Prevalence of Cryptosporidial Infection in Horse and Man in Mashhad, Iran

Naghibi*, A., Vahedi, H.
Pathobiology Dept., School of Veterinary Medicine, Ferdowsi University of Mashhad,
P.O.BOX 91775-1793, Mashhad, Iran
Received 17 Dec 2001; accepted 23 Jul 2002

Summary
The prevalence of cryptosporidial infection in human and horse has been determined in Mashhad. The cryptosporidium spp. oocysts from horse and human fecal samples were floated and concentrated by Sheather’s sugar flotation technique and were stained by the modified Ziehl-Neelsen procedure. Out of 300 horse samples, 26.66% were infected. We could not find any significant differences between the rates of equine cryptosporidiosis in cold and warm seasons, and between different sexes. In human, cryptosporidial infection was diagnosed only in persons (3 out of a total of 120) who were in contact to animals. Our results also indicate that more likely infection would primarily occur in animal, and human would be a secondary host for cryptosporidium.

Key words: cryptosporidiosis, human, horse, prevalence, Iran

Introduction
Cryptosporidium infections associated with diarrhea are common in man and animals (Dubey et al 1990). Both anthroponotic and zoonotic cycles have been documented in the life cycle of this parasite (Olson et al 1997, Ong et al 1999). The first case of cryptosporidium infection in a human was described in 1976 in a previously healthy 3-year old child from a farm community in rural Tennessee (Nime et al 1976). There have been recent reports of human outbreaks of

* Author for correspondence. E.mail: a naghibi@yahoo.com
cryptosporidiosis through contaminated potable and recreational water and food (Fricker & Crabb 1998). Two reports illustrate the rate of human cryptosporidiosis in different parts of Iran as 1.2% of adults with diarrhea in Mashhad (Sardari & Noori 1990) and 0.64% of adults with diarrhea and 0.23% of adults without diarrhea in Ahwaz (Fathi & Noori 1990). Equine clinical cryptosporidiosis in horses was first reported in immunodeficient Arabian foals in the United States (Snyder et al 1978). In Iran, one report indicates the rate of equine cryptosporidiosis as 8% in the region of Miandoab (Davoodi & Noori 2000). Due to the importance of the clinical forms of cryptosporidiosis and its zoonotic potential, we studied the rate of the prevalence of cryptosporidium spp. infection in horses and man in suburbs of Mashhad in Iran.

Materials and Methods

The fecal samples of horse and human were collected from eight stud farms situated within 20 km from Mashhad. About 10 g of feces was collected from each horse directly from the rectum in a wide mouth plastic container. In case of man, the sterile glass containers were used for sample collection. Immediately after collection, the samples were floated, concentrated, and stained as previously described. For floating and concentrating of cryptosporidium oocysts, the Sheather’s sugar flotation technique (Current et al 1983) was used. Briefly, a heavy suspension of the feces was made in physiological saline and strained through gauze into a centrifuge tube to one half full. An equal volume of Sheather’s sugar solution was added to bring the surface of the liquid slightly above the top of the test tube. The suspension was then gently mixed with an applicator stick. A cover slip was placed on the surface of the suspension and was allowed to stand undisturbed for 45 min. The cover slip was then removed and mounted on a glass slide and examined under binocular microscope. The cryptosporidium oocysts were stained using the modified Ziehl-Neelsen procedure (Henriksen & Pohlenz 1981). Samples with the presence of oocysts were considered positive (Figures 1 and 2). The data were analyzed using
Yates’ corrected chi-square (contingency table) test and considered “significantly different”, when P was less than 0.05.

Figure 1. Oocysts of cryptosporidium spp. from equine fecal samples stained using the modified Ziehl-Neelsen procedure

Figure 2. Oocysts of cryptosporidium spp. from human fecal samples stained using the modified Ziehl-Neelsen procedure
Results and Discussion

A total of 300 fecal samples was collected from horses and studied for the presence of cryptosporidium oocysts. Of the total of 300 equine fecal samples, eighty (26.66%) contained cryptosporidium oocysts (Table 1), which is higher than previous report (Davoodi & Noori 2000) and more closer to the rate of equine cryptosporidiosis which is reported from Canadian farms (Olson et al. 1997). From 75, 115, 60, and 50 samples that were collected in spring, summer, autumn and winter, the infection percentages were 24, 34.75, 20, and 20, respectively. However, there was no significant difference in the rates of infection between cold (autumn and winter) and warm (spring and summer) seasons ($P_{Yates}=0.0641$). Likewise, there was not any significant difference in the rates of infection between mares and stallions ($P_{Yates}=0.6427$). A total of 120 stool samples were also collected from human (60 samples were from animal handlers). The cryptosporidial infection was detected only in 3 (5%) persons, who all either themselves or their family members were animal handlers (Table 1). This rate of infection is much higher than the rate of human cryptosporidiosis, which has been reported before (as 1.2%) in Mashhad (Sardari & Noori 1990).

<table>
<thead>
<tr>
<th>Horse</th>
<th>Sex</th>
<th>Season</th>
<th>Human</th>
<th>Animal handler</th>
<th>Non-animal handler</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Spring</td>
<td></td>
<td>42</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>Summer</td>
<td></td>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>Autumn</td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>Winter</td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>Spring</td>
<td></td>
<td>38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>Summer</td>
<td></td>
<td>18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>Autumn</td>
<td></td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>Winter</td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td>166</td>
<td>60</td>
</tr>
</tbody>
</table>

Since we could not find any infection in people who were not in contact to animals, perhaps the previously reported rate would have been from a population of
persons who were and were not in contact with animals. This indicates that the zoonotic potential of cryptosporidial infection might be important only in animal handlers or people who are in contact in animals. However in our study, the statistical analysis showed no significant difference between the rates of infection in persons who were and were not in contact with animals ($P_{Yates}=0.2422$). We also analyzed the rates of infection between horses and humans (animal handlers) and found a significant difference ($P_{Yates}=0.0005$), indicating that infection might occur primarily in animals (horses) than humans.

References

