A GENERALIZATION OF PRIME HYPERIDEALS IN KRASNER HYPERRINGS

L. KAMALI ARDEKANI* AND B. DAVVAZ

ABSTRACT. In this paper, we give a characterization of new generalization of prime hyperideals in Krasner hyperrings by introducing 2-absorbing hyperideals. We study fundamental properties of 2-absorbing hyperideals on Krasner hyperrings and investigate some related results.

1. Introduction

Prime ideals play a significant role in commutative ring theory. Because of this importance, the concept of 2-absorbing ideals in a commutative ring was introduced by Badawi [2] as a generalization of prime ideals. After this, [8, 9, 10] have continued these studies and obtained several results. Recently, this notion is generalized to the hypercase by introducing the 2-absorbing hyperideals in a multiplicative hyperring [1]. In this paper, we introduce the notion of the 2-absorbing hyperideals on Krasner hyperrings and give some properties of such hyperideals.

Let us first recall some preliminary definitions.

Assume that H is a non-empty set and $\mathcal{P}^*(H)$ is the set of all non-empty subsets of H. A hyperoperation on H is a map $\circ : H \times H \rightarrow \mathcal{P}^*(H)$ and the couple (H, \circ) is called a hypergroupoid. If A and B are non-empty subsets of H, then we denote $A \circ B = \bigcup_{a \in A, b \in B} a \circ b$, $x \circ A = \{x\} \circ A$ and $A \circ x = A \circ \{x\}$. A hypergroupoid (H, \circ) is called

Keywords: Prime hyperideal, 2-absorbing hyperideal, Krasner hyperring.
Received: 7 November 2017, Accepted: 18 February 2019.
*Corresponding author.
Throughout this paper, by a hyperring we mean a Krasner hyperring. There are comprehensive references for hyperrings, for example see [3, 7]. In fact, different kinds of hyperrings are defined which one of them is Krasner hyperring described as follows [6]:

A Krasner hyperring is an algebraic structure $\langle R, +, \cdot \rangle$ satisfying the following axioms: (1) $(R, +)$ is a canonical hypergroup which means that (i) $(R, +)$ is a semihypergroup, i.e., $x + (y + z) = (x + y) + z$, for all $x, y, z \in R$, (ii) $x + y = y + x$, for all $x, y \in R$, (iii) There exists $0 \in R$ such that $0 + x = \{x\}$, for all $x \in R$, (iv) For all $x \in R$ there exists a unique element $x' \in R$ such that $0 \in x + x'$, (we write $-x$ for x' and we call it the opposite of x), (v) $z \in x + y$ implies that $y \in -x + z$ and $x \in z - y$, for all $x, y, z \in R$; (2) (R, \cdot) is a semigroup having zero as a bilaterally absorbing element, i.e., $x \cdot 0 = 0 \cdot x = 0$; (3) The multiplication is distributive with respect to the hyperoperation $+$. Throughout this paper, by a hyperring we mean a Krasner hyperring.

The meaning of center of a hyperring $(R, +, \cdot)$ is $Z(R) = \{x \in R \mid x \cdot y = y \cdot x, \text{ for all } y \in R\}$ and R is called commutative if $Z(R) = R$ i.e., (R, \cdot) is a commutative semigroup. A hyperring $(R, +, \cdot)$ is called hyperfield if (R, \cdot) is a commutative monoid and all nonzero elements of R are multiplicatively invertible. The identity element of the monoid (R, \cdot) is called unit element of hyperring $(R, +, \cdot)$. For example, suppose that $\mathbb{K} := \{0, 1\}$ is a commutative monoid with the multiplication $1 \cdot 0 = 0$ and $1 \cdot 1 = 1$. The hyperaddition is given by $0 + 1 = 1 + 0 = 1$, $0 + 0 = 0$ and $1 + 1 = \{0, 1\}$. Then, \mathbb{K} is a hyperfield called the Krasner hyperfield with unit element 1 [5]. A hyperring $(R, +, \cdot)$ is called hyperdomain, if R is a commutative hyperring with unit element and $xy = 0$ implies that $x = 0$ or $y = 0$, for all $x, y \in R$.

A non-empty subset A of a hyperring $(R, +, \cdot)$ is called subhyperring of R if $(A, +, \cdot)$ is itself a hyperring. A non-empty subset I of a hyperring R is called a hyperideal if and only if (1) $u, v \in I$ imply that $u - v \subseteq I$, for all $u, v \in I$, (2) $u \in I$ and $r \in R$ imply that $r \cdot u \in I$ and $u \cdot r \in I$. Remember here that $(I :_R x) = \{y \in R \mid y \cdot x \in I\}$, for all $x \in R$, is a hyperideal. A hyperideal I is called prime if $xy \in I$ implies that $x \in I$ or $y \in I$. A prime hyperideal P is said to be a minimal prime hyperideal over an ideal I if it is minimal among all prime ideals containing I. Note that we do not exclude I even if it is a prime ideal. A prime hyperideal is said to be a minimal prime hyperideal if it is a minimal prime ideal over the zero hyperideal. By applying the argument similar in spirit to the proof of Theorem 2.1 of [4], one can easily
show that if I and P are hyperideals of R such that $I \subseteq P$ and P is a minimal prime hyperideal of I, then, for all $x \in P$, there is $y \in R \setminus P$ and a nonnegative integer n such that $yx^n \in I$.

