FILTER REGULAR SEQUENCES AND LOCAL COHOMOLOGY MODULES

J. AZAMI

ABSTRACT. Let \(R \) be a commutative Noetherian ring. In this paper we consider some relations between filter regular sequence, regular sequence and system of parameters over \(R \)-modules. Also we obtain some new results about cofinitness and cominimaxness of local cohomology modules.

1. Introduction

Throughout this paper, let \(R \) denote a commutative Noetherian ring (with identity) and \(I \) an ideal of \(R \). For an \(R \)-module \(M \), the \(i \)th local cohomology module of \(M \) with respect to \(I \) is defined as

\[
H^i_I(M) = \lim_{n \to \infty} \operatorname{Ext}_R^i(R/I^n, M).
\]

We refer the reader to [5] or [3] for more details about local cohomology. The concept of filter regular sequence plays an important role in this paper. We say that a sequence \(x_1, \ldots, x_n \) of elements of \(I \), is an \(I \)-filter regular sequence on \(M \), if

\[
\operatorname{Supp}_R \left(\frac{(x_1, \ldots, x_{i-1})M}{(x_1, \ldots, x_{i-1})M} : x_i \right) \subseteq V(I),
\]

for all \(i = 1, \ldots, n \). Also, we say that an element \(x \in I \) is an \(I \)-filter regular sequence on \(M \) if \(\operatorname{Supp}_R(0 :_M x) \subseteq V(I) \). The concept of an \(I \)-filter regular sequence on \(M \) is a generalization of the concept of a filter

Keywords: Filter regular sequence, regular sequence, system of parameters, local cohomology module.
Received: 26 September 2018, Accepted: 19 May 2019.
*Corresponding author.
A'ZAMI

regular sequence which has been studied in [18]. Both concepts coincide if I is an m-primary ideal of a local ring with maximal ideal m. In 1969, A. Grothendieck conjectured that if I is an ideal of R and M is a finitely generated R-module, then the R-modules $\text{Hom}_R(R/I, H^i_I(M))$ are finitely generated for all $i \geq 0$. R. Hartshorne has provided a counterexample to this conjecture in [6]. Also he defined a module T to be I-cofinite if $\text{Supp} T \subseteq V(I)$ and $\text{Ext}^i_R(R/I, T)$ is finitely generated for each $i \geq 0$ and he asked the following question.

For which rings R and ideals I are the modules $H^i_I(M)$ I-cofinite for all i and all finitely generated modules M?

Hartshorne proved that if I is an ideal of the complete regular local ring R and M a finitely generated R-module, then $H^i_I(M)$ is I-cofinite in two following cases:
(i) I is principal ideal, (see [6], Corollary 6.3),
(ii) I is prime ideal with dim $R/I = 1$, (see [6], Corollary 7.7).
This subject was studied by several authors afterwards, (see [4], [11], [9], [19], [1] and [10]).

Some important results of this paper are as follows:

Theorem 1.1. Let (R, m) be a Noetherian local ring and $M \neq 0$ be a finitely generated R-module of dimension $d \geq 1$. Let $x_1, \ldots, x_d \in m$ be an m-filter regular sequence for M. Then the following statements are holds:

1. x_1, \ldots, x_d is a system of parameters for M.
2. For each $1 \leq i \leq d$, the R-module $H^i_m(M)$ is (x_1, \ldots, x_i)-cofinite.

Theorem 1.2. Let (R, m) be a Noetherian local ring and I be an ideal of R. Then for every finitely generated R-module $M \neq 0$ of dimension d, the following statements are equivalent:

1. $H^d_m(M)$ is I-cofinite.
2. $H^d_m(M) \cong H^d(I)(M)$.

Theorem 1.3. Let R be a Noetherian ring, I an ideal of R and $M \neq 0$ be a finitely generated R-module such that $\dim \frac{M}{IM} \leq 1$. If $t \geq 1$ and $x_1, \ldots, x_t \in I$ is an I-filter regular sequence for M, then for each $0 \leq i \leq t - 1$, the R-module $H^i_I(M)$ is (x_1, \ldots, x_t)-cofinite and $\text{Hom}_R\left(\frac{R}{(x_1, \ldots, x_t)}, H^i_I(M)\right)$ is finitely generated.
For each R-module L, we denote by Ass_RL the set $\{p \in \text{Ass}_RL : \dim R/p = \dim L\}$. Also, for any ideal b of R, the radical of b, denoted by $\text{Rad}(b)$, is defined to be the set $\{x \in R : x^n \in b \text{ for some } n \in \mathbb{N}\}$ and we denote $\{p \in \text{Spec}(R) : p \supseteq b\}$ by $V(b)$. Finally, for each R-module L, we denote by mAss_RL, the minimal elements of Ass_RL. For any unexplained notation and terminology we refer the reader to [3] and [12].

