لینک های مفید

- عضویت در خبرنامه
- کارگاه های آموزشی
- سرویس ترجمه تخصصی STRS
- فیلم های آموزشی
- بلاگ مرکز اطلاعات علمی
- سرویس های ویژه
Clay-reinforced nanocomposites for the slow release of chemical fertilizers and water retention

Aliasghar Abouchenari*, Khatereh Hardani†, Somayeh Abazar‡, Fahimeh naghdí‡, Mehdy Ahmady Keleshtér, Ata Jamavarî, Amir Modarresi Chahardehi§

* Materials Engineering, Shahid Bahonar University, Kerman, Iran
† Department of Marine Chemistry, Faculty of Marine Science, Khorrarmshahr University of Marine Science and Technology, Khorrarmshahr, Iran
‡ Department on Materials and Metallurgical Engineering, Amirkabir University on Technology (Tehran Polytechnic), Tehran, Iran
§ Department of Materials and Industrial Engineering, Babol Noshirvani University of Technology, Mazandaran, Iran

Abstract

The present study includes an overview of the applications of clay-based nanocomposites from the past decade to date in various fields such as pharmaceuticals, water treatment, food packaging, electricity, automotive, and especially the production of chemical fertilizers with water retention and slow release. In the agricultural area, one of the promising materials that help green chemical engineering and green chemistry is slow-release fertilizer (SRF). Clay minerals and clay nanocomposites provide cost-effective and efficient material for this purpose. In this paper, the research and development of polymer nanocomposites based on clay in recent years with the focus on their application as novel fertilizers have been reviewed. Clay minerals are promising reinforcements to manufacture high-performance, lightweight, and low-cost nanocomposites because of their abundance, layered structure, low cost, and rich intercalation chemistry.

Keywords: Clay nanocomposites
Slow release
Controlled release
Fertilizer

The main factor in the agricultural area playing a very important role in plant growth is an appropriate distribution of fertilizer and water. However, around 50–70 % of potassium, 80–90 % of phosphorus, and 40–70 % of nitrogen incorporated in conventional fertilizers are wasted by volatilization or leaching, which leads to release of them into the environment rather than being absorbed by plants [1, 2]. Therefore, there...
is a need for improvement and management of fertilizer nutrients and water resources utilization. The utilization of controlled- or slow-release fertilizers is one way to improve the fertilizer application. The first major category of this kind of fertilizer is matrix type formulations as a result of their facile fabrication. In this system, the active materials are distributed in the matrix and its diffusion occurs through intergranular (pores) or continuum openings (channels) in the matrix [3, 4]. Moreover, the aim of developing slow-release fertilizers is the gradual secretion of the nutrient to be regulated based on the nutrient requirement of plants. In order to control the release rate, the physical preparation of the fertilizers using engineered matrices could be used [5, 6]. As environmental protection issues are nowadays in the center of attention, the degradability of these systems is desired [7]. Clay-based nanocomposites have significantly attracted attentions among nanocomposites that are utilized in chemical fertilizers. Polymer nanocomposites are composed of a polymeric matrix filled with reinforcements with at least one dimension in the nanometer-scale [8]. One-dimensional nanofillers are in the form of layered minerals such as clay [9-12]. In the following sections, we have briefly mentioned the applications of clay-based nanocomposites, mainly in the field of chemical fertilizers for agricultural applications.

2. Clay-reinforced nanocomposite

Polymer nanocomposites have attracted much attention leading to investment in research and development around the world [8]. Clay platelets are one-dimensional disc-like nanoparticles that possess unique structure and characteristics [13]. These minerals are both synthesized clays such as magadite, laponite, and fluorohectorite, and natural clays viz. saponite, hectorite, and montmorillonite [10]. Nowadays, the use of polymer/clay nanocomposites (PCNs) is one of the most applied modern technologies, since they can generate new polymer properties [14]. PCNs are widely used in modern technologies due to being able to introduce new properties to polymers [14]. PCNs possess unique characteristics including their capability to confine polymer chains at the nanometer scale and disperse in the matrix [15]. Properties of polymers such as gas barrier properties, toughness, heat distortion temperature, stiffness, modulus, strength, and chemical resistance could be significantly enhanced by adding a low amount of fillers [16-18].

