Phytochemistry and antioxidant activity of *Lallemantia iberica* aerial parts

N. Khosravi Dehaghi¹, A.R. Gohari², S.S. Sadat-Ebrahimi³, H. Naghdi Badi⁴, Y. Amanzadeh⁵*

¹Department of Pharmacognosy, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran.
²Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
³Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
⁴Institute of Medicinal Plants, Iranian Academic Center for Education, Culture & Research (ACECR), Karaj, Iran.
⁵Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.

Abstract

Background and objectives: *Lallemantia iberica* (Lamiaceae) is a medicinal plant distributed in different parts of Iran. This research has evaluated the phytochemical constituents and antioxidant activity of the aerial parts of the plant. **Methods:** Different chromatographic methods such as column chromatographies using Silica gel (normal and reversed phases), Sephadex LH-20 and HPLC were used for isolation of the compounds from the ethyl acetate and methanol extract of *L. iberica* aerial parts. The structures of the isolated compounds were elucidated using ¹H-NMR, ¹³C-NMR and EI-MS. Antioxidant activity of the extracts were also evaluated in DPPH and FRAP tests. **Results:** Two sterols, β-sitosterol acetate (1), β-sitosterol (2), one triterpenoic acid, ursolic acid (3), one polyphenol, rosmarinic acid (4) and six flavonoids, Luteolin-7-O-glucoside (5), 4’-methoxy-luteolin-7-O-glucoside (6), apigenin-7-O-glucoside (7), Luteolin (8), diosmetin (9), apigenin (10) were isolated and identified from the ethyl acetate and methanol extracts. The antioxidant activity of the ethyl acetate (IC₅₀ 189.95±2.8 μg/mL) and the methanol extracts (IC₅₀ 140±1.2 μg/mL) were compared to the standard antioxidant, BHA (IC₅₀ 100±1.6 μg/mL) in DPPH method. The reducing power of the ethyl acetate (300.28 μmol Eq FeSO₄.7H₂O/mg DW), the methanol extract (553.14 μmol Eq FeSO₄.7H₂O/mg DW) and BHA (558.36 μmol Eq FeSO₄.7H₂O/mg of standard) were elucidated in FRAP assay. **Conclusion:** The results introduce *L. iberica* as a medicinal plant with valuable constituents which are responsible of different pharmacological activities.

Keywords: antioxidant activity, DPPH, FRAP, *Lallemantia iberica*, phytochemistry

Introduction

Genus *Lallemantia* belongs to the family Lamiaceae which has 46 genera and 410 species and subspecies in Iran [1]. It is distributed in different parts of Iran, especially in north and north-west. This genus has five different species including *peltata*, *royleana*, *iberica*, *baldshuanica* and *canescen* [2-4]. Seeds of *Lallemantia iberica* are known as "Balangue shahri" in Persian. Its synonyms are *Lallemantia sulphurea* and *Dracocephalum ibericum* (Bieb.) [4,5]. The seeds are normally used as stimulant, diuretic and expectorant [1]. The mucilage of the seeds is used for treatment of some nervous, hepatic and renal diseases and it was used as...
general tonic in the Iranian Traditional Medicine [5,6]. Constituents of the L. iberica essential oil have been previously studied by GC and GC/MS in two different stages. The major compounds in the flowering stage were β-cubeben (19.55%), linalool (18.71%) and spathulenol (18.04%). In post-flowering stage, caryophyllene oxide (38.77%), linalool (15.15%) and germacrene-D (7.03%) were the major constituents [6]. Another study about the essential oil of the plant, explained that p-cymene (22.1%), isophytol (19.8%) and t-cadinol (11.1%) were the major constituents [7]. A new putrescine bisamide phenolic glycoside, lallenmantoside, together with a known phenolic glycoside, cucurbitoside D, were also isolated from the seeds of L. iberica [8]. The aim of the present study was to identify the chemical composition of the plant and its antioxidant activity.

