=1}^{i} K_p(T) \left[x_{pi} \Gamma_p(T,P)^{-i+1} \right]^{-1}}{L_p(T,P) - \Gamma_{pi}}
\]

(8)

There is no simple general analytic solution for this equation. However, it can be solved analytically, when is assumed that all equilibrium constants of association reactions are the same, \(K_{pi} = K_p(T) \) for \(j \geq 2 \). Therefore Eq. (8) reduces to the following equation:

\[
x_{pi}^T = \left[\sum_{i=1}^{\infty} \prod_{j=1}^{i} K_p(T) \Gamma_p(T,P)^{x_{pi}^T} \right]^{-1}
\]

(9)

The summation in Eq. (9), for \([K_p(T)\Gamma_p(T,P)x_{pi}^T] < 1 \), converges to the following simple expressions:

\[
x_{pi}^T = \left[1 + K_p(T)\Gamma_p(T,P) \right]^{-1}
\]

(10)

The assumption of infinite equilibrium model has been used widely in chemical theories of associating fluids [7,8,18] because of its mathematical simplicity.

In the following section, the van der Waals theory of mixture (van Laar equations) which is essentially a non-associating theory will be applied to associating fluids.

The van der Waals theory of mixture (van Laar equations)

According to the van der Waals model, the configurational Helmholtz free energy of a non-associating mixture, \(A_{conf} \), is [19]:

\[
A_{conf} = \frac{N_A}{V} \ln \left(\frac{V}{V - V_b} \right) - a_m \ln x_p + \frac{V}{V - b_m} - N_A
\]

(11)

Where \(N_A \) is the Avogadro’s number, \(x_p \) is the mole fraction of component \(p \), and \(R \) is the universal gas constant. The well known van der Waals mixture parameters “\(a_m \)” and “\(b_m \)” are defined as the following:

\[
a_m = \sum_{p} \sum_{q} x_p x_q a_{pq} (1 - \lambda_{pq}) = \sum_{p} \sum_{q} x_p x_q a_{pq} \frac{1}{2} \left(1 - \lambda_{pq} \right)
\]

(12)

\[
b_m = \sum_{p} \sum_{q} x_p x_q b_{pq} = \sum_{p} \sum_{q} x_p x_q \left(b_{pq} + b_{qq} \right) / 2
\]

(13)

Where summations in the above equations are extended over all components in the mixture, and \(\lambda_{pq} \) is the coupling parameter. The pure component parameters \(a_{qp} \) and \(b_{pq} \) can be calculated from pure fluid critical properties of component \(p \),

\[
a_{qp} = 27R^2 T_c^2 / (64 P_c)
\]

(14)
$b_{pp} = RT_{cp} \left/ \left(8P_{cp} \right) \right.$ \hspace{1cm} (15)

Where T_{ci} and P_{ci} are the critical temperature and pressure of pure component i, respectively. According to van Laar, van der Waals mixture model yields the following expression for the molar excess Gibbs function of a multi component mixture, G^E, over the ideal solution at constant pressure and temperature.

\[G^E = G - \sum_{p} x_{p} G_{p} - RT \sum_{p} x_{p} \ln x_{p} = \sum_{p}(x_{p}a_{pp}/b_{pp}) - a_{m}/b_{m} \] \hspace{1cm} (16)

Where G is the molar Gibbs free energy of the mixture and G_{p} is the molar Gibbs function of component p in pure state at the same pressure and temperature as the mixture system. This equation, known as the van Laar equation, can be used to derive activity coefficient, γ_{p}, of component p in a mixture by the following relation [20]:

\[\ln \gamma_{p} = G^E - \sum_{k \neq p} x_{k} \frac{\partial G^E}{\partial x_{k}} \bigg|_{T,P,x_{p}} \] \hspace{1cm} (17)

$p = 1,2,\ldots,c$

In the case when one or more components of the mixture are associating, in accordance with the present association theory, every component also will constitute a mixture of associated species (monomer, dimer, etc.). According to the van der Waals mixing rules, Eqs. (12) and (13), assuming $\lambda_{pij} = 0$, parameters “a_{pp}” and “b_{pp}” of associating component p can be expressed by the following relations, respectively:

\[a_{pp} = \sum_{i} \sum_{j} x_{pi}^{2} x_{pj}^{2} a_{pij} = \sum_{i} \sum_{j} x_{pi}^{2} x_{pj}^{2} \left(a_{pi} a_{pj} \right)^{1/2} = \left(\sum_{i} x_{pi}^{2} a_{pi}^{2} \right)^{1/2} \] \hspace{1cm} (18)

\[b_{pp} = \sum_{i} \sum_{j} x_{pi}^{2} x_{pj}^{2} b_{pij} = \sum_{i} \sum_{j} x_{pi}^{2} x_{pj}^{2} \left(b_{pi} + b_{pj} \right) / 2 = \sum_{i} x_{pi}^{2} b_{pi} \] \hspace{1cm} (19)

