Plaque formation of LaSota pathogenic strain of Newcastle disease virus adapted in chick embryo fibroblast cells

Mehrabanpour 1*, M.J., Dadras 2, H., Pourbakhsh 3, S.A., Hoseini 1, S.M.H., Motamedifar 4, M. and Mohammadi 2, A.
1. Razi Vaccine and Serum Research Institute, Shiraz, Iran
2. School of Veterinary Medicine, University of Shiraz, Shiraz, Iran
3. Razi Vaccine and Serum Research Institute, Karaj, Iran
4. Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

Received 25 Aug 2006; accepted 08 Jan 2007

ABSTRACT

In order to adapt LaSota strain of Newcastle disease virus (NDV) on chick embryo fibroblast (CEF) cells, 0.1 ml from LaSota vaccine produced in Razi vaccine and serum research institute inoculated to the CEF cells and was passaged five times in the CEF grown in Eagle’s minimum essential medium (MEM). First to third passages were blind but in fourth passage cytopathic effect of virus was observed. Fifth passage viruses were propagated in SPF embryoneted eggs and then harvested allantoic fluids showed presence of NDV with the titer of 10^8 EID$_{50}$/ml. Plaque assays performed on this harvest using two agar overlays; one supplemented with trypsin, DEAE dextran and magnesium sulfate, the second with neutral red along with the mentioned supplements, overlaid 72 hours after first one. Eight hours later, plaques of adapted virus appeared with various sizes ranging from 1 mm to 3 mm in the diameter. Discrete plaques were observed in the 10^{-6} dilution and the calculated titer of virus was 3×10^7 pfu/ml. Agar medium overlays without above mentioned supplements obtained no plaque at any dilutions.

Keywords: Newcastle disease virus, chick embryo fibroblast, plaque

INTRODUCTION

The essential prerequisite for the experimental investigation of a virus or the disease caused is the production in some laboratory host as virus cannot replicate or multiply without any live host system. Animal cell cultures have been used for cultivation of viruses since 1950 (Ahamed et al 2004). Different type of primary cells particularly of avian origin and certain cells lines of mammalian origin such as Median–Darby bovine kidney (MDBK) cells, LLC-MK2 (a rhesus monkey kidney cell lines) Vero cell lines and chick embryo fibroblast (CEF) being used for plaque production (Kournikakis & Jacquelin 1988, King 1993, Ahamed et al 2004). LLC-MK2 cells have been used by others to assay human parainfluenza viruses and have also been used in an

* Author for correspondence E-mail: mehrabanpourj@yahoo.com
NDV plaque neutralization disk test (Frank et al 1979, Nereme & Ishida 1982, Ishida et al 1985). The cell fusion / plaque type of CPE is caused by vaccinia virus and certain other poxviruses growing in MK, Vero, NCL-H2N9, and fibroblast cells. Plaques ranging from 1 mm to 6 mm in diameter, formed in 2-4 days, during which the infected cells fuse, form cytoplasmic bridging, and then disintegrate (George 1996). A technique for plaquing lentogenic strains of NDV provides a method for establishing the purity of seed stock in the production of vaccine. Titration of Newcastle disease virus (NDV) strains are more conveniently undertaken in cell culture rather than in embryonated eggs, this is relatively easy with mesogenic and velogenic strain that are cytopathic to various cell line, but is difficult with avirulent strain that are poorly cytopathic (Wanbura et al 2006). The ability of NDV to form plaque in cell culture is related to the virulence of the virus (Reeve et al 1971). The virulent strains produce greater number of syncytia than the mesogenic or avirulent strain (Ogasawaro et al 1992). Kournikakis and Fieldes (1988) also reported that the optimal condition for plaque assay of the avirulent LaSota strain of NDV was agar overlay supplementation with 2.5 µg/ml trypsin, magnesium sulfate (0.03 M) and 0.02% DEAE dextran. Umino and Khoma (1991) performed a plaque assay of an avirulent strain of NDV in primary chick kidney (PCK) cells without adding trypsin to the agar overlay medium. Harper (1988) used a combination of 5% allantoic fluid and 200 µg/ml DEAE dextran with 30 mM MgCl₂ as supplement to normal overlay medium and reported this to give large, clear plaques on secondary CEF monolayers infected with avirulent strain NDV which did not produce plaques without these additions. Comparative investigation between velogenic strain and 6 strains of the Newcastle disease virus belonging to various pathogenic groups in CEF cell cultures, showed that the velogenic strain were grown in this culture and produced a clear cytopathic effect without preliminary adaptation passages, however, LaSota and Hichner B1 did not produce cytopathic effect without adaptation (Khdzhiiev 1982). Ahamed (2004) adapted NDV on African green monkey (Vero) cell line; by five times passaging of virus in this cell line and in the fifth passage obvious changes in the characteristics of cell monolayers were observed. The aim of the present study was adaptation of LaSota strain of Newcastle disease virus (Razi LaSota vaccine) to grow on CEF cells to obtain the discrete plaques for further molecular studies.