Experimental Instrumentation

The 1H-NMR and 13C-NMR spectra were measured on a Brucker Avance 500 DRX (USA) (500 MHz for 1H and 125 MHz for 13C) spectrometer with tetramethylsilane as the internal standard, chemical shifts were given in ppm. EI-MS spectra were measured on an Agilent Technology (Palo Alto CA, USA) instrument with a 5973 Network mass selective detector (MS model). Silica gel 60F254 plates (Merck, Germany) and chromatography. Silica gel 60F254 (Fluka, Switzerland) were used for the TLC. The HPLC was Knauer Wellchrom system (Germany) that was connected to a PDA detector 2600 and pump was Smart line 1000, including 10 mL pump head stainless steel EA4300 model, semi-preparative column (250x20 mm, euroshper 100-7 C18). The injection volume was 2 mL.

Materials
2,2-diphenyl-picyrlyhydrazyl (DPPH), Butylated hydroxyanisole (BHA) and 2,4,6-tripyridyl-s-triazine (TPTZ) were bought from Sigma-Aldrich (Germany). Sodium carbonate, sodium acetate, ferrous sulphate and FeCl3 were prepared from Schlarau, Spain. Other chemicals and all solvents were purchased from Merck (Germany).

Plant material

Lallemantia iberica (Bieb.) Fisch & C.A. Mey (Lamiaceae) was cultivated in Institute of Medicinal Plants Research (ACECR), Karaj, Halejerd, Iran. A voucher specimen (6713-TEH) was deposited at the Herbarium of the Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.

Extraction

The dried aerial parts (2 Kg) were powdered and macerated with EtOAc and MeOH at room temperature for three times every 48 hours. The obtained methanol and ethyl acetate extracts were concentrated using a rotary evaporator at 37 °C. The ethyl acetate (107 g) and methanol extracts (200 g) were refrigerated.

Isolation and purification of the compounds

Ninety grams of the ethyl acetate extract was moved to silica gel column and eluted with n-hexane, n-hexane/CHCl3 (7:3, 5:5, 4:6), CHCl3, CHCl3/EtOAc (3:7) and EtOAc to get five fractions (A-E). Silica gel column chromatography of fraction B (10 g) with a gradient mixture of n-hexane/CHCl3 (5:5, 2:8), CHCl3/EtOAc (5:5), EtOAc yielded nine fractions (B1-B9). Fraction B7 (100 mg) was moved to a Sephadex LH-20 column and eluted with CHCl3/MeOH (3:7) to get five fractions (B7a-B7e). Compound I (13 mg) was isolated from the fraction B7c on a Sephadex LH-20 column (CHCl3/MeOH 3:7). Fraction C (12 g) was subjected to silica gel column chromatography with n-hexane/CHCl3 (4:6, 3:7), CHCl3/EtOAc (5:5) and EtOAc to get seven fractions (C1-C7). Silica gel column chromatography of the fraction C6 (350 mg) with a gradient mixture of n-hexane: EtOAc (9:1, 8:2) yielded ten fractions (C6a-C6j). Compound 2 (22mg) was isolated from the fraction C6g (98
mg) with a silica gel column chromatography (n-hexane/EtOAc 8:2, EtOAc). Fraction D (12 g) was subjected to silica gel column chromatography with CHCl₃, CHCl₃/EtOAc (9:1, 8:2, 5:5, 2:8) and EtOAc to get twenty fractions (D₁-D₂₀). Fraction D₁₀ (180 mg) was moved to silica gel column chromatography and eluted with CHCl₃/EtOAc (7:3, 5:5) and EtOAc to get eight fractions (D₁₀ₐ-D₁₀₉). Compound 3 (12 mg) was isolated from fraction D₁₀₇ (80 mg) on silica gel column chromatography (CHCl₃/EtOAc 5:5, 3:7, EtOAc). One hundred g methanol extract was moved to a silica gel column chromatography twice with MeOH/H₂O (4:6, 4:3) as the eluent. Fraction C (68 mg) over the Rₐ value was subjected to Sephadex LH-20 (4:6). Two times Sephadex LH-20 was subjected to Sephadex LH-20 and eluted with MeOH to get seven fractions (C₁-C₇) (12 mg) was subjected to silica gel column chromatography with EtOAc/MeOH (6:4) to get five fractions (E₁-E₅). Fraction E₁ was subjected to Sephadex LH-20 and eluted with MeOH/H₂O (4:6) to get seven fractions (E₁₁-E₁₇). Fraction E₁₉ (450 mg) was moved to Sephadex LH-20 and eluted with MeOH to get eight fractions (E₁₁₁-E₁₁₇). Compound 4 (12 mg) was isolated from fraction E₁₁₂ (68 mg) over the RP silica gel column chromatography twice with MeOH/H₂O (4:6, 7:3) as the eluent. Fraction C was moved to silica gel column chromatography and eluted with EtOAc/MeOH (5:5) to get eight fractions (C₁-C₈). Two times Sephadex LH-20 column chromatography of the fraction C₁ (800 mg) with MeOH resulted in six fractions (C₉₁-C₉₆). Six compounds [5 (27 mg), 6 (25.4 mg), 7 (17 mg), 8 (20 mg), 9 (13.5 mg), 10 (11.7 mg)] were achieved from fraction C₉₅ (350 mg) by HPLC on RP C₁₈ column that was eluted with MeOH/Aceton (UV350 nm) at 350 nm. Gradient time program for isolation has been presented in Table 1.