A good homomorphism between two hyperrings $(R_1, +_1, \cdot_1)$ and $(R_2, +_2, \cdot_2)$ is a map $f : R_1 \rightarrow R_2$ such that for all $x, y \in R_1$, we have $f(x +_1 y) = f(x) +_2 f(y)$, $f(x \cdot_1 y) = f(x) \cdot_2 f(y)$ and $f(0) = 0$. Let $f : R_1 \rightarrow R_2$ be a good homomorphism. The kernel of f is defined as $\ker f = \{x \in R_1 \mid f(x) = 0\}$. It is trivial that $\ker f$ is a hyperideal of R_1. Note that a prime hyperideal of a commutative hyperring R can be described as the kernel of a homomorphism from R to the Krasner hyperfield \mathbb{K} [5].

2. 2-absorbing hyperideals in Krasner hyperrings

In this section, we treat to the introducing 2-absorbing hyperideals on Krasner hyperrings and investigate more results with respect to such hyperideals.

Definition 2.1. A proper hyperideal I of a hyperring $(R, +, \cdot)$ is called a 2-absorbing hyperideal if $a \cdot b \cdot c \in I$ implies that $a \cdot b \in I$ or $a \cdot c \in I$ or $b \cdot c \in I$, for all $a, b, c \in R$.

Example 2.2. Let (G, \circ) be a group and $H = G \cup \{0, u, v\}$, where 0 is an absorbing element under multiplication and u, v are distinct orthogonal idempotents with

$$
\begin{align*}
 u \circ v &= v \circ u = 0; & u \circ u &= u; \\
 v \circ v &= v; & a \circ 0 &= 0 \circ a = 0, \text{ for all } a \in H; \\
 u \circ g &= g \circ u = u; & v \circ g &= g \circ v = v, \text{ for all } g \in G.
\end{align*}
$$

If we define hyperoperation \oplus on H as follows:

$$
\begin{align*}
 a \oplus 0 &= 0 \oplus a = \{a\}; & a \oplus a &= \{0, a\}, \text{ for all } a \in H; \\
 a \oplus b &= b \oplus a = H \setminus \{0, a, b\}, \text{ for all } a, b \in H \setminus \{0\} \text{ and } a \neq b.
\end{align*}
$$

Then, (H, \oplus, \circ) is a Krasner hyperring [3]. Put $I = \{0, u\}$ and $J = \{0\}$. Obviously, I and J are 2-absorbing hyperideals. The hyperideal I is prime but J is not prime, because $u \circ v = 0 \in J$ while $u, v \notin J$.

Example 2.3. Let $(R, +, \cdot)$ be a hyperdomain and

$$
M = \left\{ \begin{pmatrix} x_1 & x_2 \\
0 & 0 \end{pmatrix} \mid x_1, x_2 \in R \right\}.
$$
Put $I = \left\{ \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} \mid a \in R \right\}$ and define the hyperoperation \oplus and the operation \odot on M as

$$\begin{pmatrix} x_1 & x_2 \\ 0 & 0 \end{pmatrix} \oplus \begin{pmatrix} x'_1 & x'_2 \\ 0 & 0 \end{pmatrix} = \left\{ \begin{pmatrix} y_1 & y_2 \\ 0 & 0 \end{pmatrix} \mid y_i \in x_i + x'_i, 1 \leq i \leq 2 \right\}$$

and

$$\begin{pmatrix} x_1 & x_2 \\ 0 & 0 \end{pmatrix} \odot \begin{pmatrix} x'_1 & x'_2 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} x_1 \cdot x'_1 & x_1 \cdot x'_2 \\ 0 & 0 \end{pmatrix}.$$

Then, (M, \oplus, \odot) is a Krasner hyperring and I is a 2-absorbing hyperideal of M.

Note that by the same argument of Theorem 2.8 of [1], one can show that a nonzero proper hyperideal I of a hyperring R is a 2-absorbing hyperideal if and only if whenever $I_1 \cdot I_2 \cdot I_3 \subseteq I$, for some hyperideals I_1, I_2, I_3 of R, then $I_1 \cdot I_2 \subseteq I$ or $I_2 \cdot I_3 \subseteq I$ or $I_1 \cdot I_3 \subseteq I$.

From now on, the hyperring $(R, +, \cdot)$ is commutative with unit element. Also, we may use xy instead of $x \cdot y$.

Theorem 2.4. Let I be a 2-absorbing hyperideal of R. Then, one of the following statements is valid:

1. $\sqrt{I} = P$ is a prime hyperideal of R and $P^2 \subseteq I$;
2. $\sqrt{I} = P_1 \cap P_2$, $P_1 P_2 \subseteq I$ and $(\sqrt{I})^2 \subseteq I$, where P_1 and P_2 are the only distinct prime hyperideals of R that are minimal over I.