Where x_{pi}^T is the true mole fraction of associated-species p, also a_{pi} and b_{pi} are the parameters of the i-th associated species formed from i monomers of molecule p. Now, by considering the case when the limit of association, L_{ap}, approaches infinity, the true composition of an associated fluid may be described by a distribution function $\chi_{p}(1)$ where I is the continuous version of discrete variable (i). This distribution function must satisfy the following normalization conditions:

\[\int_{0}^{\infty} \chi_{p}(1) \ dI = 1 \] \hspace{1cm} (20)

For a mixture in which equilibrium constants of association are independent of composition, the following distribution function can be proposed:

\[\chi_{p}(1) = \chi_{op} X_{pi}^{T} \] \hspace{1cm} (21)

Where X_{pi}^{T} is the true mole fraction of the i-th associated species, and χ_{op} is the normalization factor which can be computed by substituting Eqs. (4) and (21) in Eq. (20), and considering the case that ($K_{pj}=K_{p}, j=1, 2, \ldots, Lap$) and ($Lap \rightarrow \infty$):

\[\chi_{op} = -\ln \left(K_{p} \Gamma_{p} X_{pi}^{T} \right) \] \hspace{1cm} (22)

Where X_{pi}^{T} is given by Eq. (10). Now, summations Eqs. (18) and (19) can be replaced with the following integral forms:

\[a_{pp} = \left(\int_{0}^{\infty} \chi_{p}(1) \left[a_{p}(1) \right]^{1/2} \ dI \right)^{2} \] \hspace{1cm} (23)

\[b_{pp} = \int_{0}^{\infty} \chi_{p}(1) b_{p}(1) \ dI \] \hspace{1cm} (24)

In order to solve integrals appearing in Eqs. (23) and (24) we need to have in hand analytic expressions for $a(1)$ and $b(1)$ of with respect to I. Touba & Mansoori (1996) and Aghamiri et al. (1998) proposed the following expressions for $a(1)$ and $b(1)$ of an associating component [7,18]:

\[a_{p}(1)^{1/2} = a_{pl}^{1/2} + a_{pl}^{1/2}I \] \hspace{1cm} (25)

\[b_{p}(1)^{1/3} = b_{pl}^{1/3} \] \hspace{1cm} (26)

Where a_{po}, a_{pl} and b_{pl} are constants. By inserting Eqs. (21), (25), and (26) in Eqs. (23) and (24) it can be shown that the expressions for parameters a_{pp} and b_{pp} reduce to the following:

\[a_{pp} = 27R^{2}T_{cp}^{2} / (64P_{cp}) = a_{cp} \] \hspace{1cm} (27)
In this calculations activity coefficients are obtained through equations (A-5 to A-7). Results of the VLE calculations have been reported in Table 1 for 7 ternary systems. This table includes the average square absolute deviation in predicting the total pressure (ΔP), and average square absolute error in predicting the mole fraction of components in the vapor phase defined as:

\[
\Delta P = \frac{1}{n_d} \sum_{i=1}^{n_d} [(P_{\text{exp}} - P_{\text{cal}})^2]_i
\]

(33-a)

\[
\Delta y = \frac{1}{2n_d} \sum_{i=1}^{n_d} [(y_{\text{cal}} - y_{\text{exp}})^2 + (y_{\text{cal}} - y_{\text{exp}})^2]_i
\]

(33-b)

Also reported in Table 1 are the results of the calculations if the original non-associating van der Waals property calculation model (the van Laar equation) was used. Similarly, Table 1 compares results of this work with NRTL and UNIQUAC (as two important correlative activity coefficients models) for studied systems. Parameters of these models (NRTL and UNIQUAC) have been obtained by minimizing of equations (33-a, b). Regarding NRTL has 7 and UNIQUAC has 6 parameters; presented model has only two adjustable parameters. Also in this work, temperature dependency of parameters has been given. It should be pointed that parameters of NRTL and UNIQUAC have been obtained by correlating the models to experimental data.