Nanocomposites or conventional composites can be formed under the processing condition, components nature as well as the interfacial interactions of modified or unmodified layered silicates and polymer chains. The type of formed nanocomposites is illustrated in Fig. 2 [19].

3. Applications of Clay-reinforced nanocomposite

Clay-based polymer nanocomposites are promising alternatives to conventional micro composites as a result of the ability to disperse clay platelets in nanoscale in the matrix and improve physical, chemical, electrical, optical, thermal, mechanical, and barrier properties [10, 22].

3.1. Electro materials

New organic-inorganic hybrids with excellent electrical properties could be produced based on polymer nanocomposites. Conducting polymers reinforced with clay particles exhibit remarkable electrochemical properties, which have been employed for applications including smart windows, solid-state batteries, modified electrodes biosensors, and other electrochemical devices. PPR nanocomposites, for instance, could be developed to produce modified electrodes that are utilized as devices for electrocatalysis or sensors. Because PEO nanocomposites exhibit single ionic conduction behavior and relatively high conductivity at ambient temperature and they do not have significant dependence on temperature over conventional electrolytes based on LiBF₄/PEO, they could be offered as new electrolyte materials. Additionally, these nanocomposites are excellent models for investigation of the interfacial structure and dynamics [10, 23].

3.2. Automotive Components

Today, automotive industries are widely benefitting from polymer composites. Nevertheless, these composites are composed of polymers filled with a great number of microscale particles, flame resistant, chemical resistant, and thermal stabilizer additives. Hence, the enhanced performance often leads to the low fuel efficiency and increment of materials density. On the other hand, by using polymer nanocomposites...
ites, transport industries such as aerospace and automotive can benefit from higher performance with affordable materials, and a significant reduction of weight. The commercial nylon 6/clay nanocomposites were first used by Toyota Motors in the timing-belt cover in the early 1990s. The manufactured timing-belt cover showed excellent thermal stability, enhanced rigidity with no wrap. As a result of the lower amount of clays, the weight also was saved by up to 25%. Besides, due to their remarkable enhancement of mechanical properties, barrier properties, and heat distortion temperature (HDT), nylon 6/clay nanocomposites have also been utilized as fuel hoses, oil reservoir tank, and engine cover in the automotive industry. In 2002, a thermoplastic olefin/clay nanocomposite with 2.5% reinforcement was also used by General Motors for step-assist on Chevrolet and Safari. Today, polymer nanocomposites are believed to have the potential to be used in different internal and external parts of vehicles including under-the-hood parts, door handles, and mirror housings. The polymer nanocomposites weight can benefit material recycling and environmental protection [10, 23]. The fundamental stages of nanocomposites’ production for automotive applications are illustrated in Figure 4. In the production of competitive parts for a particular use, there might be some great challenges in each step that must be resolved. There exist different variations in the preparation process for a specific application that must be regulated according to the part specifications as well as the method of processing. Regarding these considerations, critical demands are imposed on the science and technology required for the processing of polymer-based composites [24].

3.3. Coating and Pigments

Nano pigments or PlanoColors® consisting of environment-friendly organic dyes and clays have been offered as potential substitutes for toxic palladium (Pd) and cadmium (Cd) pigments. The Plano Colors are easily dispersed in coatings and bulk polymers in the nanometer scale. By selecting suitable dyes from various organic dyes, different pigment colors are possibly synthesized. Additionally, materials that are dyed with Plano Colors completely keep their transparency due to the smaller size of these pigments in comparison with the light wavelength. Moreover, these nano pigments enhance temperature, ultraviolet (UV), and oxygen stability accompanied by high color efficiency and brilliance which is due to their improved interaction with light by their large surface area [10, 25].

3.4. Packaging Materials

Clay/polymer nanocomposites could exhibit remarkable improvement of shelf-life for various types of packaged food due to their excellent barrier properties. Furthermore, adding clay to polymers maintain the optical transparency of the nanocomposite films, which is not possible to achieve in conventional polymer micro composites. Hence, due to the above-mentioned characteristics, clay/polymer nanocomposites are widely acceptable in packaging industries including beverage containers, wrapping films, packaging of cereals, confectionery, cheese, processed meats, dairy products, fruit juice, and carbonated drinks bottles. Bayer, for example, has recently produced a novel food packaging plastic films made from nylon-6/clay nanocomposites with the exfoliated structure [26].