MATERIALS AND METHODS

Virus. A commercial vaccine (LaSota strain) batch No 13 was obtained from poultry vaccine production department, Razi vaccine and serum research institute, Tehran, Iran and kept at 4 °C till used. A vial of lyophilized vaccine (4000 dose/vial) was reconstituted with 4 ml sterile phosphate buffered saline (PBS), and stored at -70 °C in 0.2 ml aliquots.

Reagents. 0.2% bovine serum albumin (Sigma) was added to PBS, prepared in triple glass distilled water and sterilized using 0.22 µm, filter.

Culture media. The minimum essential medium (MEM) Eagles (Sigma) supplemented with 5% (v/v) fetal calf serum (Sigma) inactivated at 56 °C for 30 minutes, 100 U/ml penicillin G (sigma), 2 µg/ml gentamycin sulfate (Gibco), 0.25 mg/ml glutamine and 0.2% sodium bicarbonate was used as growth medium for CEF cell culture (Kournikakis and Jacquelin Filds 1988).

Agar overlay medium. Consisted of Eagle’s MEM, 0.7% Bacto-Agar (Difco), 2.5 µg/ml trypsin (Gibco), 0.2% sodium bicarbonate (Sigma), 0.02% DEAE dextran, 0.03 M magnesium sulfate (Sigma), 0.25 mg/ml glutamine, 100 U/ml penicillin G (sigma) and 2 mg/ml gentamycine sulfate (Gibco). This overlay medium was used as the first and second overlay. The second one also contained
neutral red at a concentration of 1:10000 (Kournikakis & Filds 1988). Other media used for agar overlay consisted of Eagle’s minimum essential medium (MEM), supplemented with 5% (v/v) inactivated fetal calf serum (Sigma), 100U/ml penicillin G (sigma) 2 µg/ml gentamycine sulfate (Gibco), 0.25 mg/ml glutamine, 0.2% sodium bicarbonate and 0.7% Bacto-Agar (Difco), without trypsin and DEAE dextran.

Chick embryo fibroblast culture. Ten days old embryonated eggs (SPF eggs–Lohmans Co) were used to prepare CEF monolayer. Briefly the eggs were candled, air sac was marked and embryos were aseptically removed from the eggs, washed in cooled PBS and head, legs, wings and viscera were cut and discarded. The rest of the body portion was further washed, cut into small pieces and trypsinised with 10 ml of 0.25% trypsin solution in PBS for 30 minutes. Trypsin was inactivated by adding 0.5 ml fetal calf serum and the cell suspension was filtered through two layers sterile cheese cloth, washed three times using cold incomplete Medium and centrifuged at 1200 rpm for 15 minutes. The cell sediment was mixed with growth complete medium and adjusted on 5×10^5 cells/ml and 4 ml of such cell suspension was dispensed in plate having 4 cm diameter (Nunc Co) and incubated at 37 °C in CO₂ incubator at 5% CO₂ and 80% relative humidity. After 1 h, 4 ml MEM growth medium supplemented with 5% (v/v) fetal calf serum (Sigma), 100 U/ml pencillin G (sigma), 2 µg/ml gentamycine sulfate (Gibco), 0.25 mg/ml glutamine, 0.2% sodium bicarbonate and 2.5 µg/ml trypsin was added to the confluent monolayer cells and kept in CO₂ incubator at 37 °C with 5% CO₂ for 3 days. After 3 days 0.5 ml of 0.25% of trypsin solution in PBS was added to CEF cells monolayer and incubated at 37 °C in CO₂ incubator. CEF cells were detached after 30 minutes and centrifuged at 600 ×g for 15 minutes. The supernatant centrifuged again at 50000 ×g for 45 minutes, and then 100 µl PBS was added to the virus pellet and inoculated to CEF cells using same media and techniques describe above. Subsequent passages were done as well. Infected monolayers were examined twice a day under an inverted microscope for any change as compared to control uninfected cells (Beard et al 1970, Nagai 1973, Nagai et al 1976, kournikakis & Filds 1988, Madhan et al 2005). 0.2 ml of the adapted virus from fifth passage was inoculated to 10 days old SPF embryonated chicken eggs for propagation and after 48 hrs, the allantoic fluid was harvested and (EID₉₀) titers were determined by serial titration of viruses in SPF eggs (Lohman). The endpoint was calculated by the methods of Reed and Munch (1938).

