The Role of Bacterial Vectors in the Expression of Human IFN-γ Gene

Short Communication

Moeen Rezakhanlou, A.,1 Mahboudi, F., Maghsoudi, N.,3 and Habibi, G.R.4

1. Immunology and Hematology Dept., School of Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
2. Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
3. Biotechnology Research Center, Malek Ashtar Industrial University, Tehran, Iran
4. Protozoology Dept., Razi Vaccine & Serum Research Institute, Tehran, Iran

Received 6 Dec 2002; accepted 27 Apr 2003

Summary

The Interferon gamma (IFN-γ) gene 1 was isolated from phytohemagglutinin stimulated peripheral blood mononuclear cells of a healthy individual blood donor using RT-PCR technique. The gene was cloned under the control of the different promoters’ expression vectors such as pET32a (Novagen), pQE30 (QIAGEN), pSKA-IBA (Strep-Tag), pRSET (Invitrogen), and then expressed in E.coli. The transcription of IFN-γ mRNA was determined by northern blot analysis. The level of expression of human IFN-γ in pRSET vector under the control of T7 promoter was determined by laser–based densitometry of SDS-PAGE and found more than 26% of total bacterial protein. The expression was confirmed by western blotting. The expression of IFN-γ under the control of promoters of pET32a, pQE30 and pSKA-IBA plasmids was detected by SDS-GAGE and western blotting.

Keywords: interferon-γ, expression, E. coli, northern blotting

Introduction

Human interferon-γ (hIFN-γ), a homodimer glycoprotein regulates human immune system to protect the body from malignant and infectious diseases. This cytokine produced by activated CD4+ and CD8+ T cells, antigen presenting cells and natural killers.

hIFN-γ cDNA has been cloned in E.coli earlier, though the level of expression not mentioned (Gray et al 1982). Some investigators have reported high expression of the hIFN-γ cDNA in E.coli but they used synthetic, not native, gene (Wang et al 1995). The aim of this study was to isolate native cDNA IFN-γ gene, to clone it in various expression vectors, to produce natural IFN-γ protein in E.coli and also to determine the best vector for the expression.

Materials and Methods

Cultivation and stimulation of PBMCs to express IFN-γ. Peripheral blood mononuclear cells (PBMCs) were isolated from 5ml of heparinized peripheral blood taken from an apparently healthy donor using Histopaque (Sigma-Aldrich Chemicie, Germany) washed three times with RPMI 1640 (Sigma) supplemented with 100IU/ml penicillin, 100µg/ml streptomycin and 17% fetal calf serum (JRH, Biosciences). The 5×10^6cells/ml were stimulated by 5µg/ml phytohemagglutinin (PHA) (Sigma) and incubated 2h at 37°C in a humidified atmosphere containing 5% CO₂.

Isolation of total RNA. Total RNA was isolated from 5×10^6PBMCs using RNAZole™B RNA isolation reagent according to the manufacturer instructions (Biotex International Inc., Friedswood, TX).

cDNA synthesis. To prepare complementary DNA (cDNA), 1µg of total RNA extracted was reverse-transcribed by incubation at 37°C for 60min in a 20µl reaction mixture containing 1XRT buffer (Boehringer Mannheim), 10U RNase inhibitor,
500µM dNTP, 160pM Oligo (dT) primer and 20U Murine Moloney Leukemia Virus RT (Boehringer Mannheim).

Amplification of IFN-γ cDNA. Two primers were synthesized according to the IFN-γ sequence present in the Gene Bank (Accession: C 0111) and BamHI sites were added to each end (underlined).

5’(GGCGGATCCATGCAAGGACCCATATGTAAA)3’

5’(CAGGCAGGATCCGCAGGCAGGACAACCATT)3’. The primers were synthesized at Biotechnology Research Center (Pasteur Institute of Iran). Amplification of cDNA was performed in 20µl PCR reaction mixture containing 2µl cDNA, 2µl 10XPCR buffer [20mM Tris-HCl, pH8.8, 10mM KCl, 2mM MgSO4, 10mM (NH4)2SO4, 0.1%TritonX-100], 0.4µl dNTP (10mM) (Boehringer Mannheim), 0.5µl of each primer (50pM/µl), 0.5µl VentR DNA polymerase (1U/µl) [New England Bio Labs] under the following conditions: 94°C (1min) plus 35 cycles of 94°C (30sec), 65°C (1min), 72°C (1min) and a final extension cycle of 72°C (10min). A total volume of 400µl was amplified using this method.

Plasmid construction. The pure PCR product was cloned at the site of Smal of pUC19 (Pharmacia) and then pUC19-IFN plasmid was made. This plasmid was transferred into Top10F (12). The presence of the IFN-γ gene was confirmed by restriction enzymes analysis and sequencing (ALF system, Pharmacia). After sequence verification, the gene encoding hIFN-γ was sub-cloned into pET32a (Novagen), pQE30 (QIAGEN), pSKA-IBA (Strep-Tag) and pRSET (Invitrogen) expression vectors; and pET32a-IFN, pQE30-IFN, pSKA-IBA-IFN and pRSET-IFN plasmids obtained. These plasmids transformed into E.coli BL21-(DE3) (Studier et al 1990). The clones containing the appropriate IFN-γ gene were selected on Luria Bertain (LB) media, containing 100µg/ml ampicillin.

