کارگاه‌های آموزشی مرکز اطلاعات علمی جهاد دانشگاهی

کارگاه آنلاین آموزش استفاده از وب آسیس

مقاله روزمره انگلیسی

کارگاه آنلاین مقاله روزمره انگلیسی

مباحثی که به شکوه پدیده‌ای عمیقی شبکه‌های نوجه گرافی (Graph Attention Networks) می‌پردازند

آموزش استفاده از وب آسیس

WEB OF SCIENCE
OD-characterization of $S_4(4)$ and its group of automorphisms

P. Nosratpour

Department of mathematics, Ilam Branch, Islamic Azad university, Ilam, Iran.

Abstract. Let G be a finite group and $\pi(G)$ be the set of all prime divisors of $|G|$. The prime graph of G is a simple graph $\Gamma(G)$ with vertex set $\pi(G)$ and two distinct vertices p and q in $\pi(G)$ are adjacent by an edge if and only if G has an element of order pq. In this case, we write $p \sim q$. Let $|G| = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, where $p_1 < p_2 < \ldots < p_k$ are primes. For $p \in \pi(G)$, let $\deg(p) = |\{q \in \pi(G)| p \sim q\}|$ be the degree of p in the graph $\Gamma(G)$, we define $D(G) = (\deg(p_1), \deg(p_2), \ldots, \deg(p_k))$ and call it the degree pattern of G. A group G is called k-fold OD-characterizable if there exist exactly k non-isomorphic groups S such that $|G| = |S|$ and $D(G) = D(S)$. Moreover, a 1-fold OD-characterizable group is simply called an OD-characterizable group. Let $L = S_4(4)$ be the projective symplectic group in dimension 4 over a field with 4 elements. In this article, we classify groups with the same order and degree pattern as an almost simple group related to L. Since $\text{Aut}(L) \cong Z_4$ hence almost simple groups related to L are L, $L : 2$ or $L : 4$. In fact, we prove that L, $L : 2$ and $L : 4$ are OD-characterizable.

Keywords: Finite simple group, OD-characterization, group of lie type

2010 AMS Subject Classification: 20D05, 20D60, 20D06.

1. Introduction

Let G be a finite group. Denote by $\pi(G)$ the set of all prime divisors of the order of G. The prime graph $\Gamma(G)$ of a finite group G is a simple graph with vertex set $\pi(G)$ in which two distinct vertices p and q are joined by an edge if and only if G has an element of order pq.

Definition 1.1 Let G be a finite group and $|G| = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, where $p_1 < p_2 < \ldots < p_k$. For $p \in \pi(G)$, let $\deg(p) = |\{q \in \pi(G)| p \sim q\}|$ be the degree of p in the graph $\Gamma(G)$,
we define $D(G) = (\text{deg}(p_1), \text{deg}(p_2), \ldots, \text{deg}(p_k))$, which is called the degree pattern of G.

Given a finite group G, denote by $h_{OD}(G)$ the number of isomorphism classes of finite groups S such that $|G| = |S|$ and $D(G) = D(S)$. In terms of the function h_{OD}, groups G are classified as follows:

Definition 1.2 A group G is called k-fold OD-characterizable if $h_{OD}(G) = k$. Moreover, a 1-fold OD-characterizable group is simply called an OD-characterizable.

Definition 1.3 A group G is said to be an almost simple group if and only if $S \trianglelefteq G \trianglelefteq Aut(S)$ for some non-abelian simple group S.

2. Preliminaries

For any group G, let $\omega(G)$ be the set of orders of elements in G, where each possible order element occurs once in $\omega(G)$ regardless of how many elements of that order G has. This set is closed and partially ordered by divisibility, hence it is uniquely determined by its maximal elements. The set of maximal elements of $\omega(G)$ is denoted by $\mu(G)$. The number of connected components of $\Gamma(G)$ is denoted by $t(G)$. Let $\pi_i = \pi_i(G), 1 \leq i \leq t(G)$, be the ith connected component of $\Gamma(G)$. For a group of even order we let $2 \equiv (G)$.