Proof. We prove this statement in three steps:

Step 1: \sqrt{I} is a 2-absorbing hyperideal of R.

Suppose that $x, y, z \in R$ such that $xyz \in \sqrt{I}$. By assumption, $(xyz)^2 \in I$. Thus, $x^2 y^2 z^2 \in I$ and this implies that $(xy)^2 = x^2 y^2 \in I$ or $(xz)^2 = x^2 z^2 \in I$ or $(yz)^2 = y^2 z^2 \in I$. Therefore, at least one of xy, xz and yz belongs to \sqrt{I}.

Step 2: There are at most two distinct prime hyperideals of R that are minimal over I.

Suppose that P_1 and P_2 are distinct prime hyperideals of R that are minimal over I. Then, there are $x_1 \in P_1 \setminus P_2$ and $x_2 \in P_2 \setminus P_1$. Also, there exist $c_2 \in R \setminus P_1$, $c_1 \in R \setminus P_2$ and $m, n \in \mathbb{N}$ such that $c_2 x_1^m, c_1 x_2^n \in I$. This implies that $c_2 x_1, c_1 x_2 \in I \subseteq P_1 \cap P_2$, because I is a 2-absorbing hyperideal. Consequently, $c_1 \in P_1 \setminus P_2$ and $c_2 \in P_2 \setminus P_1$. Hence, $(c_1 + c_2) \cap P_1 = \emptyset$, since if $t \in (c_1 + c_2) \cap P_1$, then $c_2 \in -c_1 + t \subseteq P_1$ which contradicts $c_2 \not\in P_1$. In the same way, $(c_1 + c_2) \cap P_2 = \emptyset$. Therefore, for all $t \in c_1 + c_2$ we have $tx_2 \not\in P_1$ and $tx_1 \not\in P_2$ which lead
to $tx_1, tx_2 \not\in I$. On the other hand, $(c_1 + c_2)x_1x_2 \subseteq I$. Thus, for all $t \in c_1 + c_2$ we get $tx_1x_2 \in I$ and this implies that $x_1x_2 \in I$.

Now, suppose that P_3 is a prime hyperideal of R that is minimal over I and $P_3 \neq P_1, P_2$. Consequently, there are $y_1 \in P_1 \setminus (P_2 \cup P_3)$ and $y_2 \in P_2 \setminus (P_1 \cup P_3)$. Then, by the previous argument $y_1y_2 \in I \subseteq P_3$ which leads to $y_1 \in P_3$ or $y_2 \in P_3$, a contradiction.

Step 3: In this step, we prove the principle assertion of Theorem. Suppose that $x, y \in \sqrt{I}$. Then, $x^2, y^2 \in I$ and so $x(x + y)y \subseteq I$. Therefore, for all $t \in x + y$, we have $xt \in I$ or $xy = t \in I$, because I is a 2-absorbing hyperideal. If $xt \in I$, then $xt \in x(x + y) = x^2 + xy$ and consequently $xy = x^2 + xt \subseteq I$. Similarly, $ty \in I$ yields $xy \in I$. Therefore, we have $(\sqrt{I})^2 \subseteq I$. By Steps (1) and (2), $\sqrt{I} = P$ is a prime hyperideal of R or $\sqrt{I} = P_1 \cap P_2$, where P_1 and P_2 are the only distinct prime hyperideals of R that are minimal over I. If $\sqrt{I} = P_1 \cap P_2$ then $P_2 = (\sqrt{I})^2 \subseteq I$. If $\sqrt{I} = P_1 \cap P_2$, then for all $y \in \sqrt{I}$, $z_1 \in P_1 \setminus P_2$ and $z_2 \in P_2 \setminus P_1$ we have $y + z_1 \subseteq P_1 \setminus P_2$. By the same argument of Step 2, we get $z_1z_2 \in I$ and $(y + z_1)z_2 \subseteq I$. Thus, for all $s \in yz_2 + z_1z_2$, we have $yz_2 \in s - z_1z_2 \subseteq I$. Similarly, $yz_1 \in I$ and this implies that $P_1P_2 \subseteq I$.

Theorem 2.5. Let I be a hyperideal of R. Then, I is a 2-absorbing hyperideal of R if and only if $(I : R x)$ is a prime hyperideal of R containing \sqrt{I}, for all $x \in \sqrt{I} \setminus I$.

Proof. By Theorem 2.4, either $\sqrt{I} = P$ or $\sqrt{I} = P_1 \cap P_2$, where P is a prime hyperideal and P_1, P_2 are nonzero distinct prime hyperideals of R that are minimal over I. We prove the statement for the case $\sqrt{I} = P_1 \cap P_2$ and a similar argument implies the assertion for the case $\sqrt{I} = P$.