Free radical-scavenging assay

2,2-diphenyl-1-picrylhydrazyl (DPPH) assay

The DPPH assay is a popular method in natural product antioxidant studies. This assay is based on the theory that a hydrogen donor is an antioxidant. It measures compounds that are radical scavengers [9]. The assay was carried out according to Sarker et al. [10,11]. The stock solution of DPPH was prepared at the concentration of 8.0×10⁻³ mg/mL in methanol. The extract dilutions were made in methanol to get the concentrations of 5.0×10⁻¹, 2.5×10⁻¹, 1.25×10⁻¹, 6.25×10⁻², 3.13×10⁻² and 1.6×10⁻² mg/mL. The prepared solutions of extracts (2.0 mL each) were mixed with DPPH solution (2.0 mL). After thirty minutes, UV absorbances of the solutions were recorded at 517 nm. Butylated hydroxytoluene (BHT), a synthetic antioxidant, was used as the positive control. Inhibition of DPPH free radical was calculated as:

\[
\text{Inhibition} \% = \frac{100 - ([\text{Sample absorption-control absorption}] / \text{Blank absorption}) \times 100}{100}
\]

The concentration that caused 50% decrease in the initial DPPH radical concentration was defined as IC₅₀. The experiments were repeated three times and the IC₅₀ values were expressed as Mean ± SD.

Ferric reducing antioxidant power (FRAP) assay

The antioxidant activity of the plant extracts were evaluated according to the method of Benzie and Strain [12]. The FRAP reagent included 10 mM TPTZ solution in 40 mM HCl, 20 mM FeCl₃ solution and 0.3 M acetate buffer (pH 3.6) in proportions of 1:1:10 (v/v). Fifty µL of each diluted extracts were mixed with 3 mL of freshly prepared FRAP reagent and the reaction mixtures were incubated at 37 °C for 30 min. The absorbance was determined at 593 nm against distilled water as blank. Aqueous solutions of ferrous sulfate (100–2000 µM) were used for

Table 1. Gradient time program of HPLC for isolation of fraction C₆₅ of Lallemantia iberica

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>% H₂O</th>
<th>% CH₃COCH₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>30</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>40</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>60</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>90</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>100</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>120</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>140</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>141</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>150</td>
<td>70</td>
<td>30</td>
</tr>
</tbody>
</table>
calibration. Triplicate measurements were taken and the FRAP values were expressed as μmol of Fe (II)/g dry weight of plant powder [13,14].

Results and Discussion

Phytochemical studies of the ethyl acetate and methanol extracts of the aerial parts of L. iberica resulted in isolation of β-sitosterol acetate (1), β-sitosterol (2), ursolic acid (3), rosmarinic acid (4), luteolin-7-O-glucoside (5), 4′-methoxy-luteolin-7-O-glucoside (6), apigenin-7-O-glucoside (7), luteolin (8), diosmetin (9), apigenin (10) (figure 2).