3.5. Drug Delivery

Recently, polymer/clay nanocomposites have attracted the attention of researchers in the field of controlled drug delivery. The number of published reports on these nanocomposites for drug delivery appli-
They reported that the incorporation of clay led to some improvements in the properties of the materials. Adsorption–desorption investigation of urea demonstrated that the hydrogel composite that included montmorillonite released urea in a more controlled rate (around 200 times slower release rate compared to conventional pure urea) in comparison with the neat hydrogel. The results show the excellent potential of clay, especially montmorillonite, to produce novel fertilizers with controlled- or slower release.

4. Polymer/Clay Nanocomposites for Fertilizers

Due to being easily obtained, having higher efficiency, and resistance to environmental effects, systems based on polymers are more commonly used for various applications [46]. Besides, polymer-based products are used in different physical states as carriers such as melts, hydrogels, solutions, and powders. As biodegradable polymers can be degraded by microorganisms activity, they have some advantage over conventional polymeric systems leading to having greater control over the release of active component [47].

Nanocomposites based on polymer and low clay loading are new materials for the controlled release of materials [48, 49]. This group of nanocomposites consists of a polymeric matrix in which layered nano-scaled silicate is dispersed. The clay minerals are the general type of 2:1 layer- or phyllo-silicates including synthetic mica, saponite, montmorillonite, etc. In these minerals, silicate layers of 1 nm thickness and 10–2000 nm length are stacked [50–52]. It has been reported that the combination of polymer and clay could demonstrate greater control rate for the release of materials and could provide a firm network through strengthening the lattice structure [53].

4.1. Chitosan/Clay Nanocomposites

By partial deacetylation of chitin (abundantly found in the exoskeleton of water animals such as shrimp, crab, etc.), chitosan polysaccharide is derived [54]. Chitosan is considered as a naturally abundant material due to being naturally regenerating resource; moreover, it is degradable and non-toxic. Owing to the mentioned properties, this polysaccharide has gained considerable attention in various applications such as agricultural applications [54–59]. Chitosan has been used as a coating for compound fertilizers such as potassium, phosphorus, and nitrogen compounds [60]. Incorporation of layered silicates such as montmorillonite in the polymer could improve some properties such as the adsorption capacity for chemical compounds as well as water. Santos et al. [61] developed chitosan and montmorillonite clay microspheres containing potassium using a coagulation route. They reported that the incorporation of montmorillonite into chitosan resulted in enhanced sorption properties compared to the neat chitosan microspheres. Souza et al. [62] monitored the performance of microspheres based on chitosan/clay hybrid for the release of potassium nitrate in lettuce cultivation. Based on the obtained results, soils that were treated with the nanocomposites exhibited higher electrical conductivity and moisture. Additionally, in comparison with conventional fertilization, a gradual and homogenous release was observed. According to the statistical analysis, the nanocomposite microspheres exhibited an efficient, controlled release of nitrogen.

Messa et al. [63] developed microparticles of chitosan and montmorillonite for prolonged potassium nitrate release as an efficient fertilizer. The results indicated that the prepared microparticles could maintain higher potassium content in the soil for up to several weeks. They proposed that the chitosan/clay microparticles are good candidates for agricultural applications due to their release efficiency.

4.2. Alginate/Clay Nanocomposites

Alginate is a linear polysaccharide consisting of β-D mannuronic and in the properties of the materials. Adsorption–desorption investigation of urea demonstrated that the hydrogel composite that included montmorillonite released urea in a more controlled rate (around 200 times slower release rate compared to conventional pure urea) in comparison with the neat hydrogel. The results show the excellent potential of clay, especially montmorillonite, to produce novel fertilizers with controlled- or slower release.

4. Polymer/Clay Nanocomposites for Fertilizers

Due to being easily obtained, having higher efficiency, and resistance to environmental effects, systems based on polymers are more commonly used for various applications [46]. Besides, polymer-based products are used in different physical states as carriers such as melts, hydrogels, solutions, and powders. As biodegradable polymers can be degraded by microorganisms activity, they have some advantage over conventional polymeric systems leading to having greater control over the release of active component [47].