Suppose that I is a 2-absorbing hyperideal of R. According to Theorem 2.4, we conclude $xP_1, xP_2 \subseteq I$, for all $x \in \sqrt{I} \setminus I$. This means that $P_1, P_2 \subseteq (I : R x)$ and consequently $\sqrt{I} \subseteq (I : R x)$. Assume that $yz \in (I : R x)$, where $y, z \in R$ and $x \in \sqrt{I} \setminus I$. Clearly, the statement is valid when $y \in P_1 \cup P_2$ or $z \in P_1 \cup P_2$. Then, we prove it for $y, z \not\in P_1 \cup P_2$. In this case, we have $yz \not\in P_1 \cap P_2 = \sqrt{I}$ that leads to $yz \not\in I$. Hence, by assumption we get $y \in (I : R x)$ or $z \in (I : R x)$ which implies that $(I : R x)$ is a prime hyperideal.

Now, suppose that $(I : R x)$ is a prime hyperideal, for all $x \in \sqrt{I} \setminus I$. In order to prove that I is a 2-absorbing hyperideal, assume that $xyz \in I$, where $x, y, z \in R$. Then, $yz \in (I : R x)$. Obviously, at least one of x, y, z belongs to $(P_1 \cup P_2) \setminus I$. For proving the assertion, without loss of generality suppose that $x \in (P_1 \cup P_2) \setminus I$. In this case either
$x \in \sqrt{I} \setminus I$ or $x \in (P_1 \cup P_2) \setminus \sqrt{I}$. If $x \in \sqrt{I} \setminus I$, then by the hypothesis we get $y \in (I : R x)$ or $z \in (I : R x)$. Consequently, $yx \in I$ or $zx \in I$ which implies that I is a 2-absorbing hyperideal. If $x \in (P_1 \cup P_2) \setminus \sqrt{I}$, then $(I : R x_1) = P_2$ and $(I : R x_2) = P_1$, for all $x_1 \in P_1 \setminus P_2$ and $x_2 \in P_2 \setminus P_1$. Similar to the previous argument, we find that I is a 2-absorbing hyperideal.

\[\square\]

Theorem 2.6. Let I be a 2-absorbing hyperideal and $P = P_1$ and P_2 be prime hyperideals of R. Then,

1. If $\sqrt{I} = P$, then $(I : R x)$ is a 2-absorbing hyperideal of R, for all $x \in R \setminus P$ with $\sqrt{(I : R x)} = P$ and $\Omega = \{(I : R x) \mid x \in R\}$ is a totally ordered set;
2. If $\sqrt{I} = P_1 \cap P_2$, then $(I : R x)$ is a 2-absorbing hyperideal of R, for all $x \in R \setminus (P_1 \cup P_2)$ with $\sqrt{(I : R x)} = P_1 \cap P_2$ and $\Omega = \{(I : R x) \mid x \in R \setminus (P_1 \setminus P_2)\}$ is a totally ordered set;
3. If $\sqrt{I} = P_1 \cap P_2$, then $(I : R x) = P_2$, for all $x \in P_1 \setminus P_2$ and $(I : R x) = P_1$, for all $x \in P_2 \setminus P_1$.

Proof. The proof is similar to Theorem 2.5 of [1]. \[\square\]

Theorem 2.7. Let I be a 2-absorbing hyperideal of R such that $I \neq \sqrt{I}$. Then,

1. If $x \in \sqrt{I} \setminus I$ and $y \in R$ such that $yx \notin I$, then $(I : R yx) = (I : R x)$;
2. If $x, y \in \sqrt{I} \setminus I$, then $(I : R fx + dy) = (I : R x)$, for all $f, d \in R$ such that $fd \notin (I : R x)$. In particular, $(I : R x + y) = (I : R x)$.

Proof. (1) Suppose that $c \in (I : R yx)$, where $x \in \sqrt{I} \setminus I$ and $y \in R$. Then, $cy \in (I : R x)$ which means that $c \in (I : R x)$, by Theorem 2.5. Therefore, $(I : R yx) \subseteq (I : R x)$. It is clear that $(I : R x) \subseteq (I : R yx)$ and consequently the statement is valid.

(2) Suppose that $x, y \in \sqrt{I} \setminus I$. Then, $(I : R x) \subseteq (I : R y)$ or $(I : R y) \subseteq (I : R x)$, by Theorem 2.6. In order to establish the assertion, without loss the generality, assume that $(I : R x) \subseteq (I : R y)$ which leads to $(I : R x) \subseteq (I : R y) \subseteq (I : R dy)$ and $(I : R x) \subseteq (I : R fx)$. Therefore, for all $t \in (I : R x)$ we get $t(dy + fx) \subseteq I$ and so $(I : R x) \subseteq (I : R dy + fx)$. For proving equality, suppose that there exists $s \in dy + fx$ such that $(I : R x) \neq (I : R s)$. By applying Theorem 2.6, there exists $z \in (I : R y) \cap (I : R s)$ such that $z \notin (I : R x)$, because $(I : R x) \subseteq (I : R y)$ and $(I : R x) \subseteq (I : R dy + fx)$. Since $zs \in z(dy + fx)$, hence $zf \in z(dy + zs) \subseteq I$ which means that $zf \in (I : R x)$. Therefore, $z \in (I : R x)$ or $f \in (I : R x)$ and this is a contradiction. \[\square\]
Definition 2.8. Let I be a nonzero proper hyperideal of R and
\[Z_R(R/I) = \{ r + I \in R/I \mid \exists s \in R \setminus I \text{ such that } rs \in I \}. \]
Then, I is called Primal if $Z_R(R/I)$ is a prime hyperideal of R containing I.

