Elicitation of defense responses in tomato against *Meloidogyne javanica* and *Fusarium oxysporum* f. sp. *lycopersici* wilt complex

Ebrahim Pourjam¹*, Nasrin Kamali¹ and Navazollah Sahebani²

1. Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
2. Department of Plant Protection, Abourayhan College, Tehran University, Tehran, Iran.

Abstract: In this study, *Trichoderma harzianum* BI was evaluated for its capability to reduce the incidence and severity of the root-knot nematode, *Meloidogyne javanica*, and Fusarium wilt, *F. oxysporum* f. sp. *lycopersici*, as causal agents of a complex disease of tomato in the laboratory and greenhouse conditions. Initial *in vitro* studies revealed that the parasitism of *M. javanica* eggs by *T. harzianum* BI was up to 49.6%. In dual culture tests, maximum growth inhibition of *F. oxysporum* f. sp. *lycopersici* by *T. harzianum* BI (55%) was observed on the fifth day in laboratory. In greenhouse studies, the efficiency of treatments was appraised by using nematode-related factors such as diameter of galls, number of galls per plant, number of egg masses per plant and also incidence of Fusarium wilt. The antagonistic fungus was further tested for its ability to induce production of defense related enzymes in tomato. The activity of phenylalanine ammonia lyase (PAL) was increased significantly in the seedlings treated with the antagonistic fungus in comparison with control and its maximum amount was reached on the fourth day after inoculation with *T. harzianum* BI. Thus, the present study shows that in addition to direct antagonism, induction of defense-related enzymes, by *T. harzianum* BI that are involved in PAL pathway contributed to enhanced resistance against invasion of *M. javanica* and *F. oxysporum* f. sp. *lycopersici* in tomato.

Keywords: *Meloidogyne javanica*, *Fusarium oxysporum* f.sp. *lycopersici*, *Trichoderma harzianum* BI, Phenylalanine ammonia lyase (PAL)

Introduction

Plant-parasitic nematodes, especially the sedentary endoparasitic forms such as *Meloidogyne* species, are one of the important pests of tomato and greenhouse-grown crops, causing severe economic damages (Siddiqui and shaukat, 2003; Bird *et al.*, 2008; Nasr Esfahani *et al.*, 2012).

Fusarium wilt of tomato caused by *Fusarium oxysporum* f. sp. *lycopersici* (Sacc.) Synder. and Hans, is one of the major limiting factors in tomato-growing regions of Iran (Amini, 2009; Bahar Morid *et al.*, 2012). The symptoms of disease include yellowing of the lower leaves, wilting of leaves and defoliation, marginal necrosis of the remaining leaves, severe brown discoloration of vascular tissues along the stem and finally death of the plant (Agrios, 2005).

Studies in the past decades, have shown that interactions between *Meloidogyne* spp. and several formae speciales of *Fusarium*, cause
more damage and higher wilt severity than the sum damages of each agent alone (Hussey and McGuire, 1987; Star et al., 1989; France and Abawi, 1994).

Several researchers have demonstrated control of the root-knot nematode *Meloidogyne* spp. and *Fusarium oxysporum* disease complex using various biocontrol organisms such as *Trichoderma* spp. (Sharma and Trivedi, 2002; Haseeb et al., 2005; Nagesh et al., 2006; Al-Fattah et al., 2007; Srivastava et al., 2010). *Trichoderma harzianum* is able to parasitize nematode eggs and juveniles and penetrate nematode egg mass matrix (Sharon et al., 2001). This fungus also is involved in induction of plant defence system against disease agents and induction of resistance in plants (Hibar et al., 2007; Verma et al., 2007). Ojha and Chatterjee (2012) investigated the effect of salicylic acid and *Trichoderma harzianum* on the induction of defense enzymes in tomato plants infected with *Fusarium oxysporum* f. sp. *lycopersici*. They indicated that total phenolic content, peroxidase and polyphenol oxidase activity increased significantly in infected plants.