2. Main results

Theorem 2.1. Let (R, m) be a Noetherian local ring and $M \neq 0$ be a finitely generated R-module of dimension $d \geq 1$. Let $x_1, \ldots, x_d \in m$ be an m-filter regular sequence for M. Then

1. x_1, \ldots, x_d is a system of parameters for M.
2. For each $1 \leq i \leq d$, the R-module $H^i_m(M)$ is (x_1, \ldots, x_i)-cofinite.

Proof. (1). By definition $x_i \notin \cup_{p \in \text{Ass}(\frac{R}{(x_1, \ldots, x_{i-1})}\setminus\{m\})} P$ for each $1 \leq i \leq d$, and so $x_i \notin \cup_{p \in \text{Ass}_R(\frac{R}{(x_1, \ldots, x_{i-1})})} P$. Therefore x_1, \ldots, x_d is a system of parameters for M.

(2). By [8, Proposition 1.2], $H^j_{(x_1, \ldots, x_i)}(M) \cong H^j_m(M)$ for each $0 \leq j \leq i - 1$ and $\dim \text{Supp} H^j_{(x_1, \ldots, x_i)}(M) \leq 0$. Hence by [1, Theorem 2.6], the R-module $H^j_{(x_1, \ldots, x_i)}(M)$ is (x_1, \ldots, x_i)-cofinite. Also for $j > i$, $H^j_{(x_1, \ldots, x_i)}(M) = 0$. Thus by [15, Proposition 3.11], the R-module $H^i_{(x_1, \ldots, x_i)}(M)$ is also (x_1, \ldots, x_i)-cofinite. Since $H^{i-1}_{(x_1, \ldots, x_i)}(M)$ is Artinian, it follows from Grothendick vanishing theorem [3, Proposition 6.1], $H^i_{Rx_{i+1}}(H^{i-1}_{(x_1, \ldots, x_i)}(M)) = 0$. By [17], there exists an exact sequence as follows $0 \rightarrow H^i_{Rx_{i+1}}(H^{i-1}_{(x_1, \ldots, x_i)}(M)) \rightarrow H^i_{(x_1, \ldots, x_{i+1})}(M) \rightarrow H^i_{Rx_{i+1}}(H^i_{(x_1, \ldots, x_i)}(M)) \rightarrow 0$. Note that this exact sequence shows

$H^i_{(x_1, \ldots, x_{i+1})}(M) \cong H^i_{Rx_{i+1}}(H^i_{(x_1, \ldots, x_i)}(M))$.

Also by [9], we have

$H^i_{(x_1, \ldots, x_{i+1})}(M) \cong H^i_m(M)$.

Therefore

$H^i_m(M) \cong H^0_{Rx_{i+1}}(H^i_{(x_1, \ldots, x_i)}(M))$

and there exists an exact sequence as $0 \rightarrow H^i_m(M) \rightarrow H^i_{(x_1, \ldots, x_i)}(M)$. Since $\text{Hom}_R\left(\frac{R}{(x_1, \ldots, x_i)}, H^i_{(x_1, \ldots, x_i)}(M)\right)$ is finitely generated (because $H^i_{(x_1, \ldots, x_i)}(M)$ is (x_1, \ldots, x_i)-cofinite), it follows that the R-module
\[\text{Hom}_R \left(\frac{R}{(x_1,\ldots,x_i)}, H^i_\mathfrak{m}(M) \right) \] is also finitely generated. Now, by [16, Theorem 1.6] and by Artinianess of \(H^i_\mathfrak{m}(M) \), we conclude that \(H^i_\mathfrak{m}(M) \) is \((x_1,\ldots,x_i)\)-cofinite. \(\square \)

Theorem 2.2. Let \((R,\mathfrak{m})\) be a complete Noetherian local ring and \(M \neq 0 \) be a finitely generated \(R \)-module of dimension \(d \geq 1 \). Let \(P \in \text{Ass} M \) be such that \(\dim \frac{R}{P} = t \geq 1 \). Then for any \(\mathfrak{m} \)-filter regular sequence for \(M \) such as \(x_1,\ldots,x_t \in \mathfrak{m} \), \(\text{Rad}(P + (x_1,\ldots,x_t)) = \mathfrak{m} \). In particular \(x_1,\ldots,x_t \) is a system of parameters for \(\frac{R}{P} \).