Theorem 2.9. Let I be a 2-absorbing hyperideal of R such that $I \neq \sqrt{I}$. Then, I is a Primal hyperideal of R.

Proof. First, we show that $Z_R(R/I) = Q/I$, where $Q = \bigcup_{x \in (\sqrt{I} \setminus I)} (I :_R x)$. For this purpose, suppose that $a + I \in Q/I$. Then, there exists $x \in \sqrt{I} \setminus I$ such that $a \in (I :_R x)$. Therefore, $ax \in I$ which follows that $a + I \in Z_R(R/I)$. For proving $Z_R(R/I) \subseteq Q/I$, assume that $a + I \in Z_R(R/I)$, where $a \notin I$. Then, there is $b \in R \setminus I$ such that $ab \in I$. By Theorem 2.4, we can distinguish two cases:

Case 1: $\sqrt{I} = P$ is a hyperideal of R. Then, we have $ab \in P$ and consequently $a \in P \setminus I$ or $b \in P \setminus I$. Therefore, $a \in (I :_R a)$ or $a \in (I :_R b)$ which implies that $a + I \in Q/I$.

Case 2: $\sqrt{I} = P_1 \cap P_2$, where P_1 and P_2 are the only distinct prime hyperideals of R that are minimal over I. If $a \in \sqrt{I} \setminus I$ or $b \in \sqrt{I} \setminus I$, then by applying the same argument as for Case (1), we find $a + I \in Q/I$. Now, suppose that $a, b \notin \sqrt{I} \setminus I$. Therefore, a belongs to $P_1 \setminus P_2$ or $P_2 \setminus P_1$ and consequently $a \in (I :_R b)$, by Theorem 2.5. Hence, $a + I \in Q/I$ which leads to $Z_R(R/I) \subseteq Q/I$.

Thus in both cases, we have $Z_R(R/I) = Q/I$ as desired. Moreover, since $I \neq \sqrt{I}$, then Theorem 2.6 implies that $\Omega = \{(I :_R x) \mid x \in \sqrt{I} \setminus I\}$ is a set of linear ordered (prime) hyperideals of R. Therefore, $Z_R(R/I) = \bigcup_{(I :_R x) \in \Omega} ((I :_R x)/I)$ is a hyperideal of R/I. \hfill \Box

Theorem 2.10. Let R' be a commutative hyperring with unit element and $\varphi : R \longrightarrow R'$ be a good homomorphism.

1. If I' is a 2-absorbing hyperideal of R', then $\varphi^{-1}(I')$ is a 2-absorbing hyperideal of R;
2. If φ is an epimorphism and I is a 2-absorbing hyperideal of R containing $\ker \varphi$, then $\varphi(I)$ is a 2-absorbing hyperideal of R'.

Proof. (1) Suppose that $abc \in \varphi^{-1}(I')$, then $\varphi(a)\varphi(b)\varphi(c) \in I'$. Therefore, at least one of the $\varphi(ab)$, $\varphi(bc)$ and $\varphi(ac)$ belongs to I' which implies that $ab \in \varphi^{-1}(I')$ or $bc \in \varphi^{-1}(I')$ or $ac \in \varphi^{-1}(I')$.

(2) Assume that $a', b', c' \in R'$ such that $a'b'c' \in \varphi(I)$. Then, there are $a, b, c \in R$ such that $\varphi(a) = a'$, $\varphi(b) = b'$ and $\varphi(c) = c'$. Therefore, $\varphi(abc) = a'b'c' \in \varphi(I)$ which deduce that there is $i \in I$ such that
Let \(I \) and \(J \) be distinct proper hyperideals of \(R \). If \(J \subseteq I \) and \(I \) is a 2-absorbing hyperideal of \(R \), then \(I/J \) is a 2-absorbing hyperideal of \(R/J \).

Theorem 2.12. Let \(R_1, R_2 \) be Krasner hyperrings and \(R = R_1 \times R_2 \).

1. If \(I_1 \) (\(I_2 \), respectively) is a 2-absorbing hyperideal of \(R_1 \) (\(R_2 \), respectively), then \(I_1 \times R_2 \) (\(R_1 \times I_2 \), respectively) is a 2-absorbing hyperideal of \(R \);
2. If \(J \) is a 2-absorbing hyperideal of \(R \), then either \(J = I_1 \times R_2 \) (\(J = R_1 \times I_2 \), respectively), where \(I_1 \) (\(I_2 \), respectively) is a 2-absorbing hyperideal of \(R_1 \) (\(R_2 \), respectively) or \(I = I_1 \times I_2 \), where \(I_1 \) (\(I_2 \), respectively) is a prime hyperideal of \(R_1 \) (\(R_2 \), respectively).