Srivastava et al. (2010) evaluated a large number of *Trichoderma* spp. and pseudomonad isolates for their efficacy to control *Fusarium* wilt of tomato. They observed that *T. harzianum* significantly reduced the incidence of *Fusarium* wilt and increased seed germination. Isolates of *Trichoderma* also could reduce the mycelial growth of *Fusarium oxysporum* f. sp. *lycopersici*, in vitro and reduced disease severity of the pathogen in the greenhouse (Otadoh et al., 2011). Sharon et al. (2007) and Golzary et al. (2011) examined parasitism of *Trichoderma* isolates on different life stages of *M. javanica* in the laboratory and also in pot experiments on tomato. Their results indicated that egg masses, eggs and second-stage juveniles (J2) were parasitized by different *Trichoderma* isolates and that *Trichoderma* spp. significantly reduced gall diameter, gall number and nematode population in treated roots.

In the present study, greenhouse experiments were done to evaluate the ability of *Trichoderma harzianum* BI to: (1) suppress the root knot nematode, *Meloidogyne javanica* infection in tomato seedling; (2) decrease the *Fusarium* wilt caused by *F. oxysporum* f. sp. *lycopersici*; (3) control *M. javanica-F. oxysporum* disease complex on *Solanum lycopersicum* var. Early urbana Y. and laboratory experiments were conducted to (4) monitor the induction of some resistance-related enzymes such as phenylalanine ammonia lyase (PAL) in tested plants.

Materials and Methods

The Pathogens

Soil and root samples were collected from the rhizosphere of tomato (*Solanum lycopersicum* Mill.) plants, from root knot nematode infested fields of Pakdasht. Egg masses on galls were picked off and then allowed to hatch. Second-stage juveniles were inoculated to tomato seedlings. Following nematode detection based on Jepson (1987), single egg mass was used to establish the *M. javanica* culture on tomato plants.

Fusarium oxysporum f.sp. *lycopersici* was obtained from Department of Plant Pathology, Faculty of Agriculture, Tehran University and cultured on potato dextrose agar (PDA) containing streptomycin and chloramphenicol, 150 mg per liter of each. The Petri dishes were then placed in an incubator at 25 °C. Spores from 14-day-old cultures were collected gently from the surface of each plate culture with sterile distilled water. Then, spore concentration in the suspension was adjusted to final concentration of 10^6 spores/ml with the aid of a Neubauer’s chamber haemocytometer.

Biocontrol agent

Trichoderma harzianum BI was obtained from Department of Plant Pathology, Faculty of Agriculture, Tehran University and cultured on potato dextrose agar (PDA) containing streptomycin and chloramphenicol, 150 mg per liter of each. The Petri dishes were then incubated at 25 °C for six days, the spores were
then collected from the plates with sterile distilled water and adjusted to final concentration of 10^6 spores/ml using a Neubauer’s chamber haemocytometer.

Plant material
Experiments were executed on tomato (*Solanum lycopersicum* var. Early Urbana Y) grown in a controlled-environment cabinet at ambient temperature of 25 ± 3 °C.

Laboratory Experiments

Effect of *T. harzianum* BI on *M. javanica* eggs
Approximately, 30-40 eggs were transferred to the center of a glass slide bearing plugs of 10-days old culture of *T. harzianum* BI on each end. The glass slides were set on moistened sand contained in petri plates. Each treatment was replicated 4 times. Eggs placed on center of glass slide without the fungus served as control. Five days after incubation at 28 °C in a dark room, eggs from *T. harzianum* BI treated and control slides, were separately examined under microscope. The experiment was replicated two times and data were taken on parasitism, mortality and destruction of eggs by *Trichoderma*.

Effect of *T. harzianum* BI on growth of *F. oxysporum* f. sp. *lycopersici*
In dual culture assays, 5 mm disc of 8–10 days old culture of pathogen was placed on one side of a petri plate and 48h later a disc of 6–7 days old culture of antagonist was placed on the opposite side of petri plate. Control petri plate was without culture of antagonist. Petri plates were then sealed with Parafilm and incubated at 27 ± 2 °C in dark for 5 days. Radial growth of pathogen was recorded and percentage of growth inhibition was calculated (Dennis and Webster, 1971). The experiment was replicated two times for the confirmation of results. The growth inhibition was calculated using formula $I = (C-T)/C \times 100$, where I = percent growth inhibition, C = radial growth of pathogen in absence of antagonist, and T = radial growth of pathogen in presence of antagonist.