According to this table, with the application of the proposed association theory predictions of the mixture VLE are appreciably improved over the non-associating model. It should be pointed out that in applying the presented theory for ternary aqueous mixtures we have to specify \(\xi_p \), the association parameter of association component (water) as defined by Eq. (30). Provided experimental data for association equilibrium constant \(K \) and \(\Gamma \) are available, Eq. (30) can be used to calculate \(\xi_p \). However, due to the lack of such data this parameter is obtained by correlating the experimental VLE data. Therefore numerical values of \(\xi_p \) for water have been calculated from various ternary mixture data and reported in Table 1. According to Eq. (30) parameter \(\xi_p \) depends on temperature, because \(K \) is the equilibrium constant of association, and can be defined as follows:

\[
K = \exp \left(\frac{-\Delta G_o}{RT} \right) = \exp \left(\frac{-\Delta H_o + T\Delta S_o}{RT} \right)
\]

(34)
Table 1: Association parameter (ξ_p) of water and (ΔP, and Δy^*) of various ternary systems.

<table>
<thead>
<tr>
<th>Components</th>
<th>T (°C)</th>
<th>ξ_p</th>
<th>Δy^*</th>
<th>ΔP</th>
<th>This work</th>
<th>van Laar NRTL</th>
<th>This work</th>
<th>van Laar NRTL</th>
<th>UNIQUAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-butanol</td>
<td>35</td>
<td>1.217</td>
<td>2.4E-3</td>
<td>2.3E-2</td>
<td>8.4E-3</td>
<td>1.2E-2</td>
<td>1.5E-1</td>
<td>1.0E10</td>
<td>1.39</td>
</tr>
<tr>
<td>2-propanol</td>
<td>75</td>
<td>1.066</td>
<td>2.8E-3</td>
<td>1.5E-2</td>
<td>3.0E-3</td>
<td>4.2E-3</td>
<td>3.2E-1</td>
<td>5.0E5</td>
<td>17.99</td>
</tr>
<tr>
<td>Acetone</td>
<td>100</td>
<td>1.072</td>
<td>3.1E-3</td>
<td>1.1E-3</td>
<td>2.1E-2</td>
<td>1.9E-2</td>
<td>4E0</td>
<td>8.2E2</td>
<td>64.72</td>
</tr>
<tr>
<td>Benzene</td>
<td>40</td>
<td>1.080</td>
<td>1.1E-1</td>
<td>2.9E-1</td>
<td>1.0E-2</td>
<td>2.3E-2</td>
<td>4.3E0</td>
<td>7.0E5</td>
<td>6.35</td>
</tr>
<tr>
<td>1-propanol</td>
<td>30</td>
<td>1.097</td>
<td>4.1E-2</td>
<td>4.9E-2</td>
<td>2.3E-2</td>
<td>2.4E-2</td>
<td>1.5E-2</td>
<td>1.6E-2</td>
<td>3.39</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>1.108</td>
<td>2.0E-2</td>
<td>3.1E-2</td>
<td>1.1E-2</td>
<td>1.4E-2</td>
<td>1.1E-1</td>
<td>1.5E-1</td>
<td>13.43</td>
</tr>
<tr>
<td>Benzene</td>
<td>35</td>
<td>1.113</td>
<td>1.4E-1</td>
<td>1.2E-1</td>
<td>1.7E-2</td>
<td>2.5E-2</td>
<td>1.7E-1</td>
<td>8.9E5</td>
<td>11.36</td>
</tr>
<tr>
<td>Ethanol</td>
<td>45</td>
<td>1.111</td>
<td>1.3E-1</td>
<td>1.2E-1</td>
<td>1.4E-2</td>
<td>3.3E-2</td>
<td>1.5E-1</td>
<td>1.4E4</td>
<td>15.68</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>1.111</td>
<td>1.0E-1</td>
<td>1.1E-1</td>
<td>2.7E-2</td>
<td>2.5E-2</td>
<td>2.1E-1</td>
<td>2.2E4</td>
<td>22.17</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>1.108</td>
<td>9.0E-2</td>
<td>1.3E-1</td>
<td>2.2E-2</td>
<td>2.7E-2</td>
<td>3.3E-1</td>
<td>2.0E4</td>
<td>35.11</td>
</tr>
<tr>
<td>Ethanol</td>
<td>50</td>
<td>1.051</td>
<td>4.5E-3</td>
<td>1.7E-2</td>
<td>1.1E-2</td>
<td>1.0E-2</td>
<td>8.6E-2</td>
<td>3.6E5</td>
<td>3.61</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>1.063</td>
<td>9.3E-3</td>
<td>1.3E-2</td>
<td>9.0E-3</td>
<td>8.9E-3</td>
<td>2.2E-1</td>
<td>4.7E4</td>
<td>7.95</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>5.4E-2</td>
<td>7.6E-2</td>
<td>2.1E-2</td>
<td>1.3E-2</td>
<td>8.3E2</td>
<td>16.73</td>
<td>22.26</td>
<td></td>
</tr>
</tbody>
</table>