Proof. By Cohen’s theorem every complete Noetherian ring is a homomorphic image of a Gorenstein local ring. Then by [2], we have

\[\{ q \in \text{Att}_R H^i_\mathfrak{m}(M) \mid \dim \frac{R}{q} = t \} = \{ q \in \text{Ass} M \mid \dim \frac{R}{q} = t \}. \]

Since \(P \in \text{Ass} M \) and \(\dim \frac{R}{P} = t \), it follows that \(P \in \text{Att} H^i_\mathfrak{m}(M) \).

By the previous Theorem, the \(R \)-module \(H^i_\mathfrak{m}(M) \) is \((x_1,\ldots,x_t)\)-cofinite and so by [16, Theorem 1.6], \(\text{Rad}(P + (x_1,\ldots,x_t)) = \mathfrak{m} \). \(\square \)

Theorem 2.3. Let \((R,\mathfrak{m})\) be a Noetherian local ring and \(I \) be an ideal of \(R \). Then for every finitely generated \(R \)-module \(M \neq 0 \) of dimension \(d \), the following statements are equivalent.

1. \(H^d_\mathfrak{m}(M) \) is \(I \)-cofinite.
2. \(H^d_\mathfrak{m}(M) \cong H^d_I(M) \).

Proof.

1 \(\to \) 2 Let \(H^d_\mathfrak{m}(M) \) be \(I \)-cofinite module. Then \(H^d_\mathfrak{m}(M) \otimes_R \hat{R} \) is also \(I\hat{R} \)-cofinite. Hence by [16, Theorem 1.6], for each \(P \in \text{Att}_R (H^d_\mathfrak{mR}(\hat{M})) = \text{Assh}_R(\hat{M}), \text{Rad}(I\hat{R} + P) = \mathfrak{m}\hat{R} \) and so \(H^d_{I\hat{R}}(\frac{\hat{R}}{P}) \neq 0 \). Therefore \(H^d_{I\hat{R}}(\hat{R}) \otimes_{\hat{R}} \frac{\hat{R}}{P} \neq 0 \) and \(P \in \text{Att}_R H^d_{I\hat{R}}(\hat{R}) \). Consequently \(\text{Att}_{\hat{R}} H^d_{\mathfrak{mR}}(\hat{R}) \subseteq \text{Att}_{\hat{R}} H^d_{I\hat{R}}(\hat{R}) \subseteq \text{Att} H^d_{\mathfrak{mR}}(\hat{R}) \) and so \(\text{Att}_{\hat{R}} (H^d_{\mathfrak{mR}}(\hat{R})) = \text{Att}_{\hat{R}} (H^d_{I\hat{R}}(\hat{R})) \). Now by [7], \(H^d_{\mathfrak{mR}}(\hat{R}) \cong H^d_{I\hat{R}}(\hat{R}) \). Hence we have the following:

\[H^d_m(R) \cong H^d_{\mathfrak{mR}}(\hat{R}) \cong H^d_{I\hat{R}}(\hat{R}) \cong H^d_I(R) \]

(2 \(\to \) 1). By [15], \(H^d_I(M) \) is \(I \)-cofinite. Since \(H^d_I(M) \cong H^d_m(M) \), it follows that \(H^d_m(M) \) is \(I \)-cofinite. \(\square \)

Corollary 2.4. Let \((R,\mathfrak{m})\) be a Noetherian local ring of dimension \(d \) and \(I \) be an ideal of \(R \) such that \(H^d_m(R) \) is \(I \)-cofinite. Then \(\text{ara}(I) = d \).
Proof. The module $H_d^m(R)$ is I-cofinite, hence $H_d^m(R) \cong H_d^m(R) \neq 0$ and so ara(I) \geq cd(I, R) $= d$. On the other hand by [14, Corollary 2.8], ara(I) $\leq d$. \hfill \Box

Definition 2.5. Let I be an ideal of R. The arithmetic rank of I, denoted by ara(I), is the least number of elements of R required to generate an ideal which has the same radical as I.