Greenhouse Experiments
Tomato seeds were sown in 10 cm diameter pots containing sterilized mixture of field soil, leaf compost, and sand at the ratio of 2:1:1, and seedlings were then grown for 60 days in the greenhouse. The four-leaf seedlings received 20 ml of a suspension of *T. harzianum* BI containing 10^6 spores/ml and 20 ml of a suspension of *F. oxysporum* f. sp. *lycopersici* (Sahebani and Hadavi, 2008; Amini and Sidovich, 2010). The nematode suspension (2000 J2 of *M. javanica* in water) was injected 2 cm deep into the rhizosphere using 3 holes around the stem base which were made by a plastic rod (Sahebani and Hadavi, 2008).

The inoculation of the different treatments was applied with an interval of 4 days. Treatments shown in the parentheses were applied simultaneously and control pots were treated with distilled water only. The experiment consisted of 11 treatments: 1.- T + N, 2. -N + T, 3. -T + (F + N), 4.- (F + N) + T, 5.- T + F, 6.- F + T, 7.- N + F, 8.- only *T. harzianum*, 9.- only *F. oxysporum* f. sp. *lycopersici* F, 10.- Only *M. javanica* N, and 11.- Uninoculated negative control. All of the pots were kept in the greenhouse at 25 °C ± 3 with 16 h of supplemental artificial light per day.

The experiment was terminated 60 days after applications of the fungi and the nematode. The number of galls, egg masses, diameter of galls per plant (Mirehki et al., 2013) and symptoms of *Fusarium* wilt (number of yellowing and dropping of leaves) were then recorded (Mohamed and Haggag et al, 2006). The experiment was repeated for a second time. Statistical analysis was done with the SAS software package (ver. 9.1). ANOVA analysis was performed with critical difference at 5% level of significance.
Enzymatic activity determination

Enzymatic activity of phenylalanine ammonia lyase (PAL) was determined in treatments of number 1, 3, 5, 7, 8, 9, 10 and 11. Root of seedling was inoculated with 10^6 spores/ml of antagonistic fungus at six-leaf stage by soil drenching. Each treatment was replicated 4 times. Four days after inoculation, plant roots were inoculated with 2000 nematode J2/plant and suspension of 10^6 spores of *F. oxysporum* f. sp. *lycopersici*. Root samplings were done daily for 7 days. Fresh tomato roots were washed and dried with filter paper, homogenized in mortar with liquid nitrogen. The homogenate was rinsed with the same volume of 0.1 M sodium phosphate buffer (PH 6.0) at 4 °C, and filtered through a 0.2 mm nylon filter into a centrifuge tube. The tissue extracts were centrifuged at 13,000 rpm for 20 min at 4 °C. The supernatant was used for enzymatic activity assay (Reuveni, 1995).

Enzymatic activity of (PAL) was assayed according to Chen et al. (2000). Specific enzyme activity was expressed based on the amount of trans-cinnamic acid in reaction mixture, at 290 nm per ml of plant exudates. The experiment was performed in four replicates.

Results

Laboratory experiments

T. harzianum BI caused significant infection of *M. javanica* eggs by direct parasitism (Fig. 1). The percentage of unhatched eggs treated with *T. harzianum* was 49.6%, in contrast to 12.3% in control. The percentage of growth inhibition in *F. oxysporum* f. sp. *lycopersici* caused by *T. harzianum* BI ranged from 25% to 55.3% from day 1 to 5, although growth of *Fusarium* was inhibited steadily, there was no significant difference in radial growth of mycelium between day one to day three and also between days four and five. *Trichoderma* increasingly inhibited growth of *F. oxysporum* f. sp. *lycopersici* and its antagonistic capability increased with time (Fig. 2).

Greenhouse Expriments

The soil treated with *T. harzianum* BI either before or after inoculation with nematode and *Fusarium*, separately or in combination (F + N) significantly reduced disease severity indices such as diameter of gall, number of galls and number of egg masses per plant as well as wilt incidence in comparison to controls (F + N). Significant reduction in gall formation was obtained with *T. harzianum* BI, when applied before and after nematode and *Fusarium* inoculation, separately or simultaneously (Fig. 3). *T. harzianum* BI reduced diameter of galls when applied before nematode infection and in simultaneous inoculations of nematode and *Fusarium* (Fig. 4). *T. harzianum* BI significantly reduced number of egg masses in all treatments (Fig. 5), whereas, these parameters increased in simultaneous inoculation of nematode and *Fusarium* (F + N). Application of *T. harzianum* before and after inoculation with *Fusarium* and also in simultaneous inoculations with a combination of nematode and *Fusarium* reduced the incidence of wilt in pot trials (Fig. 6). In other words, in all the experiments, *T. harzianum* BI gave good levels of control.