The following lemmas are useful when dealing with a Frobenius group.

Lemma 3.2 [3] Let G be a 2-Frobenius group of even order which has a normal series $1 \trianglelefteq H \trianglelefteq K \trianglelefteq G$, such that K and G/H are Frobenius groups with kernels H and K/H, respectively. Then

- (a) $t(G) = 2$ and $T(G) = \{\pi_1(G) = \pi(H) \cup \pi(G/K), \pi_2(G) = \pi(K/H)\}$.
- (b) G/K and K/H are cyclic groups, $|G/K| | |Aut(K/H)|$, and $\left(\frac{|G/K|}{|K/H|}\right) = 1$.
- (c) H is a nilpotent group and G is a solvable group.

The following lemmas are useful when dealing with a Frobenius group.

Lemma 3.3 [5], [7] Let G be a Frobenius group with complement H and kernel K. Then the following assertions hold:

- (a) K is a nilpotent group;
- (b) $|K| \equiv 1 (mod|H|)$;
- (c) Every subgroup of H of order pq, with p, q (not necessarily distinct)primes, is cyclic. In particular, every Sylow Subgroup of H of odd order is cyclic and a
2-Sylow subgroup of H is either cyclic or a generalized quaternion group. If H is a non-solvable group, then H has a subgroup of index at most 2 isomorphic to $Z \times SL(2,5)$, where Z has cyclic Sylow p-subgroups and $\pi(Z) \cap \{2,3,5\} = \emptyset$. In particular, $15, 20 \notin \omega(H)$. If H is solvable and $O(H) = 1$, then either H is a 2-group or H has a subgroup of index at most 2 isomorphic to $SL(2,3)$.

Lemma 3.4 [3] Let G be a Frobenius group of even order where H and K are Frobenius complement and Frobenius kernel of G, respectively. Then $t(G) = 2$ and $T(G) = \{\pi(H), \pi(K)\}$.

Let G be a finite group with disconnected prime graph. The structure of G is given in [8] which is stated as a lemma here.

Lemma 3.5 Let G be a finite group with disconnected prime graph. Then G satisfies one of the following conditions:

a) $s(G) = 2$, $G = KC$ is a Frobenius group with kernel K and complement C, and the two connected components of G are $\Gamma(K)$ and $\Gamma(C)$. Moreover K is nilpotent, and here $\Gamma(K)$ is a complete graph.

b) $s(G) = 2$ and G is a 2-Frobenius group, i.e., $G = ABC$ where $A, AB \leq G$, $B \leq BC$, and AB, BC are Frobenius groups.

c) There exists a non-abelian simple group P such that $P \leq \bar{G} = \frac{G}{N} \leq Aut(P)$ for some nilpotent normal $\pi_1(G)$-subgroup N of G and $\frac{G}{P}$ is a $\pi_1(G)$-group. Moreover, $\Gamma(P)$ is disconnected and $s(P) \geq s(G)$.

If a group G satisfies condition (c) of the above lemma we may write $P = B/N$, $B \leq G$, and $\frac{G}{P} = G/B = A$, hence in terms of group extensions $G = N \cdot P \cdot A$, where N is a nilpotent normal $\pi_1(G)$-subgroup of G and A is a $\pi_1(G)$-group.

Theorem 3.6 [6] The following assertions are equivalent:

(a) G is a Frobenius group with kernel K and complement H.

(b) $G = HK$ such that $K \triangleleft G$ and $H < G$ and H act on K without fixed point.

By [2] the outer automorphism group of $S_4(4)$ is isomorphic to Z_4; hence we have the following lemma:

Lemma 3.7 If G is an almost simple group related to $L = S_4(4)$, then G is isomorphic to one of the following groups: L, $L : 2$ or $L : 4$.