Proof. (1) It is straightforward.

(2) Suppose that \(J \) is a proper 2-absorbing hyperideal of \(R \). Then, \(J = I_1 \times I_2 \), where for \(i = 1, 2 \) we have \(I_i \) is a hyperideal of \(R_i \). Assume that \(I_2 = R_2 \) and \(R' = R/(\{0\} \times R_2) \). Therefore, \(I_1 \neq R_1 \) and \(J' = J/(\{0\} \times R_2) \) is a 2-absorbing hyperideal of \(R' \), by Corollary 2.11. It follows that \(I_1 \) is a 2-absorbing hyperideal of \(R_1 \), since \(R' \cong R_1 \) and \(I_1 \cong J' \). In the same way, \(I_1 = R_1 \) implies that \(I_2 \) is a 2-absorbing hyperideal of \(R_2 \).

For completing the proof it is enough to show that if \(I_1 \neq R_1 \) and \(I_2 \neq R_2 \), then \(I_i \) is a prime hyperideal of \(R_i \), where \(i = 1, 2 \). Assume that at least one of \(I_i \) is not prime, e.g. \(I_1 \). Therefore, there are \(a, b \in R_1 \) such that \(ab \in I_1 \) but \(a, b \not\in I_1 \). Putting \(x = (a, 1), y = (1, 0) \) and \(z = (b, 1) \), we give \(xyz = (ab, 0) \in J \) while \(xy = (a, 0), xz = (ab, 1), yz = (b, 0) \) do not belong to \(J \) and this is a contradiction to the assumption. \(\square \)

Theorem 2.13. Let \(I \) be a hyperideal of \(R \) and \(S \) be a multiplicatively closed subset of \(R \). In addition, let \(S^{-1}R \) be the hyperring of quotients of \(R \).

1. If \(I \) is a 2-absorbing hyperideal of \(R \) and \(S \cap I = \emptyset \), then \(S^{-1}I \) is a 2-absorbing hyperideal of \(S^{-1}R \);
2. If \(S^{-1}I \) is a 2-absorbing hyperideal of \(S^{-1}R \) and \(S \cap Z_R(R/I) = \emptyset \), then \(I \) is a 2-absorbing hyperideal of \(R \).
A GENERALIZATION OF PRIME HYPERIDEALS

Proof. (1) Suppose that \(a, b, c \in R \) and \(s, t, k \in S \) such that \((a/s)(b/t)(c/k) \in S^{-1}I\). Then, there exists \(u \in S \) such that \(uabc \in I \). Hence, \(uab \in I \) or \(uac \in I \) or \(bc \in I \), by hypothesis. If \(uab \in I \), then \((a/s)(b/t) = (uab)/(ust) \in S^{-1}I\). Also, \(uac \in I \) implies that \((a/s)(c/k) = (uac)/(usk) \in S^{-1}I\) and \(bc \in I \). Therefore, \((b/t)(c/k) \in S^{-1}I\). By the above result, \(S^{-1}I \) is a 2-absorbing hyperideal.

(2) Suppose that \(a, b, c \in I \) such that \(abc \in I \). In this case, we have \((abc)/1 = (a/1)(b/1)(c/1) \in S^{-1}I\). Hence, \((a/1)(b/1) \in S^{-1}I \) or \((b/1)(c/1) \in S^{-1}I \) or \((a/1)(c/1) \in S^{-1}I \), since \(S^{-1}I \) is a 2-absorbing hyperideal. If \((a/1)(b/1) \in S^{-1}I \), then there exists \(u \in S \) such that \(uab \in I \). This implies that \(ab \in I \), since \(S \cap Z_R(R/I) = \emptyset \).

Similarly, \((b/1)(c/1) \in S^{-1}I \) ((\(a/1)(c/1) \in S^{-1}I \), respectively) which leads to \(bc \in I \) (\(ac \in I \), respectively). Consequently, \(I \) a 2-absorbing hyperideal.

\[\text{Definition 2.14.} \quad \text{A proper hyperideal } I \text{ of } R \text{ is called irreducible precisely if } I \text{ can not be expressed as the intersection of two strictly larger hyperideals of } R.\]

The following theorem shows the relationship between irreducible and 2-absorbing hyperideals.

\[\text{Theorem 2.15.} \quad \text{Let } I \text{ be an irreducible hyperideal of } R \text{ and } P = P_1, P_2 \text{ be distinct prime hyperideals of } R.\]

\begin{enumerate}
\item If \(\sqrt{I} = P \), then \(I \) is a 2-absorbing hyperideal if and only if \(P^2 \subseteq I \) and \((I :_Rx) = (I :Rx^2), \) for all \(x \in R \setminus P \);
\item If \(\sqrt{I} = P_1 \cap P_2 \), then \(I \) is a 2-absorbing hyperideal if and only if \(P_1P_2 \subseteq I \) and \((I :_Rx) = (I :Rx^2) \), for all \(x \in R \setminus P_1 \cap P_2 \).
\end{enumerate}

Proof. (1) For proving the necessity part, it is only necessary to check \((I :Rx^2) \subseteq (I :Rx) \), for all \(x \in R \setminus P \). Because, it is clear \((I :Rx) \subseteq (I :Rx^2) \) and \(P^2 \subseteq I \), by Theorem 2.4.