The structures of the isolated compounds were determined using 1H-NMR, 13C-NMR and EI-MS spectral analyses, and also by comparison with published information. Some of the structures of isolated compounds such as β-sitosterol acetate (1), β-sitosterol (2), ursolic acid (3), rosmarinic acid (4), luteolin (5), apigenin (10) have been previously reported from other plants [15-23]; however, this is the first report about the isolation of compounds 1-10 from the aerial parts of L. iberica. 1H-NMR, 13C-NMR, MS data for compounds 6-9 have been presented as follows:

Compound (6): luteolin-7-O-glycoside; 1H-NMR (500 MHz, DMSO d6): δH 6.80 (1H, s, H-3), 6.44 (1H, d, J = 2 Hz, H-6), 6.76 (1H, d, J = 2 Hz, H-5), 7.42 (1H, bs, H-2'), 6.90 (1H, d, J = 8.4 Hz, H-6'), 12.98 (1H, s, OH-5), 5.06 (1H, d, J = 7.4 Hz, Glu H-1''), 3.17-5.06 (6H, m, sugar protons) [15, 16]. 13C-NMR (125 MHz, DMSO d6): δC 182.03 (C-4), 164.58 (C-2), 163.03 (C-7), 161.25 (C-5), 157.04 (C-9), 150.06 (C-4'), 145.90 (C-3'), 121.43 (C-1'), 119.28 (C-6'), 116.10 (C-5'), 113.62 (C-2'), 105.42 (C-10), 103.22 (C-3), 99.62 (C-6) 94.84 (C-8) and sugar: 99.94 (C-1''), 73.19 (C-2''), 77.22 (C-5''), 76.44 (C-3''), 69.62 (C-4''), 60.68 (C-6'') [15-17]. EI-MS: m/z (%): 286 [aglycon fragment] +, 152 [A1] +, 137 [B2] +, 109 [B2-CO]+ [15].

Compound (7): 4′-methoxy-luteolin-7-O-glucoside; 1H-NMR (500 MHz, DMSO d6): δH 6.85 (1H, s, H-3), 6.45 (1H, d, J = 2 Hz, H-6), 6.82 (1H, d, J = 2 Hz, H-5), 7.46 (1H, bs, H-2'), 7.10 (1H, d, J = 8.4 Hz, H-5''), 7.57 (1H, bd, J = 8.4 Hz, H-6'), 12.95 (1H, s, OH-5), 3.87 (3H, O-Me), 5.05 (1H, d, J = 6.6 Hz, Glu H1''), 3.5-5.05 (6H, m, sugar protons) [15]. 13C-NMR (125MHz,DMSO d6): δC 182.00(C-4), 164.12 (C-2), 163.03 (C-7), 161.14 (C-5), 157.00(C-9), 151.34 (C-4'), 146.82 (C-3'), 118.02 (C-1'), 122.88 (C-6''), 112.13 (C-5''), 113.13 (C-2''), 105.40 (C-10), 103.83 (C-3), 99.58 (C-6) 94.81 (C-8) and sugar: 99.86 (C-1''), 73.11 (C-2''), 77.17 (C-5''), 76.40 (C-3''), 69.52 (C-4''), 60.60 (C-6''), 55.82(4′-O-Me) [17]. **Compound (8):** diosmetin; 1H-NMR (500 MHz, DMSO d6): δH 6.75 (1H, s, H-3), 6.19 (1H, d, J = 1.85 Hz, H-6).
Figure 2. Structures of the isolated compounds (1-10) form the aerial parts of *Lallemantia iberica*

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-Sitosterol acetate (1)</td>
<td></td>
</tr>
<tr>
<td>β-Sitosterol (2)</td>
<td></td>
</tr>
<tr>
<td>Ursolic acid (3)</td>
<td></td>
</tr>
<tr>
<td>Rosmarinic acid (4)</td>
<td></td>
</tr>
<tr>
<td>Luteolin-7-O-glucoside (5)</td>
<td></td>
</tr>
<tr>
<td>4′-methoxy-Luteolin-7-O-glucoside (6)</td>
<td></td>
</tr>
<tr>
<td>Apigenin-7-O-glucoside (7)</td>
<td></td>
</tr>
<tr>
<td>Luteolin (8)</td>
<td></td>
</tr>
<tr>
<td>Diosmetin (9)</td>
<td></td>
</tr>
<tr>
<td>Apigenin (10)</td>
<td></td>
</tr>
</tbody>
</table>