Corollary 2.6. Let (R, m) be a Noetherian local ring of dimension $d \geq 0$ and $x_1, \ldots, x_{d-1} \in m$ be such that $I = (x_1, \ldots, x_{d-1})$. Then Hom$_R \left(\frac{R}{I}, H_d^m(R) \right)$ is not finitely generated.

Proof. By [16, Theorem 1.6], the R-module Hom$_R \left(\frac{R}{I}, H_d^m(R) \right)$ is finitely generated if and only if $H_d^m(R)$ is I-cofinite. But in this case ara(I) $= d$. On the other hand ara(I) $\leq d - 1$ which is a contradiction. \hfill \Box

Proposition 2.7. Let (R, m) be a complete Noetherian local ring and $M \neq 0$ be a finitely generated R-module. Let N be submodule of M such that dim $N = t \geq 1$. Then any m-filter regular sequence for M such as $x_1, \ldots, x_t \in m$ is a system of parameters for N.

Proof. Let $m \text{Ass}_R N = \{ P_1, \ldots, P_n \}$, where $m \text{Ass}_R N$ denotes the minimal elements of $\text{Ass}_R N$. Then for each $1 \leq i \leq n$, dim $\frac{R}{P_i}$ \leq dim $N = t$ and clearly dim $\frac{R}{P_i} \geq 1$. Let $j = \dim \frac{R}{P_i}$. Then $j \leq t$ and by Theorem 2.2, Rad($P_i + (x_1, \ldots, x_j)$) $= m$. Since $(x_1, \ldots, x_j) \subseteq (x_1, \ldots, x_t)$, it follows that Rad($P_i + (x_1, \ldots, x_t)$) $= m$. We claim that Rad($\cap_{i=1}^n P_i + (x_1, \ldots, x_j)$) $= m$. For this, let Q be a minimal prime of $\cap_{i=1}^n P_i + (x_1, \ldots, x_t)$. Hence there exists $1 \leq j \leq n$ such that $P_j \subseteq Q$ and so $p_j + (x_1, \ldots, x_n) \subseteq Q$. Therefore $m = \text{Rad}(P_j + (x_1, \ldots, x_t)) \subseteq \text{Rad}(Q) = Q \subseteq m$ and consequently $Q = m$. But $\cap_{i=1}^n P_i = \text{Rad}(\text{Ann} N)$ shows that

$$\text{Rad}(\text{Ann} N + (x_1, \ldots, x_t)) = m$$

and so $\dim_R \frac{N}{(x_1, \ldots, x_t)N} = 0$. This completes the proof that x_1, \ldots, x_t is a system of parameters for N. \hfill \Box

Corollary 2.8. Let (R, m) be a complete Noetherian local ring, M be a finitely generated R-module and N be a submodule of M which is a Cohen-Macaulay with dim $N = t$. If $x_1, \ldots, x_t \in m$ is an m-filter regular sequence for M, then x_1, \ldots, x_t is a N-regular sequence.
Proof. By Proposition 2.7, \(x_1, \ldots, x_t \) is a system of parameters for \(N \). But \(N \) is a Maximal Cohen-Macaulay as an \(\frac{R}{Ann \, N} \)-module. Also \(x_1 + Ann \, N, \ldots, x_t + Ann \, N \) is a system of parameters for \(\frac{R}{Ann \, N} \). On the other hand every maximal Cohen-Macaulay as an \(\frac{R}{Ann \, N} \)-module is a balanced big Cohen-Macaulay as an \(R \)-module. Set \(y_i = x_i + Ann \, N \) for each \(1 \leq i \leq t \), then \(y_1, \ldots, y_t \) is an \(N \)-regular sequence and this follows that \(x_1, \ldots, x_t \) is an \(N \)-regular sequence.

Theorem 2.9. Let \(R \) be a Noetherian ring, \(I \) an ideal of \(R \) and \(M \neq 0 \) be a finitely generated \(R \)-module such that \(\dim \frac{M}{IM} \leq 1 \). If \(t \geq 1 \) and \(x_1, \ldots, x_t \in I \) is an \(I \)-filter regular sequence for \(M \), then for each \(0 \leq i \leq t - 1 \), the \(R \)-module \(H^i_t(M) \) is \((x_1, \ldots, x_t)\)-cofinite and \(\text{Hom}_R \left(\frac{R}{(x_1, \ldots, x_t)}, H^i_t(M) \right) \) is finitely generated.