Suppose that \(y \in (I :Rx^2) \). Then, \(yx \in I \) or \(x^2 \in I \). If \(x^2 \in I \), then \(x \in P \) and this is a contradiction. Then, \(yx \in I \) which implies that \(y \in (I :Rx) \) and consequently \((I :Rx^2) \subseteq (I :Rx) \) as desired.

For establishing the sufficiency part, assume that \(x, y, z \in R \) such that \(xyz \in I \) and \(xy \notin I \). We show that either \(xz \in I \) or \(yz \in I \). From \(xy \notin I \), it follows that \(x \notin P \) or \(y \notin P \) and so \((I :Rx) = (I :Rx^2) \) or \((I :Ry) = (I :Ry^2) \), respectively. Without loss of generality, suppose that \((I :Rx) = (I :Rx^2) \). For completing the proof as a contradiction, assume that \(xz \notin I \) and \(yz \notin I \). Consider \(a \in (I + xz) \cap (I + yz) \) which follows that there are \(a_1, a_2 \in I \) and \(r_1, r_2 \in R \) such that \(a \in (a_1 + r_1xz) \cap (a_2 + r_2yz) \). Consequently, \(ax \in a_1x + r_1x^2z \) and \(ax \in a_2x + r_2yzx \subseteq I \) which lead to \(r_1x^2z \in -a_1x + ax \subseteq I \).
Therefore, \(r_1z \in (I :_R x^2) = (I :_R x) \), by assumption. This implies that \(a \in a_1 + r_1xz \subseteq I \). Then, \(< I + xz > \cap < I + yz > \subseteq I \) and so \(< I + xz > \cap < I + yz > = I \) which contradicts irreducibility of \(I \).

(2) The proof is similar to Part (1). \(\square \)

In the process of proving the next theorem, we need the following lemma.

Lemma 2.16. Let \(P_1, P_2, \ldots, P_n \), where \(n \geq 2 \), be hyperideals of \(R \) such that at most two of them are not prime. Furthermore, let \(S \) be an additive canonical subhypergroup of \(R \) which is closed under multiplication and \(S \subseteq \bigcup_{i=1}^{n} P_i \). Then, there exists \(1 \leq j \leq n \) such that \(S \subseteq P_j \).

Proof. We prove this statement by induction on \(n \). First, consider for \(n = 2 \) that is \(S \subseteq P_1 \cup P_2 \). As a contradiction, assume that \(S \not\subseteq P_1 \) and \(S \not\subseteq P_2 \). Then, there exists \(a_j \in S \setminus P_j \), where \(j = 1, 2 \). Therefore, the hypothesis leads to \(a_1 \in P_2 \) and \(a_2 \in P_1 \). On the other hand, \(a_1 + a_2 \not\subseteq S \subseteq P_1 \cup P_2 \) and so for all \(t \in a_1 + a_2 \) we have \(t \) belongs to either \(P_1 \) or \(P_2 \). Since \(a_1 \in \{a_1\} = a_1 + 0 \subseteq (a_1 + a_2) - a_2 \), then there exists \(t \in a_1 + a_2 \) such that \(a_1 \in t - a_2 \). By the above results, if \(t \in P_1 \), then \(a_1 \in P_1 \). Also, if \(t \in P_2 \), then \(a_2 \in -t - a_1 \subseteq P_2 \), which is a contradiction in two cases. Thus we must have \(S \subseteq P_1 \) or \(S \subseteq P_2 \). Now, suppose that \(k \geq 2 \) and our assertion is valid for \(n = k \). For completing the proof, assume that \(n = k + 1 \), where \(k \geq 2 \). Thus, we have \(S \subseteq \bigcup_{i=1}^{k+1} P_i \) and since at most two of the \(P_i \) are not prime, we can assume that they have been indexed in such a way that \(P_{k+1} \) is prime.

We claim that there is \(1 \leq j \leq k \) such that \(S \subseteq \bigcup_{i=1}^{k+1} P_i \setminus_{i \neq j} P_i \). For proving this claim as a contradiction suppose that \(S \not\subseteq \bigcup_{i=1}^{k+1} P_i \setminus_{i \neq j} P_i \), for all \(1 \leq j \leq k \). It follows that for all \(1 \leq j \leq k \), there exists \(a_j \in S \setminus \bigcup_{i=1}^{k+1} P_i \) which implies that \(a_j \in P_j \), by hypothesis. Moreover, since \(P_{k+1} \in \text{Spec}(R) \), we conclude that \(a_1 \cdots a_k \not\in P_{k+1} \). Consequently, \(a_1 \cdots a_k \in \bigcap_{i=1}^{k} P_i \setminus P_{k+1} \) and \(a_{k+1} \in P_{k+1} \setminus \bigcup_{i=1}^{k} P_i \). Now consider the element \(b \in a_1 \cdots a_k + a_{k+1} \).