Nanocomposites based on polymer and low clay loading are new materials for the controlled release of materials [48, 49]. This group of nanocomposites consists of a polymeric matrix in which layered nano-scaled silicate is dispersed. The clay minerals are the general type of 2:1 layer- or phyllo-silicates including synthetic mica, saponite, montmorillonite, etc. In these minerals, silicate layers of 1 nm thickness and 10–2000 nm length are stacked [50–52]. It has been reported that the combination of polymer and clay could demonstrate greater control rate for the release of materials and could provide a firm network through strengthening the lattice structure [53].

4.1. Chitosan/Clay Nanocomposites

By partial deacetylation of chitin (abundantly found in the exoskeleton of water animals such as shrimp, crab, etc.), chitosan polysaccharide is derived [54]. Chitosan is considered as a naturally abundant material due to being naturally regenerating resource; moreover, it is degradable and non-toxic. Owing to the mentioned properties, this polysaccharide has gained considerable attention in various applications such as agricultural applications [54–59]. Chitosan has been used as a coating for compound fertilizers such as potassium, phosphorus, and nitrogen compounds [60]. Incorporation of layered silicates such as montmorillonite in the polymer could improve some properties such as the adsorption capacity for chemical compounds as well as water. Santos et al. [61] developed chitosan and montmorillonite clay microspheres containing potassium using a coagulation route. They reported that the incorporation of montmorillonite into chitosan resulted in enhanced sorption properties compared to the neat chitosan microspheres. Souza et al. [62] monitored the performance of microspheres based on chitosan/clay hybrid for the release of potassium nitrate in lettuce cultivation. Based on the obtained results, soils that were treated with the nanocomposites exhibited higher electrical conductivity and moisture. Additionally, in comparison with conventional fertilization, a gradual and homogenous release was observed. According to the statistical analysis, the nanocomposite microspheres exhibited an efficient, controlled release of nitrogen.

Messa et al. [63] developed microparticles of chitosan and montmorillonite for prolonged potassium nitrate release as an efficient fertilizer. The results indicated that the prepared microparticles could maintain higher potassium content in the soil for up to several weeks. They proposed that the chitosan/clay microparticles are good candidates for agricultural applications due to their release efficiency.

4.2. Alginate/Clay Nanocomposites

Alginate is a linear polysaccharide consisting of β-D mannuronic and...
acid moieties and 1–4 linked α-L-guluronic in different compositions that is obtained from brown seaweed [64]. By incorporation of Ca²⁺ ions in an aqueous solution, alginate can be ionically crosslinked. As a result of this mild gelation capability, alginate is widely utilized as fertilizing systems with the controlled-release [64, 65]. On the other hand, the sodium alginate matrix is easily destructed by monovalent cations with poor mechanical properties. Moreover, controlled-release behavior is not always observed in sodium alginate hydrogels. A burst release of nutrients at the first stage is exhibited and then the remaining nutrients are released slowly [66]. He et al. [67] used sodium bentonite and alginate composites to encapsulate Rauwolfia planticola Rs-2 to prepare a slow-release biofertilizer with high efficiency and minimized production costs. After six months of storage, around 88.9% of Rs-2 in dried bentonite/alginate microcapsules survived. The efficient amount of alginate for the production of desirable composite microcapsules was remarkably lower compared to alginate alone. Release rate, biodegradability, and swelling decreased with increasing the content of bentonite and enhanced with the increment of NaAlg content. An initial burst in release curves of bacteria was observed for all the composite microcapsules; then a gradual increase occurred indicating that the release model was the first-order release. Therefore, the low-cost encapsulated microcapsules could be offered as promising slow-release fertilizers in farmlands. In another research, Singh et al. [68] synthesized starch–alginate beads by the incorporation of bentonite and kaolin for modification of the thiram fungicide release as well as minimizing the environmental contamination. Kaolin and bentonite were employed as adsorbent materials in the bead composition. According to the results, the addition of bentonite and kaolin to starch–alginate beads led to the controlled release of thiram. In comparison with the kaolin-based beads, the bentonite-based composition demonstrated a slower release rate.

4.3. Cellulose and their derivative

The most abundantly found biopolymer on earth is cellulose, which is the main constituent of plant-based materials such as hemp, wood, and cotton [69]. This linear polysaccharide is composed of β (1–4) linked D-glucose units (several hundred to thousands). There are multiple hydroxyl groups on the glucose units, which can react with different reagents either fully or partially to form other derivatives including cellulose esters and cellulose ethers [70].