Proof. For each \(0 \leq i \leq t - 1 \), we have \(H^i_{(x_1, \ldots, x_t)}(M) \cong H^i_t(M) \). Then

\[
\text{Supp} \, H^i_{(x_1, \ldots, x_t)}(M) = \text{Supp} \, H^i_t(M) \subseteq \text{Supp} \, \frac{M}{IM}
\]

and for each \(0 \leq i \leq t - 1 \), \(\dim \text{Supp} \, H^i_{(x_1, \ldots, x_t)}(M) \leq 1 \). By [1], clearly the \(R \)-module \(H^i_{(x_1, \ldots, x_{t-1})}(M) \) is \((x_1, \ldots, x_t)\)-cofinite. Since \(H^i_{(x_1, \ldots, x_t)}(M) = 0 \) for all \(i \geq t + 1 \), it follows from [15], that \(H^i_{(x_1, \ldots, x_t)}(M) \) is also \((x_1, \ldots, x_t)\)-cofinite. Consequently for each \(i \geq 0 \), the \(R \)-module \(H^i_{(x_1, \ldots, x_t)}(M) \) is \((x_1, \ldots, x_t)\)-Cofinite. Now, let \(x_{t+1} \in I \) be such that \(x_1, \ldots, x_{t+1} \) is \(I \)-filter regular sequence. Since \(x_{t+1} \in I \) and \(H^{t-1}_{(x_1, \ldots, x_{t})}(M) \cong H^{t-1}_I(M) \) is \(I \)-torsion, then \(H^t_{Rx_{t+1}}(H^{t-1}_{(x_1, \ldots, x_{t})}(M)) = 0 \). On the other hand by [17], the following exact sequence is hold: \(0 \rightarrow H^t_{Rx_{t+1}}(H^{t-1}_{(x_1, \ldots, x_{t})}(M)) \rightarrow H^t_{(x_1, \ldots, x_{t+1})}(M) \rightarrow H^0_{Rx_{t+1}}(H^t_{(x_1, \ldots, x_{t})}(M)) \rightarrow 0 \). But, \(H^t_{(x_1, \ldots, x_{t})}(M) \cong H^t_I(M) \) and so by the above exact sequence, \(H^t_I(M) \cong H^0_{Rx_{t+1}}(H^t_{(x_1, \ldots, x_{t})}(M)) \). Since \(Rx_{t+1} \subseteq I \), it follows that

\[
H^t_I(H^t_{(x_1, \ldots, x_{t})}(M)) \subseteq H^0_{Rx_{t}}(H^t_{(x_1, \ldots, x_{t})}(M)).
\]

Also, \(H^0_{Rx_{t+1}}(H^t_{(x_1, \ldots, x_{t})}(M)) \cong H^t_I(M) \) is \(I \)-torsion and hence

\[
H^0_{Rx_{t+1}}(H^t_{(x_1, \ldots, x_{t})}(M)) \subseteq H^t_I(H^t_{(x_1, \ldots, x_{t})}(M)).
\]

Then

\[
H^t_I(M) \cong \Gamma_{Rx_{t+1}}(H^t_{(x_1, \ldots, x_{t})}(M)) = \Gamma_I(H^t_{(x_1, \ldots, x_{t})}(M)).
\]
Finally from the exact sequence
\[0 \to H^I_t(M) \cong H^0_I(H^I_{(x_1, \ldots, x_t)}(M)) \to H^I_{(x_1, \ldots, x_t)}(M) \]
and \((x_1, \ldots, x_t)\)-cofinitness of \(H^I_{(x_1, \ldots, x_t)}(M)\), we conclude that
\[\text{Hom}_R \left(\frac{R}{(x_1, \ldots, x_t)}, H^I_1(M) \right) \]
is finitely generated. □

Lemma 2.10. Let \(M\) be an \(R\)-module and \(I\) be an ideal of \(R\) such that \(\text{Supp} M \subseteq V(I)\). Let \(x \in I\) be such that \(0 :_M x\) and \(M/xM\) are \(I\)-cominimax. Then so is \(M\).

Proof. The proof is similar to the proof of [15, Corollary 3.4]. □

Theorem 2.11. With the assumption of Theorem 2.9, the \(R\)-module \(H^I_1(M)\) is \((x_1, \ldots, x_t)\)-cominimax.

