Preparation and Evaluation of Stained Pertussis Antigen for Serodiagnosis of Whooping Cough

Short Communication

Afsharpad*1, K., Mohammadi, A.2 and Mirchamsy, H.2
1. Human Bacterial Vaccines Research & Production Dept., Razi Vaccine & Serum Research Institute, P.O.Box:11365-1558, Tehran, Iran
2. Human Viral Vaccines Research & Production, Razi Institute
Received 16 Nov 2002, accepted 2 May 2003

Summary

For rapid clinical diagnosis and also determining the immune response of healthy persons to whooping cough a stained pertussis antigen was prepared. In this regard the 48h culture of Bordetella pertussis, Tohama wild strain, on methyl cellulose enrichment medium (B2) was used. The medium was supplemented with methyl cellulose, Rosebangal as vital color and phosphate buffer containing Thiomersal (1/5000). A comparative study with Bordetella pertussis/toxin IgG ELISA has shown that the local antigen is highly specific and sensitive. Therefore the antigen may provide a diagnostic laboratory tool in epidemiological study.

Key word: agglutinogen, antigen, antibody, pertussis

Introduction

Whooping cough is a highly contagious respiratory infection due to a gram negative cocobacilli, Bordetella pertussis (Bemis & Burn 1994). However, the disease is an acute and highly communicable infection equally affecting children and adults, it is symbolically classified as a common childhood infection. WHO estimates the total number of pertussis cases is responsible for half a million to one million deaths annually (Muller et al 1986). A combination of antibiotics and serum suggests for

*Author for correspondence. E-mail:afsharpad@hotmail.com
treatment of the disease but rapid diagnosis is very important. The laboratory
diagnosis of pertussis is based on the direct culture of nasopharyngeal specimen
during the incubation period and catarrhal stages of disease (Kwantes et al 1983).
Pathological and bacteriological data indicated that isolation of bacteria from
nasopharyngeal discharge is possible just at the first week of infection and attack
stage of the disease and only from the end of lung alveoli (Kwantes et al 1983,
Mirchamsy 1997, Ryan 1997). The routine serological test by using especial
bacterial antigen is not economic (Ruuskamen et al 1991). A cold chain condition
and using %20CosH as stabilizer is necessary for antigen production. In order to
detect the adult infection, which appears due to the vaccine failure (He et al 1994,
Hewlett 1992, Keitel & Edwards 1995) and also for evaluation of children
protection against the infection a reliable and reproducible tool would be necessary.
This problem has generated a considerable interest in our laboratory for producing a
stained pertussis antigen evaluated by standard serum and agglutininogen.

Materials and Methods

Virus strain. Four pertussis strains including 134 and 509 (received from Rijks
Institute, The Netherlands), 18323 and Tohama wild strain were used.

Stained pertussis antigen (SPA) preparation. SPA was prepared according to Alton
& Jones (1988) method. Briefly, 72h culture of each B.pertussis strains (134, 506,
18323 and Tohama wild strain) was prepared in phosphate buffer solution (PBS,
containing 1/5000 Thiomersal pH7.2) by magnetic stirrer. 1ml of Rosebengal
solution (1%) was added to 35ml of the above suspension and incubated at 4°C for
24h. Then the suspension was centrifuged at 5000rpm for 20min. The supernatant
was discarded and 12ml of PBS per each gram of packed cell was added. The
suspension was homogenized and using Hopkines tube regulated at the level of 8%
of bacterial germ, the final suspension was prepared. In another study, a mixture of
the homogenized suspension of 72h cultures of 134 and 509 pertussis strains was
stained in a similar way. WHO standard pertussis antiserum (Statens Serum Institut *B.pertussis* ATOX//220681) was used for comparative assays. The specificity of pertussis antibody was evaluated by carrying out direct agglutination and seroneutralization tests on 2988 serum samples at different age groups.

Results and Discussion

Figures 1 and 2 show the seroreaction of *B.pertussis* stained strains No.509 and Tohama with WHO standard antiserum. Comparison of all tested seroreactions reveal that the agglutination of the stained germs is more clear when Tohama wild strain was used. Therefor this strain was choosen for SPA preparation. The prepared antigen was used as a laboratory tool for rapid clinical diagnosis of the whooping cough in our study.

![Figure 1. Seroreaction of B.pertussis stained strain No.509 with WHO standard antiserum (BBA=Brucella buffered antigen diluent)](image)

Each unit of agglutinin of anti pertussis serum contains the amount of γ-globulin can neutralize 4mg of killed pertussis bacteria (minimum letal dose for white mouse
of 16-18gr body weight) (Ajjan 1992). Based on this information each drop (1/20cc) of our stained antigen contains 4mg of inactivated germ of Tohama wild strain. (Figure 2).

To determine the specificity pertussis antibody, a comparative study between seroneutralization and direct agglutination (using \textit{B.pertussis} stained Tohama strain antigen) tests on 2988 serum samples at different age groups was done (Table 1). The result indicates that the sensitivity and specificity of direct agglutination test using the stained antigen are similar to seroneutralization test. Thus the prepared SPA can provide a useful laboratory tool for rapid clinical diagnosis and evaluation of the pertussis immune response in populations.

It confirms that at least 80 units of agglutinating antibody per each ml of serum appear after five times vaccination against pertussis (Ajjan 1992), thus infection with \textit{B.pertussis} is the only cause for generating a titer higher than this. In our study the two age groups, 51-60 and 61-70, are more sensitive to pertussis infection. Some
epidemiological studies (Cherry 1998, Keitel & Edwards 1995, Rosental et al 1995, Edwards et al 1993) suggested that after regulating vaccination against pertussis, the age group of 40-50 is more sensitive population. Because vaccination of more than 6 years old is not recommended (Keitel 1999, Nilsson et al 1998, Manclark & Cowell 1994), the only cause for increasing the titer would be infection of adults with the bacterium. This phenomenon is known in aged people as chronic bronchopneumonia (Hewlett 1992, Keitel & Edwards 1995, Shefer et al 1995).

Table 1. Mean antibody titer of B. pertussis stained Tohama strain antigen in different age groups

<table>
<thead>
<tr>
<th>Age group</th>
<th>No. serum sample</th>
<th>SD</th>
<th>Stained antigen Direct agglutination</th>
<th>Seroneutralization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10</td>
<td>218</td>
<td>5.09</td>
<td>72.38</td>
<td>72.38</td>
</tr>
<tr>
<td>11-20</td>
<td>456</td>
<td>7.14</td>
<td>63.55</td>
<td>63.55</td>
</tr>
<tr>
<td>21-30</td>
<td>644</td>
<td>8.79</td>
<td>54.37</td>
<td>54.37</td>
</tr>
<tr>
<td>31-40</td>
<td>595</td>
<td>3.03</td>
<td>36.93</td>
<td>36.93</td>
</tr>
<tr>
<td>41-50</td>
<td>337</td>
<td>1.84</td>
<td>27/27</td>
<td>27/27</td>
</tr>
<tr>
<td>51-60</td>
<td>406</td>
<td>11.02</td>
<td>65/25</td>
<td>65/25</td>
</tr>
<tr>
<td>61-70</td>
<td>268</td>
<td>9.71</td>
<td>71/15</td>
<td>71/15</td>
</tr>
<tr>
<td>71-80</td>
<td>64</td>
<td>4.38</td>
<td>80/00</td>
<td>80/00</td>
</tr>
</tbody>
</table>

References