Rapid HA test. 25 µl of treated amniotic fluids were mixed with 25 µl of 5% suspension of chicken red blood cells, with a plastic stick on the center of a clean glass slide, while 25 µl of 5% suspension of chicken red blood cells were mixed with 25 µl PBS on the left side of the same slide as negative control and 25 µl of 5% suspension of chicken red blood cells were mixed with 25 µl NDV solution at right side as positive control and rotated for one minute. Clear and consistent HA was considered as the positive reaction.
Plaque assay. The plaque assay was performed for the LaSota vaccine strain of NDV as described before (Barhonna & Hanson 1967, Nagai et al 1973, Nagai et al 1976, Kournikakis & Fields 1988). Briefly, confluent monolayers of CEF cells grown in plates were washed twice with 3.0 ml of PBS/BSA. 0.2 ml of each dilution (10^{-4} through 10^{-10}) (10^{8} EID_{50}) of adapted virus was inoculated to the CEF monolayers in quadruplicate. 0.2 ml PBS inoculated to one well was used as negative control. The inoculated plates were kept in CO_{2} incubator under 5% CO_{2} and 80% humidity at 37 °C for 1 hour. Agar overlay medium with supplements was then added to the cells infected with 10^{-4}-10^{-10} dilutions of adapted viruses in duplicate and agar overlay medium (42 °C) without trypsin, DEAE dextran and magnesium sulfate was added to other two plates inoculated with above dilution of viruses (10^{-4}-10^{-10}). Plates were gently agitated to ensure distribution of the overlay medium and the overlay medium were allowed to solidify by placing the plates on a level surface at room temperature for 15 minutes. All of the plates incubated for 72 hours at 37 °C in CO_{2} incubator with 5% CO_{2} and 80% humidity. Seventy two hrs after infection a second 2 ml agar overlay medium containing 1:10000 neutral red (Difco) was added to each plate. 80 h after addition of the first layer of agar overlay the plaques with different shapes and size were visible. Selected discrete plaques were harvested with the insulin syringe, suspended in 0.2 ml of sterile PBS, inoculated into embryonated SPF egg and incubated for 48 hours. These propagated viruses were harvested, HA test was carried out and HA positive allantoic fluids was collected and stored at -70 °C for molecular investigations (Ahamed et al 2004, kournikakis & Jacqueline 1988).

RESULTS

To get confluent monolayer chick embryo fibroblast 5×10^{5} cells/ml were found to be satisfactory and gave confluent monolayer after 24 h incubation at 37 °C under 5% CO_{2}.

![Figure 1 discrete plaques with various size and shape were found in chick embryo fibroblast infected with adapted LaSota strain of NDV dilution 10^{-9}.](image-url)
Figure 2. Uncountable plaques in Chick embryo fibroblast infected with adapted LaSota strain NDV in 10^{-4} dilution.

Table 1 Plaque counts of (Razi) LaSota vaccine strain of NDV.

<table>
<thead>
<tr>
<th>Dilution</th>
<th>Cell</th>
<th>overlay</th>
<th>Plaques (No.)</th>
<th>Titer (PFU/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-5}</td>
<td>CEF</td>
<td>Agar+DEAE+MgSO4</td>
<td>35</td>
<td>1.7×10^7</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>CEF</td>
<td>Agar+DEAE+MgSO4</td>
<td>6</td>
<td>3×10^7</td>
</tr>
<tr>
<td>10^{-7}</td>
<td>CEF</td>
<td>Agar+DEAE+MgSO4</td>
<td>N*</td>
<td>-</td>
</tr>
<tr>
<td>10^{-8}</td>
<td>CEF</td>
<td>Agar+DEAE+MgSO4</td>
<td>N*</td>
<td>-</td>
</tr>
</tbody>
</table>

*No plaques were obtained.