Enzymatic activity determination

Inoculation of tomato roots with *T. harzianum* BI, significantly increased PAL enzyme activity as compared to uninoculated control. Maximum level of enzyme activity was achieved four days after inoculation by *T. harzianum* BI, and then it slowly decreased. In plants inoculated with nematode alone, PAL activity was reduced significantly within one to four days after inoculation, and then increased gradually. In plants that were inoculated only with *F. oxysporum* f. sp. *lycopersici*, PAL activity showed no significant change during the sampling days (Fig. 7).
Figure 1 Effect of *T. harzianum* BI on *M. javanica* eggs mortality as compared to control. Means with different letters are significantly different based on Duncan Test ($P \leq 0.05; n = 4$).

Figure 2 Radial growth inhibition of *F. oxysporum* f. sp. *lycopersici* by *T. harzianum* BI in course of time. Means with different letters on the column are significantly different based on Duncan Test ($P \leq 0.05; n = 4$).

Figure 3 Effect of *T. harzianum* BI (T) on number of galls formed by *M. javanica* alone (N) and in combination with *F. oxysporum* f. sp. *lycopersici* (F + N). Treatments within parentheses are applied simultaneously. Means with different letters on the columns are significantly different based on Duncan Test ($P \leq 0.05; n = 4$).
Figure 4 Effect of *T. harzianum* BI (T) on diameter of galls formed by *M. javanica* alone (N) and in combination with *F. oxysporum* f. sp. *lycopersici* (F + N). Treatments within parentheses are applied simultaneously. Means with different letters on the columns are significantly different based on Duncan Test (P ≤ 0.05; n = 4).

Figure 5 Effect of *T. harzianum* BI (T) on mean number of egg masses formed by *M. javanica* alone (N) and in combination with *F. oxysporum* f. sp. *lycopersici* (F + N). Treatments within parentheses are applied simultaneously. Means with different letters on the columns are significantly different from each other based on Duncan Test (P ≤ 0.05; n = 4).

Figure 6 Effect of *T. harzianum* BI (T) on wilt incidence of leaves in tomato plants caused by *F. oxysporum* f. sp. *lycopersici* alone (F) and in combination with *M. javanica* (F + N). Treatments within parentheses are applied simultaneously. Means with different letters on the columns are significantly different based on Duncan Test (P ≤ 0.05; n = 4).
Figure 7 Phenylalanine ammonia lyase specific activity in tomato roots (var. Early Urbana Y) as estimated by releasing of trans-cinnamic acid from phenylalanine, on days 1 to 7 after inoculation with *T. harzianum* BI (T), *M. javanica* (N), *F. oxysporum* f. sp. *lycopersici* (F) and different combinations of T, N and F. Each value represents the mean of four replicates. The bars correspond to standard error.

Discussion

The results of our laboratory and greenhouse experiments indicate that *T. harzianum* BI has significant biocontrol potential against tested pathogens, the root-knot nematode *M. javanica* and *F. oxysporum* f. sp. *lycopersici*. The most important aspect of this study was the efficacy of *T. harzianum* BI against the disease complex of the root-knot nematode and wilt fungus. Our experiments showed that this biocontrol agent has a good performance against both pathogens either singly or in their simultaneous presence as disease complex agents.

T. harzianum BI significantly reduced the hatching of *M. javanica* eggs. These results are in agreement with results of Naserinasab et al. (2010). In their experiment, *T. harzianum* significantly reduced the egg hatching of *M. javanica* so that the percentage of unhatched eggs was 84% as compared to 21% in control. *Trichoderma* spp. have been reported to produce chitinases (Chet and Baker, 1981) which might inhibit the eggs from hatching. Sharon et al. (2001) showed direct parasitism of *T. harzianum* (T-203) on *M. javanica* under *in vitro* condition.

In this study, the maximum percentage of growth inhibition of *F. oxysporum* f. sp. *lycopersici* by *T. harzianum* was observed as 48.5% and 55.3% after four and five days, respectively. Similar results were obtained by Srivastava et al. (2010) who reported that maximum percentage of growth inhibition of *F. oxysporum* f. sp. *lycopersici* by *T. harzianum* isolates ranged from 30% to 48%.