Northern blotting. E.coli cells containing different recombinant plasmids (pET32a-IFN, pQE30-IFN, pSKA-IBA-IFN) were induced by 1mM IPTG at exponential phase (absorbency=0.5). The appropriate amount of cells was harvested after 4h
culture at 37°C and then RNAs were isolated from cells by Tripure Isolation Reagen (Roche) kit and northern blot analysis was done according to Sambrook and Russel (2001) procedure.

Expression of the recombinant protein. BL21 (DE3) E.coli strain cells containing different recombinant plasmids such as pET32a-IFN, pQE30-IFN, pSKA-IBA-IFN and pRSET-IFN plasmids were induced by 1mM IPTG at exponential phase (absorbance=0.5). The appropriate amount of cells was harvested after 4h culture at 37°C and the pellet was then analyzed on a 12.5% gel by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) (Laemmeli 1970). The amount of expressed protein was determined by laser densitometer (pharmacia LKB. Ultro Scan XL).

Western blotting. To confirm the identity of the expressed human IFN-γ, western blotting technique was used according to a standard protocol (Sambrook & Russel 2001). The protein from SDS-PAGE was transferred onto a nitrocellulose membrane (Schleicher & Schuell). Mouse anti-hIFN-γ monoclonal antibody (Cheicon International) and goat anti-mouse IgG/HRP (Cedar Lane) were used as capture and detecting antibodies, respectively. To detect the protein, the membrane was covered with a mixture of 1ml of each of detection solutions 1 and 2 of ECL western blotting detection kit (RPN2108 Amersham Pharmacia Biotech) for 1min. After the excess solution was drained off, the membrane was wrapped with Saran wrap and exposed to autoradiography film for about 10sec. hIFN-γ protein was detected as a 18KDa band.

Results and Discussion
Using designed primers and RT-PCR technique an approximately 472bp DNA fragment was obtained (Figure 1). The PCR product was larger than expected because the recognition sites of restriction enzymes were added to the primers. pUC19-IFN plasmid has been made by cloning the PCR product in pUC19 and confirmed by restriction endonuclease digestion (Figure 2).
Figure 1. Agarose gel electrophoresis of amplified nhIFN-γ gene by PCR. Lane 1, size marker; lane 2, amplified IFN-γ gene; lane 3, negative control.

Figure 2. pUC19-IFN recombinant plasmids with nhIFN-γ gene digested with BamHI. Lane 1, 2, 4, and 5: positive clones (~500bp), lane 3: molecular weight marker.

The hIFN-γ gene subcloned into pET32a, pQE30, pASK-IBA and pRSET as mentioned earlier, they were transferred into E.coli BL21-(DE3) for expression.
SDS-PAGE analysis of the expressed natural hIFN-γ (nhIFN-γ) protein has been shown in figures 3. Confirmation of nhIFN-γ was done by western blotting (Figure 4). Laser densidometry analysis on SDS-PAGE showed over 26% expression of total bacterial proteins. The molecular weight of the expressed protein was 18KDa.
The expression of hIFN-γ has been determined by the northern blotting because the IFN-γ protein has not been detected by SDS-PAGE and western blotting of pET32a-IFN, pQE30-IFN and pASK-IBA-IFN plasmids (Figure 5). Data of pQE30-IFN and pASK-IBA-IFN plasmids are not shown. However, the expression of IFN-γ protein has not been detected by SDS-PAGE and western blotting, the results of northern blotting showed that the gene of hIFN-γ was transcribed in cells with pET32a-IFN, pQE30-IFN and pASK-IBA-IFN plasmids.

There are several factors that control the level of expression of protein in E.coli (Baney 1999). The secondary structure of mRNA is a main factor in protein expression (Tessier 1984) and the sequence of a vector that exists in mRNA is important for forming the secondary mRNA structure. We concluded that the secondary structure of mRNA of pRSET-IFN was suitable for translation, but
secondary structures of the mRNAs of pET32a-IFN, pQE30-IFN and pASK-IBA-IFN plasmids were not suitable for translation. The secondary structure of the mRNAs was analyzed by RNAdraw software (RNAdraw V1.1, Mazura Multimedia, Stockholm, Sweden).

Today, hIFN-γ expressed in *E.coli* is widely used as a therapeutic agent in various pathological conditions (Kruskal *et al.* 1997) To the best of our knowledge; this is the first report of moderate expression (~26%) of nhIFN-γ gene in *E.coli*. Gene expression in prokaryotic systems is under the influence of such factors as promoter, upstream elements, mRNA stability, codon usage, and fusion proteins (Baney 1999). Based on this investigation, it seems that the sequence of upstream elements of a vector is a main factor in expression of a protein. The sequences of upstream elements influence the primary and secondary structures of mRNAs. Therefore, for the expression of a gene, the appropriate vector should be selected.

Acknowledgements

We are grateful to Dr N. Reiner at Department of Medicine, University of British Cloumbia, Canada for his kindly supporting. We also thank Dr Mohammad Azizi and Mohsen Karimi for their assistance. This work was supported by a grant from Research Council.

References

Chinese hamster ovary cells. *Proceeding Natural Academic Science, USA* 80:4654-4658.