6.47 (1H, d, J = 1.95 Hz, H-8), 7.43 (1H, d, J=2.25Hz, H-2′), 7.28 (1H, d, J = 8.5 Hz, H-5′), 7.53 (1H, bd, J = 8.4 Hz, H-6′), 12.93 (1H, s, OH-5), 3.86 (3H, s, O-4′-Me) [18]. 13C NMR (125 MHz, DMSO d6): δC 181.62 (C-4), 163.45 (C-2), 164.41 (C-7), 161.41 (C-5), 157.29 (C-9), 151.10 (C-4′), 146.78 (C-3′), 122.99 (C-1′), 118.64 (C-6′), 112.15 (C-5′), 112.92 (C-2′), 103.48 (C-10), 103.47 (C-3), 98.90 (C-6), 93.90 (C-8), 55.73 (4′-O-Me) [17]. **Compound (9):** apigenin-7-O-glycoside; 1H-NMR (500 MHz, DMSO d6); δH 7.94 (2H, d, J = 8.4Hz, H-2′, 6′), 6.95(2H, d, J = 8.4Hz, H-5′, 3′), 6.87 (1H, s, H-3), 6.83 (1H, bs, H-8), 6.44 (1H, bs, H-6), 12.93(1Hs, OH-5), 5.06 (1H, d, J = 7.4 Hz, Glu H-1′), 3.17-5.06 (6H, m, sugar protons) [15]. 13C-NMR (125 MHz, DMSO d6); δC 181.97 (C-4), 164.23 (C-2), 162.93 (C-7), 156.91 (C-4′), 161.34 (C-5), 161.08 (C-9), 128.58 (C-6′), 121.00 (C-1′), 115.97 (C-3′), 116.56 (C-5′), 105.31 (C-10), 103.08 (C-3), 99.88 (C-6), 94.81 (C-8) and sugar: 99.49 (C-1″), 77.15 (C-5″), 76.42 (C-3″), 73.07 (C-2″), 69.52 (C-4″), 60.58 (C-6″) [15,17]. EI-MS: m/z (%) 270 [aglycon fragment]+, 256 [270 -CH2]+, 226 [CH2]+, 196 [B2]+, 153 [A1+H]+, 121 [B2]+, 94 [B2 +H-CO]+ [15].

The results of the antioxidant activity of the extracts have been reported in table 2.

There are limited studies about the genus
Lallemantia. One study has explained that *L. royleana* seeds decreased the serum cholesterol and triglyceride levels in hypercholesterolemic animals [24].

Table 2. Antioxidant activity of different extracts of *L. iberica* by different methods

<table>
<thead>
<tr>
<th>Samples</th>
<th>DPPH free radical scavenging activity IC$_{50}$ (μg/mL)</th>
<th>FRAP value (μmol Fe$^{2+}$/ mg DW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol extract</td>
<td>140±1.2</td>
<td>553.14</td>
</tr>
<tr>
<td>Ethyl acetate extract</td>
<td>189.95±2.8</td>
<td>300.28</td>
</tr>
<tr>
<td>BHA</td>
<td>100±1.6</td>
<td>558.36</td>
</tr>
</tbody>
</table>

In another research, antifungal and antibacterial activities of *L. royleana* essential oil were investigated. It has been introduced as antimicrobial additive in foods [25]. The methanol extract of *L. iberica* has shown antiinocceperent effect in male rats [26]. In the present research, the constituents of *L. iberica* have been investigated and there are different studies about the biological activities of its isolated components. For example some studies have confirmed the biological activities of β-sitosterol such as its effects in prostate hyperplasia, and breast cancer [27,28]. In previous researches, the antioxidant and anti-inflammatory activities of ursolic acid were shown [29,30]. Antiviral, antibacterial, anti-inflammatory and antioxidant activities of rosmarinic acid were investigated in different previous works [31]. Some studies have elucidated the biological activities of flavonoids such as their antioxidant, anti-atherosclerose, anti-inflammatory, anti-tumor, antiviral and antifertility properties [32,33]. Accordingly, most isolated compounds from *L. iberica* have shown antioxidant effects and our results confirmed the antioxidant activity of *L. iberica*.

Acknowledgment

The authors thank Dr. Shamsali Rezazadeh and Dr. Yousef Ajani from the Institute of Medicinal Plants, Iranian Academic Center for Education, Culture & Research (ACECR), Karaj, Iran for their supports.

Declaration of interest

The authors declare that there is no conflict of interest. The authors alone are responsible for the content of the paper.

References