The plaque size and shape were found to be varied under agar overlay with additives. Cell cultures that inoculated with adapted virus and agar overlayed without DEAE-dextran and magnesium sulfate and trypsin did not show any discrete plaques at any dilution. Plaques were referred to a necrotic patch in the cellular monolayers, visible cells stained red, while the necrotic areas caused by viral infection did not stain. A minimum of 4 hrs was necessary for the color contrast to be appeared in CEF monolayers. Six various plaques were collected and propagated for further molecular investigations.

DISCUSSION

Although different type of cells are used to cultivate and propagate NDV, but CEF cells is the most popular throughout the world to grow NDV (Ahamed et al. 2004). Khadzhiev (1982) reported some of the velogenic and mesogenic strains produced clear cytopathic effect on the CEF cells, but without adaptation passages LaSota strain did not produce plaques on CEF cells. Ahamed (2004) after 5 serial passages of wild NDV on vero cell line obtained cytopathic effect and finally plaque.

Mesogenic and velogenic strain of NDV produce cytopathic effect to various cell lines, but it is difficult with avirulent isolates that are poorly cytopathic (Wambura 2006). Virulant NDV can be different by its ability to replicate in most avian and mammalian cell types without the addition of trypsin. Although all NDV isolates can replicate in chicken embryo kidney cells, but lentogenic strains require trypsin for replication in avian fibroblast or mammalian cell types (Seal et al. 1995). Lentogenic viruses can replicate only in areas with trypsin-like enzymes such as the respiratory and intestinal tracts, whereas virulent viruses can replicate in a range of tissues and organs resulting in systemic infection (Ogasawaro et al. 1992). Lentogenic strains such as the Hichner B1 and LaSota strains are widely used as the live vaccines against Newcastle disease (Peeters et al. 1999). During replication NDV particles are produced with a precursor glycoprotein, F0 which has to be cleaved to F1 and F2 for the virus particles to be infectious (Rott & Klenk 1988, Berinstein et al. 2001). This post translation cleavage is mediated by host cell proteases. Trypsin is capable of cleaving F0 for all NDV strains and in vitro treatment of noninfectious virus will induce infectivity (Nagai 1976, Olav et al. 2003). Kournikakis and Fildes (1988) reported trypsin was required for plaque formation by avirulent NDV, and plaque size varied directly with trypsin concentration and some degradation of the cell monolayer was seen at 5 µg/ml trypsin concentration and they used 2.5 µg/ml as the optimal trypsin concentration for that assay. In the present study 2.5 µg/ml trypsin, 0.03 M magnesium sulfate and 0.02%
DEAE dextran used in plates infected with adapted viruses, obtained discrete plaques different in shape and size. The presence of DEAE-dextran in the overlay medium provided a significant improvement in the virus titer (Kounikakis & Filds 1988). Some inhibitory such as sulfate polysaccharides is present in agar, which combine with virus particle to form non infectious complex. DEAE-dextran acts by combining with the sulfate polysaccharides to neutralize their inhibitory effect. Barahona and Hanson (1968) showed that lentogenic strain of NDV are cytopathic but fail to produce plaques in CEF cells within 96 hours in absence of magnesium and dimethlaminoethyl (DEAE). They also found that velogenic strain of NDV when grown on CEF monolayer usually exhibit, clear plaques (2 to 4 mm). Scholer and Hanson (1968) showed that NDV forms plaques with several sizes ranging from 0.5 to 4.0 mm in diameter. Kounikakis and Filds (1988) cultured avirulent strain of NDV in LLC-MK2 cells, plaques were visible after 2 days and maximum virus titer was reached in 3 days. Lentogenic strains such as the Hichner B1 and LaSota strains are widely used as the live vaccines against Newcastle disease so plaque provide from lentogenic strains is important. (Peeters et al 1999) Advantage of the plaque assay is the possibility to detect mixed virus population in an isolate.

This technique for plaque formation by lentogenic LaSota strain of Newcastle disease virus provides a method for establishing the purity of seed stock used in the production of vaccine. The present assay is useful tool for demonstration of discrete plaques using adapted NDV virus within 3 days on CEF monolayer covered with modified overlay media containing magnesium ions, DEAE dextran and ionoagar to a certain purity.

References

Seal, S., King, J.D., and Bennett, J.D (1995). Characterization of Newcastle disease virus isolated by reverse transcription PCR coupled to direct nucleotide sequencing and development of sequence database for pathotype predication and molecular epidemiological analysis. *Journal of Microbiology* 2624-2630