4. **Main Results**

Theorem 4.1 If G is a finite group such that $D(G) = D(M)$ and $|G| = |M|$, where M is an almost simple group related to $L = S_4(4)$, then the following assertions hold:

(a) If $M = L$, then L is OD-characterizable.

(b) If $M = L : 2$, then $L : 2$ is OD-characterizable.

(c) If $M = L : 4$, then $L : 4$ is OD-characterizable.

Proof. We break the proof into a number of separate cases:

Case 1: If $M = L$, then $G \cong L$. This follows from [1].

Case 2: If $M = L : 2$, then $G \cong L : 2$.

If $M = L : 2$, by [2], we have $\mu(L : 2) = \{8, 10, 12, 15, 17\}$ from which we deduce that $D(L : 2) = (2, 2, 2, 0)$. The prime graph of $L : 2$ has the following form:
As $|G| = |L : 2| = 2^9 \cdot 3^2 \cdot 5^2 \cdot 17$ and $D(G) = D(L : 2) = (2, 2, 2, 0)$, then $\Gamma(G) = \Gamma(M) = \{2 \sim 3, 2 \sim 5, 3 \sim 5; 17\}$. Thus G has a disconnected prime graph with $s(G) = 2$. Now, We show that G is neither a Frobenius group nor 2-Frobenius group. If G be a Frobenius group, then by Lemma 3.4(a), $G = KC$, with Frobenius kernel K and Frobenius complement C with connected components $\Gamma(K)$ and $\Gamma(C)$. $\Gamma(K)$ is a graph with vertex $\{17\}$ and $\Gamma(C)$ with vertices $\{2, 3, 5\}$. By Lemma 3.2(b), $|K| \mid (|C| - 1)$. Since $|K| = 17$ and $|C| = 2^9 \cdot 3^2 \cdot 5^2$ then $17 \mid (2^9 \cdot 3^2 \cdot 5^2 - 1)$ a contradiction. If G be a 2-Frobenius group, then, there is a normal series $1 < H < G$ such that K and G/H are Frobenius groups with kernels K and H/K, respectively. By Lemma 3.1(a), we have $T(G) = \{\pi_1(G) = \pi(H) \cup \pi(G/K), \pi_2(G) = \pi(K/H)\}$. Therefore, $|K/H| = 17$. Also, by Lemma 3.1(b), we have $G/K \leq Aut(K/H) \cong Z_{16}$, hence $|G/K| \mid 2^4$, which implies that $\{3, 5, 17\} \subseteq \pi(K)$ from which we deduce that $5 \in \pi(H)$. Let $H_5 \in Syl_{15}(H)$ and $G_{17} \in Syl_{17}(G)$. Then $H_5 \text{char} H \subseteq G$. By nilpotency of H, we have $H_5 \triangleleft G$ and H_5 act on G_{17} without fixed point, since $5 \approx 17$ in $\Gamma(G)$. Therefore, by Theorem 3.1, $H_5.G_{17}$ is a Frobenius group. So, $|G_{17}| \mid (|H_5| - 1)$, i.e., $17 \mid (5^i - 1)$, $i = 1$ or 2, a contradiction.

Now by Lemma 3.4(c), there exists a non-abelian simple group P such that $P \leq \overline{G} = G/N \leq Aut(P)$ for some nilpotent normal $\{2, 3, 5\}$-subgroup N of G and \overline{G}/P is a $\{2, 3, 5\}$-group.

