Module-Amenability on Module Extension Banach Algebras

D. Ebrahimi bagha

^Department of Mathematics, Faculty of Science, Islamic Azad University, Central Tehran Branch, P. O. Box 13185/768, Tehran, Iran.

Abstract. Let A be a Banach algebra and E be a Banach A-bimodule then $S = A \oplus E$, the l^1-direct sum of A and E becomes a module extension Banach algebra when equipped with the algebras product $(a, x)(a', x') = (aa', a.x' + x'.a')$. In this paper, we investigate \triangle-amenability for these Banach algebras and we show that for discrete inverse semigroup S with the set of idempotents E_S, the module extension Banach algebra $S = l^1(E_S) \oplus l^1(S)$ is \triangle-amenable as a $l^1(E_S)$-module if and only if $l^1(E_S)$ is amenable as Banach algebra.

Keywords: Module-amenability, module extension, Banach algebras

1. Introduction

The concept of amenability for Banach algebras was introduced by Johnson in [8]. The main Theorem in [8] asserts that the group algebra $L^1(G)$ of a locally compact group G is amenable if and only if G is amenable. This is far from true for semigroups. If S is a discrete inverse semigroup, $l^1(S)$ is amenable if and only if E_S is finite and all the maximal subgroups of S are amenable [6]. This failure is due to the fact that $l^1(S)$, for a discrete inverse semigroup S with the set of idempotents E_S, is equipped with two algebraic structures. It is a Banach algebra and a Banach module over $l^1(E_S)$.

The concept of module amenability for Banach algebras was introduced by M.Amini in [1]. The main theorem in [1] asserts that for an inverse semigroup S, with the set of idempotents E_S, $l^1(S)$ is module amenable as a Banach module over $l^1(E_S)$ if and only if S is amenable. Also the second named author study the concept of weak module amenability in [2] and showed that for a commutative inverse semigroup S, $l^1(S)$ is always weak module amenable as a Banach module over $l^1(E_S)$. There are many examples of Banach modules which do not have any natural algebra structure One example is $L^p(G)$ which is a left Banach $L^1(G)$-module, for a locally compact group G [4]. The theory of amenability in [8] and module amenability developed in [1] does not cover these examples. There is one thing in common in these examples and that is the existence of a module homomorphism from the Banach module to the underlying Banach algebra. For instance if G is a compact group and $f \in L^0(G)$, then on has the module homomorphism $\triangle_f : L^p(G) \to L^1(G)$ which sends g to $f \ast g$. The concept of \triangle-amenability in [7] is defined for a Banach module E over a Banach algebra A with a given mod-

*Corresponding author. Email: dav.ebrahimibagha@iauctb.ac.ir

© 2012 IAUCTB

http://jlta.iauctb.ac.ir

www.SID.ir
ule homomorphism $\triangle : E \to A$. The authors in [7] gives the basic properties of \triangle-amenability and in particular establishes the equivalence of this concept with the existence of module virtual (approximate) diagonals in an appropriate sense. Also the main example in [7] asserts that for a discrete abelian group G, $L^p(G)$ is \triangle-amenable as an $L^1(G)$-module if and only if G is amenable. In this paper we shall focus on an especial kind of Banach algebras which are constructed from a Banach algebra A and a Banach A-bimodule E, called module extension Banach algebras and we verify the concept of \triangle-amenability for these Banach algebras.

2. Preliminaries

Let A be a Banach algebra and E be a Banach space with a left A-module structure such that, for some $M > 0$, \[\|a.x\| \leq M \|x\| \quad (a \in A, x \in E). \] Then E is called a left Banach A-module. Right and two-sided Banach A-modules are defined similarly. Throughout this section E is a Banach A-bimodule and $\triangle : E \to A$ is a bounded Banach A-biomodule homomorphism.

Definition 2.1 Let X be a Banach A-Bimodule. A bounded linear map $D : A \to X$ is called a module derivation (or more specifically \triangle-derivation) if

\[
D(\triangle(a.x)) = a.D(\triangle(x)) + D(a).\triangle(x)
\]

\[
D(\triangle(x.a)) = D(\triangle(x)).a + \triangle(x).D(a)
\]

For each $a \in A$ and $x \in E$. Also D is called inner (or \triangle-inner) if there is $f \in X$ such that

\[
D(\triangle(x)) = f.\triangle(x) - \triangle(x).f \quad (x \in E)
\]

Definition 2.2 A bimodule E is called module amenable (or more specifically \triangle-amenable as a A-bimodule) if for each Banach A-bimodule X, all \triangle-derivation from A to X^* are \triangle-inner.

