Short Communication

Phylogenic typing of *Escherichia coli* isolated from broilers with collibacillosis in Tabriz, North West of Iran

Hassani¹, B., Shayeghi∗², J., Ameghi³, A., Mikaili⁴, P., Mahmmudzadeh⁵, M.

1. Department of Animal Science, Shabestar Branch, Islamic Azad University, Shabestar, Iran
2. Department of Veterinary Medicine, Shabestar Branch, Islamic Azad University, Shabestar, Iran
3. Razi Vaccine and Serum Research Institute, Marand, Iran
4. Department of Pharmacology, Urmia University of Medical Sciences, Urmia, Iran
5. Razi Vaccine and Serum Research Institute, Karaj, Iran

Received 04 Jul 2012; accepted 06 Nov 2012

ABSTRACT

In this study, to know about the phylogeny of *Escherichia coli* isolated from broilers with collibacillosis in Tabriz, 70 *E. coli* isolates recovered from broilers with collibacillosis were characterized for phylogenetic group (A, B1, B2, D) by multiplex PCR. Of the all 70 samples, 35 (50%) isolates were classified as type A, 32 (45%) as type D, 2 (2.8%) as type B1 and 1 (2.8%) as type B2. This study demonstrates the high prevalence of *E. coli* types A and D in infected broilers. This shows that the collibacillosis-causing *E. coli* bacteria are typical commensals, type A alongside pathogenic type, D in Iran. It is possible that this type of *E. coli* could acquire virulence genes from pathogenic types. Of course, such a claim needs further study.

Keywords: *Escherichia coli*, phylogeny, collibacillosis, Tabriz, broiler

INTRODUCTION

Escherichia coli strains cause a number of diseases in domestic poultry. Among these diseases is a severe systemic form termed colisepticaemia, which is characterised by the presence of *E. coli* in the blood, and colonisation of organs including the heart, liver and spleen (Barnes *et al* 2003). Avian pathogenic *Escherichia coli* (APEC) are the leading pathogenic agents in the infections of extra intestinal tissues in chicken (Gross 1991). The initial infection primarily occurs in the respiratory tract and ultimately results in diverse diseases (Dho & Lafont 1999). The condition is commonly characterized by air sacculitis and may involve septicemia with pericarditis, perihepatitis, and salpingitis (Gross 1994).

Early Multi-Locus Enzyme Electrophoresis (MLEE) studies demonstrated the existence of subspecies in *E. coli*. More extensive MLEE analysis, together with other techniques of DNA analysis, confirmed the existence of subspecies. Traditionally, four recognized subspecies or phylo-groups of *E. coli* have been designated A, B1, B2, and D. Clermont *et al*. (2000) described a multiplex PCR protocol that determines the

*Author for correspondence.Email: jalal_shayeghi@yahoo.co.in
presence/absence of two genes (chuA and yjaA) and an anonymous DNA fragment (TSPE4.C2). The presence or absence of these three PCR products is used in the manner of a dichotomous key to assign an unknown isolate to one of the four main phylo-groups of E. coli (Clermont et al 2000). The mechanisms of pathogenesis in the avian pathogenic E. coli (APEC) have not been thoroughly understood, however, the correlation of pathogenicity with virulence factors has been recently extensively explored (Chouikha et al 2008, Dziva & Stevens 2008). The aim of this study was to investigate the phylogenetic groups of E. coli isolated from broilers with colibacillosis in Tabriz, North West of Iran.

MATERIALS AND METHODS

Bacterial isolates. Seventy E. coli isolates were recovered from broilers with colibacillosis in Tabriz, North West of Iran from different farms and were confirmed according to the biochemical standards described previously (Quinn et al 1994).

DNA extraction. A colony from BHI (Brain heart infusion) agar was transferred to a clean microtube and 500ml lysis buffer (pH 8, containing 5 mol NaCl, 100 mmol Tris-base, 20 mmol EDTA-Na2 and CTAB 20%) was added. The samples were then incubated at 60-65 °C for 10 min. and centrifuged at 12,000 x g for 10 min. The pellet was resuspended in chloroform-isooamyl alcohol (24:1), and centrifuged for one min. 12,000 x g. Then, the pellet was resuspended in cold isopropanol and transfer to refrigerator for 30 min. Next, 70% ethanol was added to supernatant and centrifuged for one min. 12,000 x g. Finally, 50µl TE-buffer was add to the pellet and stored as DNA template.