$17 \in \pi(P)$. Since \overline{G}/P is a $\{2, 3, 5\}$-group and $17 \mid |G|$, therefore, we have $17 \mid |P|$, i.e., $P \in \mathfrak{S}_{17}$, which implies that $\pi(P) \subseteq \{2, 3, 5, 17\}$. Using [9], we list the possibilities for P in the following table.

| Table 1: Simple groups in \mathfrak{S}_p, $p \leq 17, p \neq 7, 11, 13$. |
|---|---|---|
| P | $|P|$ | $|\text{out}(P)|$ |
| $L_2(17)$ | $2^3 \cdot 3^2 \cdot 5^2 \cdot 17$ | 2 |
| $L_2(16)$ | $2^3 \cdot 3 \cdot 5 \cdot 17$ | 4 |
| $S_4(4)$ | $2^3 \cdot 3 \cdot 5 \cdot 17$ | 4 |

If $P \cong L_2(17)$ we get $L_2(17) \leq G/N \leq Aut(L_2(17))$. It follows that $|N| = 2^5 \cdot 5^2 \leq |\text{out}(P)|$ or $|N| = 2^4 \cdot 5^2 \leq |\text{out}(P)|$. Let $N_5 \in Syl_{15}(N)$ and $G_{17} \in Syl_{17}(G)$. Then $N_5 \text{char} N \leq G$. By the nilpotency of N, which implies that $N_5 \leq G$ and N_5 act on G_{17} without fixed point, since $5 \approx 17$ in $\Gamma(G)$. Therefore, by Theorem 3.1, $N_5.G_{17}$ is a Frobenius group. So, $|G_{17}| \mid (|N_5| - 1)$, i.e., $17 \mid (5^i - 1)$, $i = 1$ or 2, a contradiction.

If $P \cong L_2(16)$ we get $L_2(16) \leq G/N \leq Aut(L_2(16))$. It follows that $|N| = 2^5 \cdot 3 \cdot 5$ or $|N| = 2^4 \cdot 3 \cdot 5$. Let $N_5 \in Syl_{15}(N)$ and $G_{17} \in Syl_{17}(G)$. Then $N_5 \text{char} N \leq G$. By the nilpotency of N, which implies that $N_5 \leq G$ and N_5 act on G_{17} without fixed point, since $5 \approx 17$ in $\Gamma(G)$. Therefore, by Theorem 3.1, $N_5.G_{17}$ is a Frobenius group. So, $|G_{17}| \mid (|N_5| - 1)$, i.e., $17 \mid (5^i - 1)$ a contradiction.

Therefore, $P \cong S_4(4)$. We have $S_4(4) \leq G/N \leq Aut(S_4(4))$. It follows that $|N| = 2$ or $|N| = 1$.

Figure 1: The prime graph of $S_4(4) : 2$
If \(|N| = 1\), then \(G \cong S_4(4) : 2\).
If \(|N| = 2\), then \(G/C_G(N) \leq Aut(N) = 1\), therefore \(G/C_G(N) = 1\), hence \(G = C_G(N)\) and \(N \leq Z(G)\). Let \(G_{17} \in Syl_{17}(G)\). Then \(N.G_{17}\) is a subgroup of \(G\), therefore, \(N.G_{17}\) has an element of order 2,17, which implies that 2 \(\sim\) 17 in \(\Gamma(G)\), a contradiction.

Case 3: If \(M = L : 4\), then \(G \cong L : 4\).
If \(M = L : 4\), by \([2]\), we have \(\mu(M) = \{12, 15, 16, 17, 20\}\) from which we deduce that \(D(L : 4) = (2, 2, 2, 0)\). The prime graph of \(L : 4\) has the following form:

![Prime graph of S4(4) : 4](image)

As \(|G| = |L : 4| = 2^{10}.3.5.17\) and \(D(G) = D(L : 4) = (2, 2, 2, 0)\), then \(\Gamma(G) = \Gamma(M) = \{2 \sim 3, 2 \sim 5, 3 \sim 5; 17\}\). Thus \(G\) has a disconnected prime graph with \(s(G) = 2\).

Now, we show that \(G\) is neither a Frobenius group nor 2-Frobenius group. If \(G\) is a Frobenius group, then by Lemma 3.4(a), \(G = KK\), with Frobenius kernel \(K\) and Frobenius complement \(C\) with connected components \(\Gamma(K)\) and \(\Gamma(C)\). \(\Gamma(K)\) is a graph with vertex \(\{17\}\) and \(\Gamma(C)\) with vertices \(\{2, 3, 5\}\). By Lemma 3.2(b), \(|K| \mid (|C| - 1)\).