If \(b \in P_{k+1} \), then \(a_1 \cdots a_k \subseteq b - a_{k+1} \subseteq P_{k+1} \) and this is a contradiction. Therefore, \(b \) does not belong to \(P_{k+1} \). Also, we can not have \(b \in P_j \),
where \(1 \leq j \leq k\), for that would imply \(a_{k+1} \in b - a_1 \cdots a_k \subseteq P_j\), again a contradiction. But \(b \in S\), since for all \(1 \leq j \leq k\) we have \(a_j \in S\), which leads to a contradiction to the hypothesis that \(S \subseteq \bigcup_{i=1}^{k+1} P_i\). It follows that the statement is valid. In fact, there is \(1 \leq j \leq k+1\) such that \(S \subseteq \bigcup_{i \neq j}^{k+1} P_i\). By applying the inductive hypothesis, we deduce that \(S \subseteq P_i\), where \(1 \leq i \leq k + 1\).

\[\square \]

Theorem 2.17. Let \(I_1, I_2, \ldots, I_n\) be \(2\)-absorbing hyperideals of \(R\) and \(I\) be a hyperideal of \(R\) such that \(I \subseteq I_1 \cup I_2 \cup \ldots \cup I_n\). Then, there exists \(1 \leq i \leq n\) such that \(I^2 \subseteq I_i\).

Proof. First, we show that there exists \(1 \leq i \leq n\) such that \(\sqrt{I} \subseteq \sqrt{I_i}\). By Theorem 2.4, we can assume that they have been indexed in such a way that \(\sqrt{I_i} = p_i\) and \(\sqrt{I_j} = p_{j,1} \cap p_{j,2}\), for all \(1 \leq i \leq k\) and \(k + 1 \leq j \leq n\), where \(p_i, p_{j,1}, p_{j,2}\) are prime hyperideals of \(R\). Then, \(\sqrt{I} \subseteq p_1 \cup p_2 \cup \cdots \cup p_k \cup (p_{k+1,1} \cap p_{k+1,2}) \cup \cdots \cup (p_{n,1} \cap p_{n,2})\) which follows that \(\sqrt{I} \subseteq p_1 \cup p_2 \cup \cdots \cup p_k \cup p_{k+1,t_{k+1}} \cup \cdots \cup p_{n,t_n}\), where \(t_{k+1}, \ldots, t_n \in \{1,2\}\). Therefore by applying Lemma 2.16, we find that \(\sqrt{I} \subseteq p_i\) or \(\sqrt{I} \subseteq p_{j,t_s}\), for some \(1 \leq i \leq k\), \(k + 1 \leq j \leq n\) and \(t_s \in \{1,2\}\). If \(\sqrt{I} \subseteq p_{j,t_s}\), where \(k + 1 \leq j \leq n\), \(t_s \in \{1,2\}\), then \(\sqrt{I} \subseteq p_{j,t_s} \subseteq \bigcup_{j=k+1}^{n} p_{j,1}\). We may assume that \(\sqrt{I} \subseteq \bigcap_{j=k+1}^{s} p_{j,1}\) and \(\sqrt{I} \subseteq \bigcup_{j=s+1}^{n} p_{j,1}\), where \(k + 1 \leq s \leq n\). On the other hand, \(\sqrt{I} \subseteq p_{k+1,1} \cup \cdots \cup p_{s,2} \cup p_{s+1,1} \cup \cdots \cup p_{n,1}\). Therefore, \(\sqrt{I} \subseteq p_{j,2}\), for some \(k + 1 \leq j \leq s\), by Lemma 2.16. Hence, \(\sqrt{I} \subseteq p_{j,1} \cap p_{j,2} = \sqrt{I_j}\), where \(k + 1 \leq j \leq s\). Then, in general there is \(1 \leq i \leq n\) such that \(\sqrt{I} \subseteq \sqrt{I_i}\) which leads to \(I^2 \subseteq (\sqrt{I})^2 \subseteq (\sqrt{I_i})^2\). By applying Theorem 2.4, we get \(I^2 \subseteq I_i\). \[\square \]

References

Leili Kamali Ardekani
Faculty of Engineering, Ardakan University, P.O. Box 184, Ardakan, Iran.
Email: l.kamali@ardakan.ac.ir

Bijan Davvaz
Department of Mathematics, Yazd University, Yazd, Iran.
Email: davvaz@yazd.ac.ir
A GENERALIZATION OF PRIME HYPERIDEALS IN KRASNER HYPERRINGS

L. KAMALI ARDEKANI AND B. DAVVAZ

پژوهشگری از ایراندانشکده فنی و مهندسی دانشگاه اردکان اردکان ایران

با توجه به نقض مهم ایراندانشکده فنی و مهندسی دانشگاه اردکان اردکان ایران

کلمات کلیدی: ایراندانشکده فنی و مهندسی اردکان اردکان ایران