As a result of film-forming ability, biodegradability, and renewability, the application of cellulose and its derivatives as carriers for fertilizing substances has attracted attention [45, 71-74]. The primarily used cellulose derivative for fertilizer coating is ethylene cellulose (EC), which is a biodegradable, hydrophilic, and inert material. Pérez et al. [75] sprayed EC ethanol solution (5%) onto urea-lignin particles in a Wurster fluidized bed at 60 °C. Different coating thicknesses of EC were applied on the particles and the nitrogen-release rates were measured by water leaching experiments. The observations showed that EC coating could inhibit water diffusion and decrease the nitrogen release rate.

Ni et al. [76] developed a slow-release nitrogen fertilizer system based on natural attapulgite clay, EC film, and sodium carboxymethylcellulose/hydroxethylcellulose hydrogel. They reported that the prepared fertilizer system could effectively decrease the loss of nutrients, enhance the efficiency of water consumption, and increase the time of irrigation cycles in drought-prone environments.

4.4. Acrylamide/clay nanocomposites

Most superabsorbents are produced using synthetic hydrophilic polymers including polyacrylic acid or polyacrylic acid-poly acrylamide copolymer; however, they suffer from poor degradability in soil and accumulation over time [77].

Verma et al. [78] synthesized nanoclay/polymer composite based on in-situ polymerized acrylic acid-acrylamide and modified nanoclay for the availability of phosphorus for wheat as a test crop. They reported that the amount of phosphorus uptake enhanced from 3.32 mg kg⁻¹ to 8.71 mg kg⁻¹ for the treatment by conventional diammonium phosphate fertilizer and nanoclay/polymer composite treatment in Alfisol, respectively. The amount of increase in the case of Inceptisol was from 4.45 to 9.78 mg kg⁻¹. The percentage of soil phosphorus fixation at the flowering stage decreased from 50 to 0 and from 60 to 19 in Inceptisol and Alfisol, respectively. Moreover, fertilizer phosphorus use efficiency improved by loading phosphorus into the nanoclay-polymer composite. Thus, the modified nanoclay/polymer composite exhibited promising properties as a fertilizer carrier to decrease production cost and enhance nutrient use efficiency, particularly for phosphorus because its availability in soil is very low.

Rashidzadeh et al. [79] developed a slow-released system for nitrogen, phosphorus, and potassium (NPK) fertilizer encapsulated in a superabsorbent nanocomposite. NPK was encapsulated by in-situ polymerization of acrylamide, acrylic acid, and sodium alginate in the presence of montmorillonite clay. According to the results, the incorporation of montmorillonite led to the release of the nutrients in a more controlled way compared to neat superabsorbent. Because of good water retention capacity and good slow-release property, this system could be offered as a potential fertilizer carrier for agricultural applications.

5. Conclusions and future insights

It can be concluded that a significant part of the growing research fields is focused on polymer/clay nanocomposites for various challenging applications. More importantly, by the continuous increase in population, there is an ever-increasing food demand worldwide; therefore, it is necessary to increase crop productivity to provide sufficient food for people. On the one hand, crop productivity could be achieved by using fertilizers. On the other hand, overusing fertilizers can cause some damage to environments and human health. Hence, to enhance the efficiency of fertilizing, slow-release fertilizers have attracted much attention. Polymer/clay nanocomposites exhibit promising properties to be used as superabsorbent and slow-release fertilizing systems [80].

In this regard, there will be further growth in the application of clays in different fields, especially in industrial and environmental applications. The significant technological importance of these composites is due to their tailoring characteristics including size, shape, hydrophilicity, and elementary building unit combinations. Various types of these minerals and their composites have not yet been widely investigated to develop new high-performance polymer composites. Therefore, the properties of these composites will be tailored to expand their potential applications.

REFERENCES

[22] L. Bazi, A. Khavandi, M.A. Boutorab, M. Karrabi, Correlation between visco-elastie behavior and morphology of nanocomposites based on SR/EPDM blends compatibilized by maleic anhydride, Polymer 113 (2017) 156-166.

لینک های مفید

عضویت در خبرنامه

کارگاه‌های آموزشی

سرویس ترجمه تخصصی STRS

فیلم‌های آموزشی

بلاگ مرکز اطلاعات علمی

سرویس های ویژه