Proof. We prove by induction on \(t\). If \(t = 1\), then we set \(N = \frac{M}{\Gamma_I(M)}\) and so \(x_1\) is an \(N\)-regular element and \(H^I_1(N) \cong H^I_1(M)\).

Consider the exact sequence
\[0 \to N \xrightarrow{x_1} N \xrightarrow{\frac{x_1}{x_1N}} N \xrightarrow{\frac{x_1}{x_1N}} 0 \]
which implies that the following exact sequence
\[\ldots \to H^I_1(\frac{N}{x_1N}) \to H^I_1(N) \xrightarrow{x_1} H^I_1(N) \to H^I_1(\frac{N}{x_1N}) \]
Clearly the \(R\)-module \(0 :_H^I_1(N) x_1\) is finitely generated, and \(Rx_1\)-cominimax. Set
\[T = \{ P \in \text{Supp} H^I_1(N) \mid \dim \frac{R}{P} = 1 \}. \]
Then \((H^I_1(N))_P\) for all \(P \in T\) is Artinian and \(Rx_1\)-cofinite. Also \(T \subseteq \text{Ass} \frac{M}{IM}\) and so is finite. By argument in [1, Theorem 2.6], \(\frac{H^I_1(N)}{x_1H^I_1(N)}\) is minimax. Also \(\frac{H^I_1(N)}{x_1H^I_1(N)}\) and \(0 :_H^I_1(N) x_1\) are \(Rx_1\)-cominimax and hence \(H^I_1(N)\) is also \(Rx_1\)-cominimax.

Now, let \(t \geq 2\). Clearly \(x_1, \ldots, x_t\) is \(I\)-filter regular sequence over the \(R\)-module \(\frac{M}{\Gamma_I(M)}\). Now \(H^I_1(M) \cong H^I_1(\frac{M}{\Gamma_I(M)})\) and \(\frac{M}{\Gamma_I(M)}\) is a finitely generated \(I\)-torsion free \(R\)-module. We therefore assume in addition that \(\Gamma_I(M) = 0\). Since \(x_1 \notin \cup_{P \in \text{Ass} M \setminus V(I)} P = \cup_{P \in \text{Ass}(M)} P\), it follows that \((x_1, \ldots, x_t) \notin \cup_{P \in \text{Ass} M} P\).
Set $T := \{ P \in \text{Supp } H_{i-1}^i(M) \cup \text{Supp } H_i^i(M) \mid \dim \frac{R}{P} = 1 \}$. Hence $T \subseteq \text{Assh}_R \frac{M}{IM}$, and so T is a finite set. Let $T = \{ P_1, \ldots, P_n \}$. Then for each $i \geq 0$, $\text{Supp } H_{i+1}^i(M_{P_k}) \subseteq \{ P_k R_{P_k} \}$, where $k = 1, 2, \ldots, n$. By [1], for each $t - 1 \leq k \leq t$, $H_{i+1}^i(M_{P_k})$ is R_{P_k}-Artinian and $(x_1, \ldots, x_t)R_{P_k}$-cofinite. Also

$$V((x_1, \ldots, x_t)R_{P_k}) \cap \text{Att}_{R_{P_k}} H_{i+1}^i(M_{P_k}) \subseteq V(P_k R_{P_k}).$$

Set

$$U := \cup_{t=1}^t \cup_{k=1}^n \{ q \in \text{Spec}(R) \mid q R_{P_k} \in \text{Att}_{R_{P_k}} (H_{i+1}^i(M_{P_k})) \}.$$

Therefore $U \cap V(x_1, \ldots, x_t) \subseteq T$. Since $(x_1, \ldots, x_t) \not\subseteq (\cup_{q \in U \setminus V(I)} q) \cup (\cup_{P \in \text{Ass } M} P)$, it follows that there exists an element $z_1 \in (x_1, \ldots, x_t)$ such that $x_1 + z_1 \not\subseteq (\cup_{q \in U \setminus V(I)} q) \cup (\cup_{P \in \text{Ass } M} P)$.

Assume that $y_1 = x_1 + z_1$, then $(x_1, \ldots, x_t) = (y_1, x_2, \ldots, x_t)$ and $y_1 \in I$ is an I-filter regular sequence.

Now if $(x_1, \ldots, x_t) = (y_1, x_2, \ldots, x_t) \subseteq \cup_{P \in (\text{Ass } R/\langle y_1 \rangle) \setminus V(I)} P$, then there exists $P \in (\text{Ass } R/\langle y_1 \rangle) \setminus V(I)$ such that $(x_1, \ldots, x_t) \subseteq P$.