It is clear that A is A-module amenable (which $\triangle =$id) if and only if it is amenable as a Banach algebra. A right bounded approximate identity of E is a bounded net a_{α} in A such that for each $x \in E$, $(\triangle(x).a_{\alpha} - \triangle(x)) \to 0$ as $\alpha \to 0$. The left and two sided approximate identities are defined similarly.

Proposition 2.3 If E is module amenable, then E has a bounded approximate identity.

Proposition 2.4 If I is a closed ideal of A which contains a bounded approximate identity, E is a Banach A-bimodule with module homomorphism $\triangle : E \to A$, and X is an essential Banach I-module, then X is a Banach A-module and each \triangle_I-derivation $D : I \to X$ uniquely extends to a \triangle-derivation $D : A \to X$ which is continuous with respect to the strict topology of A (induced by I) and W-topology of X^*.

Proposition 2.5 If $\triangle : E \to A$ has a dense range, then \triangle-amenability of E is equivalent to amenability of A.

Definition 2.6 Let $\triangle : A \hat{\otimes} A \to A$ be the continuous lift of the multiplication map of A to the projective tensor product $A \hat{\otimes} A$. A module approximate diagonal of E is
a bounded net \(e_\alpha \) in \(A \hat{\otimes} A \) such that
\[
\|e_\alpha \triangle(x) - \triangle(x).e_\alpha\| \to 0 \\
\|\pi(e_\alpha \triangle(x) - \triangle(x))\| \to 0, \quad (x \in E)
\]
As \(\alpha \to \infty \). A module virtual diagonal of \(E \) is an element \(M \) in \((A \hat{\otimes} A)^{**} \) such that
\[
M.\triangle(x) - \triangle(x).M = 0 \\
\pi^{**}(M) . \triangle(x) - \triangle(x) = 0, \quad (x \in E)
\]
It is clear that if \(E \) has a module virtual diagonal, then \(A \) contains a bounded approximate identity.

Theorem 2.7 Consider the following assertions

i) \(E \) is module amenable,

ii) \(E \) has a module virtual diagonal,

iii) \(E \) has a module approximate diagonal.

We have (i) \(\to \) (ii) \(\to \) (iii). If moreover \(\triangle \) has a dense range, all the assertions are equivalent.

Example 2.8 let \(1 < P < \infty \) and \(\frac{1}{p} + \frac{1}{q} = 1 \) then \(l^1 \) is a Banach algebra and \(l^p \) is a Banach \(l^1 \) module, both with respect to pointwise multiplication. Also each \(f \in l^q \) defines a module homomorphism \(\triangle_f : l^p \to l^1 \) by \(\triangle_f(g) = g^* f \). If \(f = \sum_{k=-\infty}^{\infty} \delta_k \), then \(\triangle_f \) has dense range and \(l^p \) is \(\triangle_f \)-amenable.

3. \(\triangle \)-amenability of Module extension Banach algebras

The module extension Banach algebra corresponding to \(A \) and \(E \) is \(S = A \oplus E \), the \(l^1 \)-direct sum of \(A \) and \(E \), with the algebra product defined as follows:
\[
(a, x). (a', x') = (aa', ax' + x.a') \quad (a, a' \in A, x, x' \in E).
\]
Some aspects of algebras of this form have been discussed in [3] and [5] also the amenability and \(n \)-weak amenability of module extension Banach algebras investigated by zhang in [? ?]. In this section we show that the amenability of Banach algebra \(A \) is equivalent to \(\triangle \)-amenability \(A \oplus E \) as a Banach \(A \)-module.

By the following module actions the module extension Banach algebra \(A \oplus E \) is a Banach \(A \)-module
\[
a.(b, x) = (ab, x), \quad (b, x).a = (ba, x) \quad (a, b \in A, x \in E).
\]
Also \(\triangle : A \oplus E \to A \) by \((a, x) \to a(a \in A, x \in E) \) is a surjective \(A \)-module homomorphism, so we have:

Proposition 3.1 The Banach algebra \(A \) is amenable if and only if the module extension Banach algebra \(A \oplus E \) is \(\triangle \)-amenable as a \(A \)-module.

Example 3.2 Let \(S \) is a discrete inverse semigroup with the set of idempotents \(E_S \) and \(E = l^1(S) \), \(A = l^1(E_S) \) and \(l^1(E_S) \) act on \(l^1(S) \) by multiplication in this case; the module extension Banach algebra \(S = l^1(E_S) \oplus l^1(S) \) is \(\triangle \)-amenable as a \(l^1(E_S) \)-module if and only if \(l^1(E_S) \) is amenable.
The authors wish to thank the Islamic Azad University Central Tehran Branch for their kind support.

References