Δy is average deviation of vapor mole fractions of component 1 and 2

Table 2: Enthalpy and Entropy of association of water molecules.

<table>
<thead>
<tr>
<th>$\Delta H/R$</th>
<th>$\Delta S/R$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-119.66</td>
<td>-5.56</td>
</tr>
</tbody>
</table>

Where ΔG_o, ΔH_o and ΔS_o are standard Gibbs free energy, standard enthalpy and standard entropy of association, respectively. Also, according to Eq. (5), α is the ratio of activity coefficient of associated species, a measure of interaction between these species. In the case of consideration (dense fluid) Γ can be described as a function of T only. Therefore the following simple relation is introduced for it here:

$$\Gamma = \exp\left(-\frac{\alpha}{RT}\right) \quad (35)$$

By combination of Eqs. (34) and (35) with the definition of $\kappa (\kappa=\Gamma K)$, we can obtain:

$$\kappa = \exp\left(-\frac{\Delta G_o - \alpha}{RT}\right) = \exp\left(-\frac{(\Delta H_o + \alpha) + T \Delta S_o}{RT}\right) \quad (36)$$

Where for simplicity $\Delta H = \Delta H_o + \alpha$. Eqs. (30) and (36) and values of ξ_p from Table 1, can be used to evaluate ΔH and ΔS_o. Results have been given in Table 2.

CONCLUSIONS

In this work the van der Waals mixture model (van Laar equations) was extended to associating mixtures by using an improved chemical theory of association. VLE calculations were done for 7 aqueous ternary mixtures in different temperatures, where water was regarded as the only associating fluid. The introduced model was compared with original van Laar model, and well known empirical models of NRTL and UNIQUAC. The results showed superior agreement of proposed model with experimental VLE data in comparison with original van Laar model. Also, our model and empirical models had similar accuracies; although, NRTL and UNIQUAC had 6 adjustable parameters and the modified model had only one adjustable parameter.
A Modified van der Waals Mixture Theory for Associating Fluids

Nomenclature

- \(a \): van der Waals equation of state parameter
- \(b \): van der Waals equation of state parameter
- \(A \): Molar Helmholtz free energy
- \(G \): Molar Gibbs free energy
- \(H \): Enthalpy
- \(I \): Number of same monomers in an associated species
- \(I \): Continuous variable version of \(I \) defined above
- \(K \): Equilibrium constant of association
- \(L \): The limit of association
- \(n \): Number of moles
- \(N_A \): Avogadro number
- \(p \): Component \(p \)
- \(p_i \): Associated species formed from \(i \) molecules of component \(p \)
- \(P \): Pressure
- \(R \): Universal gas constant
- \(S \): Entropy
- \(T \): Absolute temperature
- \(x \): Liquid phase mole fraction
- \(\chi(I) \): Distribution function
- \(\chi_0 \): Distribution function normalizing factor
- \(y \): Vapor phase mole fraction

Greece Letters

- \(\Delta \): Deviation
- \(\gamma \): Activity coefficient
- \(\Gamma \): Function of \(T \) and \(P \), defined by Eq. (5)
- \(\kappa \):

\[\kappa = K \Gamma \]

Superscript

- \(T \): True

Subscript

- \(\text{calc} \): Calculated
- \(\text{exp} \): Experimental
- \(\text{conf} \): Configurational
- \(m \): Mixture
- \(p \): Associated component \(p \)
- \(p_i \): Associated species formed from \(i \) molecules (monomers) of \(p \)

Received: Sep. 13, 2009; Accepted: Feb. 17, 2012

REFERENCES