Since \(|K| = 17\) and \(|C| = 2^{10}.3.5^2\) then \(17 \mid (2^{10}.3.5^2 - 1)\) a contradiction. If \(G\) is a 2-Frobenius group, then, there is a normal series \(1 < H < K < G\) such that \(K\) and \(G/H\) are Frobenius groups with kernels \(H\) and \(K/H\), respectively. By Lemma 3.1(a), we have \(T(G) = \{p_1(G) = \pi(H) \cup \pi(G/K), \pi_2(G) = \pi(K/H)\}\). Therefore, \(|K/H| = 17\). Also, by Lemma 3.1(b), we have \(G/K \leq Aut(K/H) \cong Z_{16}\), hence \(|G/K| \mid 2^4\), which implies that \(\{3, 5, 17\} \subseteq \pi(K)\) from which we deduce that 5 \(\in\) \(\pi(H)\).

Let \(H_5 \in Syl_{15}(H)\) and \(G_{17} \in Syl_{17}(G)\). Then \(H_5charH \leq G\). By nilpotency of \(H\), we have \(H_5 \leq G\) and \(H_5\) act on \(G_{17}\) without fixed point, since 5 \(\sim\) 17 in \(\Gamma(G)\). Therefore, by Theorem 3.1, \(H_5.G_{17}\) is a Frobenius group. So, \(|G_{17}| \mid |(H_5 - 1)|\), i.e., 17 \(\mid (5^i - 1), i = 1\) or 2, a contradiction.

Now by Lemma 3.4(c), there exists a non-abelian simple group \(P\) such that \(P \leq G = G/N \leq Aut(P)\) for some nilpotent normal \(\{2, 3, 5\}\)-subgroup \(N\) of \(G\) and \(G/P\) is a \(\{2, 3, 5\}\)-group.

Similarly to case 2, we deduce that \(P \cong S_4(4)\). We have \(S_4(4) \leq G/N \leq Aut(S_4(4))\).

It follows that \(|N| = 4, 2\) or 1.

If \(|N| = 1\), then \(G \cong S_4(4) : 4\).
If \(|N| = 2\), then \(G/C_G(N) \leq Aut(N) = 1\), therefore \(G/C_G(N) = 1\), hence \(G = C_G(N)\) and \(N \leq Z(G)\). Let \(G_{17} \in Syl_{17}(G)\). Then \(N.G_{17}\) is a subgroup of \(G\), therefore, \(N.G_{17}\) has an element of order 2,17, which implies that 2 \(\sim\) 17 in \(\Gamma(G)\), a contradiction.

If \(|N| = 4\), then \(G/C_G(N) \leq Aut(N) \cong Z_2\). Thus, \(|G/C_G(N)| = 1\) or 2. If \(|G/C_G(N)| = 1\), then, we have \(N \leq Z(G)\). Let \(G_{17} \in Syl_{17}(G)\). Then \(N.G_{17}\) is a subgroup of \(G\), therefore, \(N.G_{17}\) has an element of order 2,17, which implies that 2 \(\sim\) 17 in \(\Gamma(G)\), a contradiction. If \(|G/C_G(N)| = 2\), then \(N < C_G(N)\) and \(1 \neq C_G(N)/N \leq G/N \cong L\).

Therefore, from simplicity \(L\) we deduce that \(G = C_G(K)\), a contradiction.

References

کارگاه‌های آموزشی مرکز اطلاعات علمی جهاد دانشگاهی

مباحث پیشرفته یادگیری عمقی؛ شبکه‌های توجه گرافی (Graph Attention Networks)

کارگاه آنلاین آموزش استفاده از وب آسیس

کارگاه آنلاین مکالمه روزمره انگلیسی

WEB OF SCIENCE

Daily English