Since $I \not\subseteq P$, it follows that $\frac{x_1}{1}, \ldots, \frac{x_t}{1} \in PR_P$ is a R_P-regular sequence and so \(\text{grade}(\frac{x_1}{1}, \ldots, \frac{x_t}{1}; R_P) = t \). On the other hand $PR_P \in \text{Ass } R/\langle y_1 \rangle$ and $(y_1, x_2, \ldots, x_t)R_P \subseteq PR_P$.

Then \(\text{grade}(\frac{y_1}{1}, x_2, \ldots, x_t)R_P, R_P) = 1 \) if $t \geq 2$, and so $(y_1, x_2, \ldots, x_t) \not\subseteq \cup_{P \in \text{Ass } R/\langle y_1 \rangle} P$. Hence there exists an element $z_2 \in (y_1, x_2, \ldots, x_t)$ such that $x_2 + z_2 \not\subseteq \cup_{P \in \text{Ass } R/\langle y_1 \rangle} P$. Again, we put $y_2 = x_2 + z_2$, then $(y_1, x_2, \ldots, x_t) = (y_1, y_2, x_3, \ldots, x_t)$. By the similer argument in the above, we see that there exist elements $y_1, \ldots, y_t \in I$ such that $(x_1, \ldots, x_t) = (y_1, \ldots, y_t)$ and y_1, \ldots, y_t is an I-filter regular sequence for M.

The exact sequence

$$0 \longrightarrow M \xrightarrow{y_1} M \xrightarrow{M} M \xrightarrow{y_1M} 0$$

induces a short exact sequence of local cohomology modules

$$0 \longrightarrow H_{i-1}^i(M) \underset{y_1H_{i-1}^i(M)}{\longrightarrow} H_{i-1}^i(M) \underset{y_1M \cdot y_1M}{\longrightarrow} 0 : H_{i}^i(M) y_1 \longrightarrow 0$$
By a similar proof in [1], we see that \(\frac{H_{H}^{t-1}(M)}{y_1 H_{H}^{t-1}(M)} \) is a minimax \(R \)-module.

Now, by induction hypothesis and since \(y_2, \ldots, y_t \) is an \(I \)-filter regular sequence for \(\frac{M}{y_1 M} \), we conclude that the \(R \)-module \(\frac{H_{H}^{t-1}(M)}{y_1 M} \) is \((y_2, \ldots, y_t)\)-cominimax. Also, we note that \((y_2, \ldots, y_t) \subseteq (y_1, \ldots, y_t)\) and also \(\text{Supp} \frac{H_{H}^{t-1}(M)}{y_1 M} \subseteq V(y_1, \ldots, y_t) \). Therefore \(\frac{H_{H}^{t-1}(M)}{y_1 M} \) is \((y_1, \ldots, y_t)\)-cominimax. Consequently by the above exact sequence \(0 : H_{H}^{t}(M) \) \(y_1 \) is also \((y_1, \ldots, y_t)\)-cominimax. On the other hand by argument in [1, Theorem 2.6], the \(R \)-module \(\frac{H_{H}^{t}(M)}{y_1 H_{H}^{t}(M)} \) is minimax and hence is \((y_1, \ldots, y_t)\)-cominimax.

Finally, \(y_1 \in (y_1, \ldots, y_t) = (x_1, \ldots, x_t) \) and the \(R \)-modules \(0 : H_{H}^{t}(M) \) \(y_1 \) and \(\frac{H_{H}^{t}(M)}{y_1 H_{H}^{t}(M)} \) are both \((x_1, \ldots, x_t)\)-cominimax. Thus by lemma 2.9, the \(R \)-module \(H_{H}^{t}(M) \) is also \((x_1, \ldots, x_t)\)-cominimax. \(\square \)

Acknowledgments

The author is deeply grateful to the referee for a very careful reading of the manuscript and many valuable suggestions.

REFERENCES

Jafar A’zami
Department of Mathematics, University of Mohaghegh Ardabili, Ardabil, Iran.
Email: jafar.azamigmail.com, azami@uma.ac.ir
FILTER REGULAR SEQUENCES AND LOCAL COHOMOLOGY MODULES

J. A’ZAMI

Journal of Algebraic Systems

Keywords: Regular sequences, Local cohomology modules.