Application of *T. harzianum* to the soil or nursery beds of tomato plants can significantly reduce population density of *Meloidogynae* and the severity of *Fusarium* wilt. Soil treatment with *T. harzianum* BI resulted in a reduction in the numbers of galls, egg masses and percentage of *Fusarium* wilt incidence. But application of *T. harzianum* to the soil, prior to the pathogenic agents, was more effective. This suggests that root colonization by *T. harzianum* can induce the production of defense-related enzymes and probably other defense compounds which lead to systemic resistance in plants. Our results indicate that *T. harzianum* BI has direct and indirect effects on nematode infection by reducing egg hatch and induction of resistance in plant. Sharon et al. (2001) reported that *T. harzianum* reduced galling of root-knot nematode *M. javanica* on tomato plants. Results of this study also showed that *T. harzianum* BI significantly increased PAL activity in tested plant as compared to the control. Ziarati et al., (2009) measured changes of total phenolics in tomato infected by nematode during different times and observed that there is induced systemic
resistance in tomato plant by *Trichoderma* fungus against *M. javanica*. This suggests that *T. harzianum* BI can induce production of defense-related enzymes and probably other defense compounds leading to systemic resistance in plants. Root colonization by *T. harzianum* BI, has been reported to increase defense level related to plant enzymes including various peroxidase, chitinase, β-1,3-glucanases, lipoxigenase and phenylalanine ammonia lyase (Sahebani and Hadavi, 2008; Naserinasab et al., 2010; Howell et al., 2000; Yedidia et al., 1999; Evans et al., 2003). The biocontrol level was significantly improved, when *T. harzianum* BI was applied before nematode and *Fusarium*. The results of our study suggest that *T. harzianum* BI can be used as a very effective biocontrol agent to protect tomato plants from *F. oxysporum* f. sp. *lycopersici* and *M. javanica*.

References

القای پاسخ دفاعی در گوجه‌فرنگی توسط Trichoderma harzianum BI علیه بیماری مختلط نمادین Fusarium oxysporum f. sp. lycopersici و قارچ آناتوکسیت sp. lycopersici و مولدی جنینی می‌باشد. واقعیتی که در مورد بیماری مختلط نمادین توسط T. harzianum BI از طریق F. oxysporum f. sp. lycopersici و Trichoderma harzianum BI در کنترل بیماری‌ها مربوط به گوجه‌فرنگی (Fusarium oxysporum f. sp. lycopersici) و بیماری‌های ماتوری (موردی) و غلخانه در گیاه گوجه‌فرنگی مورد آزمایش قرار گرفت. مطالعات آزمایشگاهی نشان داد قارچ آناتوکسیت سبب پاراپنزیسم مستقیم نمادین تا 16/6 درصد شد و در غلخانه‌های کشت دوگانه حداکثر درصد بیماری از رشد میسیل‌ها در قارچ گزارش گردیده یا میزان 55% در روز نجم مشاهده شد. بعلعتم در آزمایش‌های غلخانه‌ای شاهد افزایش شتابی پاتوژنی از قبیل تعداد گل‌ها، تعداد نهایی درخت، قطر گل و همچنین شاخص پرورش‌گذگی برگ‌ها از ارتفاع شد. همچنین نتایج این قارچ در الگوی تکثیری فعالیتی بیماری‌گیر نشان داد. در برابر ترکیب سبب تیمار شد با قارچ آناتوکسیت در مقایسه با شاهد افزایش یافت و حداکثر میزان فعالیت این آزمای سبب می‌شد. در روز چهارم بعد از مایه‌زدی با آناتوکسیت مشاهده شد یک از دریافت باعث گیاهی از قبیل میزان F. oxysporum f. sp. lycopersici و Trichoderma harzianum BI آزمایش‌های فعالیتی نمادین چنین ملدی در حیاتی نمادین و قارچ گزارش گردیده. در این مطالعه نمادین مولد گره ریشه و قارچ گیاهی در گوجه‌فرنگی نقش دارد.

M. javanica

از گونه اصلی: قارچ آناتوکسیت Fusarium oxysporum f. sp. lycopersici جنین فیلی Fusarium oxysporum f. sp. lycopersici و Trichoderma harzianum BI نمادین مولد گره ریشه.

J. Crop Prot. 17(2): 1-38

دریافت: 17 آذر 1392، پذیرش: 22 شهریور 1392

Pourjame@modares.ac.ir

پست الکترونیکی توسط مسئول مکاتبی:

* www.SID.ir