Multiplex PCR for Phylogenic typing of E. Coli. The phylogenetic type was determined by multiplex PCR (Clermont et al 2000). Each 25 µl reaction contained 0.2 µl DNA template, 1 U Taq DNA polymerase, 3.2 mM from primer (Table 1), 200 µM of each dNTP, 4 µl of 1 x PCR buffer, and 2 mM MgCl2. The PCR reactions were initiated by an initial denaturation at 94 °C for 5 min followed by 35 cycles, each cycle consisting of DNA denaturation at 94 °C for 30 sec, annealing at 55 °C for 30 sec, and extension at 72 °C for 30 sec. The cycles were followed by a final extension at 72 °C for 7 min. Amplified PCR products were separated by 1% agarose electrophoresis and finally stained with ethidium bromide and photographed.

RESULTS AND DISCUSSION

Phylogenic typing of E. coli was conducted based on amplification of 3 different phylogenic groups using multiplex PCR in the presence of each specific primer. The phylogenic group of each strain was determined as follows; Chu A (+), Yja A (+), TSPE4.C4 (+/-) was assigned to group B2; Chu A (+), Yja (-), TSPE4.C4 (+/-) was assigned to group D; Chu A (-), Yja A (+/-), TSPE4.C2 (+) was assigned to group B1; and chu A (-), Yja A (+/-), TSPE4. C2 (-) was assigned to group A (Figure 1 and 2). Of the all 70 samples, 35 (50%) isolates were classified as type A, 32 (45%) as type D, 2 (2.8%) as type B1 and 1 (1.4%) as type B2 (Table 2).
Phylogenetic types isolated from broilers with colibacillosis in this country (Ghanbarpour et al 2011). Phylogenetic grouping of *E. coli* has been used in epidemiological virulence studies (Picard et al 1999, Russo & Johnson 2000). Phylogenetic type A consists mainly of strains that are commensally orientated and not essentially pathogenic for a healthy host (Clermont et al 2000).

![Figure 1](image1.png)

Figure 1. Phylogenetic typing by PCR of the isolates. Lane 7 and 16: 100 bp DNA marker, Lane 1, 5, 9 to 13 and 20 to 22: type D. Lane 2, 4,6,8,14,15 and 17 to 19: type A, Lanes 3: type B2.

![Figure 2](image2.png)

Figure 2. Phylogenetic typing by PCR of the isolates. Lane 5: 100 bp DNA marker, Lane 1, 4, 8: type D. Lane 2, 3, 7, 9 and 10: type A, Lanes 6: type B2.

Our results show higher prevalence of this genogroup in infected broilers. This demonstrates that the *E. coli* bacteria causing colibacillosis are typical commensals in Iran. It may be because this type acquires virulence genes from pathogenic types. Phylogenetic analyses have shown potentially pathogenic strains belong mainly to B2 and D groups. A diverse range of bacterial virulence factors have been postulated in promoting avian disease, including adhesins, iron acquisition systems, hemolysins, antibacterial factors and toxins (Dias da Siveira et al 2002, Ewers et al 2003, Parreira & Gyles 2003). Intestinal or extraintestinal *E. coli* infections are associated with strains possessing numerous virulence factors located on plasmids, bacteriophages, or the bacterial chromosome (Muñldorfer & Hacker 1994). Several studies have demonstrated that pathogenic *E. coli* strains may be derived from commensal strains through acquisition of chromosomal or extra-chromosomal virulence operons (Finlay & Falkow 1997, Ochman et al 2000). Some other mechanisms such as ‘black hole’ genomic deletions or random functional point mutations (Sokurenko et al 1998 Maurelli et al 1998) may also be strategies by which a commensal strain may become virulent. This statement needs more investigations on environmental and host conditions including dosage of organism, the status of immune systems associated with bacterial virulence factors (Barnes et al 2003). Further studies of virulence factors among these regional isolates may be needed to elucidate the virulence profile of avian *E. coli* and to establish exactly the mechanism of transmission between pathogenic or nonpathogenic strains in this region.

Acknowledgment

This article is taken from the MS thesis supported by the Islamic Azad University Shabestar branch, Iran. The authors are grateful to them valuable support.

References

